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Background: Accurately predicting the progression of mild cognitive impairment 
(MCI) to Alzheimer’s disease (AD) is a challenging task, which is crucial for helping 
develop personalized treatment plans to improve prognosis.

Purpose: To develop new technology for the early prediction of AD using artificial 
intelligence and cortical features on MRI.

Methods: A total of 162 MCI patients were included from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database. By using a 3D-MPRAGE sequence, T1W 
images for each patient were acquired. All patients were randomly divided into a 
training set (n = 112) and a validation set (n = 50) at a ratio of 7:3. Morphological 
features of the cerebral cortex were extracted with FreeSurfer software. Network 
features were extracted from gray matter with the GRETNA toolbox. The network, 
morphology, network-clinical, morphology-clinical, morphology-network and 
morphology-network-clinical models were developed by multivariate Cox 
proportional hazard model. The performance of each model was assessed by the 
concordance index (C-index).

Results: In the training group, the C-indexes of the network, morphology, 
network-clinical, morphology-clinical, morphology-network and morphology-
network-clinical models were 0.834, 0.926, 0.915, 0.949, 0.928, and 0.951, 
respectively. The C-indexes of those models in the validation group were 0.765, 
0.784, 0.849, 0.877, 0.884, and 0.880, respectively. The morphology-network-
clinical model performed the best. A multi-predictor nomogram with high 
accuracy for individual AD prediction (C-index = 0.951) was established.

Conclusion: The early occurrence of AD could be accurately predicted using 
our morphology-network-clinical model and the multi-predictor nomogram. 
This could help doctors make early and personalized treatment decisions in 
clinical practice, which showed important clinical significance.
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1 Introduction

Approximately 0.5–0.8% of the worldwide population suffers from 
cognitive and behavioral deficits caused by Alzheimer’s disease (AD), 
and the percentage is still increasing (1). The neuropathological 
change in AD patients is characterized by the loss of neurons and 
synapses in the cortex, which leads to subtle cortical morphological 
changes and even anatomical atrophy (1). Mild cognitive impairment 
(MCI) is described as a stage of transition between a normal state and 
the pathological state of AD, with 10 to 20% of individuals progressing 
to dementia within a few years (2). Many studies have shown that if 
AD could be predicted early and intervention was taken, the disease 
progression in MCI patients might be slowed or reversed (3, 4). Thus, 
developing an accurate method to predict the development of AD in 
MCI patients has important clinical implications.

In previous studies, MCI patients were usually divided into two 
groups based on whether they progressed to AD, and binary 
classification was performed (5–8). These methods did not provide 
specific information about the time when AD occurred. In recent years, 
some studies have begun to use MRI technology to predict the time of 
MCI conversion to AD (9–11). However, the MRI indicators used in 
these studies were mostly large-scale markers of brain atrophy, such as 
cortical volume and thickness (9–11). The characteristics of the 
interrelation between cortical regions were ignored. In fact, the subtle 
cortical changes at the early stage caused by accumulated harmful 
metabolites in neurons might be  beyond the sensitivity of 
morphological indicators, which might be  revealed by network 
indicators from gray matter covariation or similarity (12). On the other 
hand, the classical gray matter covariant network, which was composed 
of the covariance of gray matter measurements among participants, 
was only used for group-level brain network analysis and cannot 
be used for personal prediction analysis previously. The individual-level 
gray matter network based on brain region morphological similarities 
(13) has been successfully applied in the diagnosis of neurological and 
psychiatric disorders such as AD (14) and schizophrenia (15). Previous 
studies have found a close correlation between cognitive impairment 
in AD patients and topological randomization of the gray matter 
network (16). This study was the first to use this method to study the 
cognitive dynamics of MCI patients. We  analyzed the individual 
cortical morphology and gray matter network characteristics of MCI 
patients using T1WI sequences and constructed an artificial intelligence 
model to achieve early prediction of AD occurrence.

2 Materials and methods

2.1 Participants

All participants were included from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The 
dataset included baseline T1W images and clinical data of 68 MCI 
patients who progressed to AD in 6–60 months and 94 other MCI 
patients without AD conversion in 5 years (the follow-up period was 
6–12 months within 3 years and 12 months for the following 3–5 years). 
The diagnosis of AD followed the criteria defined by the Alzheimer’s 
disease and Related Disorders Association and the National Institute of 
Neurological and Communicative Disorders and Stroke. The MCI 
patients reported subjective memory concerns; however, these patients 

showed no significant impairment in other cognitive domains, everyday 
activities were substantially preserved, and there were no signs of 
dementia. In the follow-up period, participants with bidirectional 
changes (MCI to AD and back to MCI) were excluded. All patients 
were randomized at a ratio of 7:3 into a training group (n = 112) and a 
validation group (n = 50). The workflow is shown in Figure 1.

Clinical data, including age, sex, education level, body mass index 
(BMI), alcohol use and scores on twelve neuropsychological scales 
Montreal Cognitive Assessment [MOCA], 11-item and 13-item 
Alzheimer’s Disease Assessment Scale, Clinical Dementia Rating 
[CDR] Scale, Functional Activities Questionnaire [FAQ], Geriatric 
Depression Scale [GDS], Mini-Mental State Examination [MMSE], 
four subscales of the Rey Auditory-Verbal Learning Test, and Animal 
Fluency Test [AFT], were directly collected from the ADNI website.

2.2 MRI acquisition

By using a 3D-MPRAGE sequence or a comparable sequence with 
slightly varying resolutions, T1W images for each patient were 
acquired. The parameters of scanner 1 (General Electric Healthcare) 
were repetition time (TR) = 7.7–7.0 msec, echo time 
(TE) = 3.1–2.8 msec and matrix = 256 × 256 × 196. Scanner 2 was 
from Siemens Medical Solutions, and its parameters were 
TR = 2300.0 msec, TE = 3.0 msec and matrix = 240 × 256 × 176. The 
parameters of scanner 3 (Philips Medical Systems) were TR = 6.8 msec, 
TE = 3.1 msec and matrix = 256 × 256 × 170. For more information, 
please see http://adni.loni.usc.edu/methods/documents/.

2.3 Extraction of network features in gray 
matter

All network features were extracted from gray matter networks 
that were individually constructed and normalized with the 
methodology proposed by Tijms et al. (13) and Batalle et al. (17). The 
gray matter segmentation was performed with Statistical Parametric 
Mapping software. The connection was determined according to the 
statistical similarities of gray matter morphology. The similarities were 
determined by the maximum correlation between two cubes spanning 
multiple rotations based on the unified automated anatomical labeling 
parcellation template. These procedures yielded a similarity network 
for each individual, with connect strengths ranging from 0 to 1, and 
self-connections were removed. Details of network construction and 
normalization are provided in the Supplementary materials.

The GRETNA toolbox was used for the calculation of network 
properties (18). The global efficiency (Eg), small-world scalar (σ), local 
efficiency (Eloc), cluster coefficient (Cp), assortativity, characteristic path 
length (Lp), nodal betweenness, nodal degree and nodal efficiency were 
calculated (19, 20). Detailed explanations of the network properties and 
calculation procedures are provided in the Supplementary materials.

2.4 Extraction of morphological features of 
the cortex

Morphological features of the cerebral cortex were extracted with 
FreeSurfer software. First, the T1W images were normalized to the 
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MNI space. The Brainnetome Atlas was resliced to the conventional 
MNI space. Then, the Destrieux atlas was used to divide the entire 
cortex (21, 22). Motion correction, cranial stripping, gray/white 
matter segmentation, and cortical surface model reconstruction were 
performed (23). The cortical indicators of mean thickness, surface 
area, standard deviation of the thickness, integrated rectified Gaussian 
curvature, intrinsic curvature index, integrated rectified mean 
curvature, folding index and gray matter volume were obtained. 
Subcortical brain region segmentation was carried out using SPM12 
and the Brainnetome fMRI Toolkit. The gray matter volumes of the 
bilateral thalamus, putamen, hippocampus, caudate nucleus, globus 
pallidus, nucleus accumbens and amygdala were obtained.

2.5 Feature selection and label 
construction for radiomics

In this study, 276 features of the gray matter network (6 global 
properties and 270 nodal network properties) and 1,198 features of the 
cortical morphology were obtained. First, redundancy was reduced by 

calculating the correlation coefficients between features using Spearman 
correlation analysis, and after removing highly correlated features, 328 
features with correlation coefficients above 0.9 remained. Second, the 
37 features with significant differences (p < 0.05) were chosen using 
univariate Cox analysis. Third, the most significant features in disease 
progression were chosen using LASSO Cox regression with 10-fold 
cross validation. Then, 37 radiomics features were finally determined, 
with 28 morphological features and 9 network features (Figure 2). The 
coefficients of the features were presented in Figure 2. The radiomics 
scores (rad-score) of each subject were calculated by combining the 
selected features linearly and multiplying the outputs by the 
corresponding coefficients. A univariate Cox proportional hazards 
model was utilized to identify potential predictors among the clinical 
parameters. The factors that were significant in the univariate analysis 
(p < 0.05) were used in a multivariate Cox proportional hazards model 
to establish network, morphology, network–clinical, morphology–
clinical, morphology–network and morphology–network–clinical 
models. Finally, the consistency index (C-index) was used to assess the 
performance of the models in the training cohort, and the results were 
independently verified in the validation cohort.

FIGURE 1

Flow chart of the study.
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2.6 Multi-predictor nomogram 
construction

In this study, multivariate Cox analysis was used to establish a 
multi-predictor nomogram including radiomic and clinical metrics. 
Calibration curves were used to analyze the correspondence between 
the real outcomes and the predicted results.

2.7 Statistical analysis

The statistical analysis was performed by R software (v. 3.6.0; 
http://www.Rproject.org). The Shapiro–Wilk test and Bartlett test were 
used for clinical, network, and morphological data analysis. The 
between-group differences were examined by Student’s t test, the 
Mann–Whitney U test or the chi-squared test. The C-index with a 

95% confidence interval (CI) was used to assess the model 
performance. The Akaike information criterion (AIC) was used to 
estimate the potential risk of overfitting. The intraclass correlation 
coefficient (ICC) was adopted to evaluate interobserver reproducibility. 
Two-tailed p < 0.05 was considered statistically significant.

3 Results

3.1 Demographics

A total of 112 patients (71 males and 41 females) were included in 
the training group, and 50 patients (25 males and 25 females) were 
included in the validation group. In the training group, the average age 
was 72.00 ± 6.58 years, the average BMI was 27.98 ± 5.21, and the 
average years of education was 16.29 ± 2.63 years. In the validation 

FIGURE 2

(A) Parameter selection in the LASSO Cox regression model. (B) LASSO coefficient analysis of the radiomics features. (C) The 37 individual radiomics 
features and their coefficients. Fonts in black are structural features, while fonts in red are network features.
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group, the average age was 71.47 ± 7.82 years, with an average BMI of 
27.48 ± 4.79 and an average of 15.86 ± 2.63 years of education. There 
was no significant difference in demographic data between the two 
groups (p > 0.05, Table 1).

3.2 Model establishment and verification

In the training group, the C-indexes of the network, morphology, 
network-clinical, morphology-clinical, morphology-network and 

morphology-network-clinical models were 0.834, 0.926, 0.915, 0.949, 
0.928, and 0.951, respectively. The C-indexes of those models in the 
validation group were 0.765, 0.784, 0.849, 0.877, 0.884 and 0.880, 
respectively. The morphology-network-clinical model performed the 
best (Table  2). The morphology-network-clinical model-based 
Kaplan–Meier (KM) survival curve is presented in Figure  3. The 
median value used for stratification of risks was 3.341331, which was 
the cutoff value of the morphology-network-clinical model. A 
substantial difference in time to progression (TTP) was observed 
between the low-risk and high-risk groups.

TABLE 1 Baseline characteristics of all the MCI patients.

Variable Training set (n = 112) Test set (n = 50) Statistics p value

Sex

1 71 (63.39%) 25 (50.00%) 2.568 0.109

2 41 (36.61%) 25 (50.00%)

Drink

0 107 (95.54%) 50 (100.00%) 1.053 0.305

1 5 (4.46%) 0 (0.00%)

Age 72.00 ± 6.58 71.47 ± 7.82 −0.413 0.681

Education 16.29 ± 2.63 15.86 ± 2.63 −0.971 0.333

BMI 27.98 ± 5.21 27.48 ± 4.79 −0.583 0.561

MOCA 23.00 (21.00, 25.00) 23.00 (20.00, 25.00) −0.477 0.634

ADAS_11 9.00 (6.45, 12.00) 9.00 (6.00, 13.05) 0.196 0.845

ADAS_13 15.00 (11.00, 20.00) 16.00 (10.95, 21.05) 0.734 0.463

CDR 0.50 (0.50, 0.50) 0.50 (0.50, 0.50) −0.203 0.839

FAQ 2.00 (0.00, 5.00) 2.00 (0.00, 8.00) 0.502 0.616

GDSCALE 2.00 (1.00, 2.00) 1.00 (1.00, 3.00) 0.524 0.6

MMSE 28.00 (27.00, 29.00) 28.00 (26.95, 30.00) 0.276 0.783

RAVLT_immediate_bl 34.00 (28.00, 41.00) 33.50 (26.00, 41.05) −0.259 0.795

RAVLT_learning_bl 4.00 (2.00, 6.00) 4.00 (3.00, 6.00) 0.78 0.436

RAVLT_forgetting_bl 5.00 (3.00, 6.55) 5.00 (4.00, 7.05) 0.906 0.365

RAVLT_perc_forgetting_bl 65.16 (38.00, 90.15) 75.00 (36.36, 100.00) 1.012 0.312

Category_Fluency_Animals. 17.40 ± 4.78 16.96 ± 5.47 −0.519 0.604

WM volume 4.88 (2.02, 13.28) 4.47 (1.61, 11.39) −0.558 0.577

Fazekas −0.27 (−0.27, −0.27) −0.27 (−0.27, −0.27) −0.678 0.498

Radscore −0.13 (−0.84, 0.89) −0.09 (−0.88, 0.82) −0.007 0.994

MCI, mild cognitive impairment; BMI, body mass index; ADAS, Alzheimer’s Disease Assessment Scale; CDR, Clinical Dementia Rating; FAQ, Functional Assessment Questionnaire; 
GDSCALE, Geriatric Depression Scale; MMSE, Mini-Mental State Examination; RAVLT, Rey Auditory-Verbal Learning Test; WM, white matter.

TABLE 2 Performance of the different models.

Training set Test set

Models C-index Lower Upper C-index Lower Upper

Network 0.834 0.776 0.892 0.765 0.672 0.857

Morphology 0.926 0.896 0.957 0.784 0.672 0.896

Morphology-Clinical 0.949 0.921 0.978 0.877 0.808 0.945

Network-Clinical 0.915 0.888 0.943 0.849 0.783 0.915

Network-Morphology 0.928 0.898 0.958 0.844 0.756 0.932

Network-Morphology-Clinical 0.951 0.928 0.974 0.880 0.817 0.943
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FIGURE 3

Network-morphology-clinical model-based KM analysis of the prediction with median cutoff values. (A) Training cohort; (B) validation cohort. 
Significant variations were observed between the low-risk and high-risk groups (log-rank test, p < 0.05).
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3.3 Multi-predictor nomogram 
construction and validation

A multi-predictor nomogram based on a morphology-network-
clinical model was created for the purpose of individual AD 
prediction. This nomogram included 3 predictors: the Montreal 
Cognitive Assessment (MoCA) score, Functional Assessment 
Questionnaire (FAQ) score, and rad-score (Figure 4A). The calibration 
curves showed that the 1-, 3-, and 5-year predictions made by the 
multi-predictor nomogram and the real outcomes were in good 
agreement (Figures 4B,C).

4 Discussion

In this study, by combining cortical morphology and network 
features, we  obtained six models for AD prediction, and all 
demonstrated good prognostic capability. The combined morphology-
network-clinical model presented the best performance, with a 

C-index of 0.951 in the training group and 0.880 in the validation 
group, which could be regarded as an accurate predictive method to 
estimate the likelihood of progression in patients with MCI within a 
specific time frame. This method was simple and noninvasive; 
moreover, it did not require the use of radiation, which is of great 
significance in clinical practice, as radiation presents risks. Most 
previous studies on MCI to AD conversion only focused on the large-
scale indicators of the hippocampus and temporal cortex (9–11, 24). 
For example, a deep learning algorithm with a C-index of 0.864 has 
been created to predict the early occurrence of AD based on 
hippocampal MRI (7). According to the thickness of the middle 
temporal cortex and the volume of the hippocampus, a model has 
been established to predict the 3-year conversion rate with a C-index 
of 0.78 (9). Compared with these studies, our model comprehensively 
analyzed the microscopic changes in the entire cerebral cortex and 
network for the first time and obtained higher accuracy and 
objectivity. On the other hand, our study only used T1WI sequences, 
which greatly simplified the prediction parameters and greatly 
improved the clinical simplicity.

FIGURE 4

AD occurrence was estimated using the nomogram, and the model calibration was evaluated (A). Calibration plot for the nomogram using the training 
and validation sets (B,C).
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In the model with the best performance, 37 features of the 
morphology and network (9 from the network and 28 from the 
morphology) were retained for AD prediction. Among the 9 
features of the network, 4 were betweenness, 3 were degree, and 2 
were node efficiency. Betweenness can characterize the effect of 
nodes on information flow. Degree reflected the ability of node 
information communication, whereas node efficiency measured the 
ability to disseminate information between two nodes. Overall, 
these properties could reflect the ability of the brain to transmit and 
integrate information that was closely related to the composition of 
cognitive processes (25). Previous studies have found that these 
parameters were damaged in AD patients, which could reflect the 
neuropathological state (26). Most of these features were located in 
the limbic areas (the left insula, left putamen, right amygdala, and 
left hippocampus), right supplementary motor area, right pallidum, 
right calcarine, left pars orbitalis, and right dorsolateral superior 
frontal gyrus. These regions were involved in the default-mode 
network, the executive control network and the salience network. 
All these areas were considered strongly linked with human 
situational memory, self-projection, and cognitive management 
(27–30). The DMN was the first to be identified to be affected in AD 
(27). Connectivity disruption in the DMN at the early stages of 
illness was thought to be associated with early molecular pathology 
in AD, which evolved before the clinical onset of dementia (31). 
Similarly, network alterations of the SN and ECN in AD patients 
were also reported, which could be  a sensitive neuroimaging 
biomarker for AD (30, 32).

In addition to network features, 28 morphological features were 
also retained. Among them, 12 features belonged to cortical 
thickness, 13 features belonged to cortical curvature, and 3 features 
belonged to subcortical volume. These cortical features were of great 
significance in characterizing cortical atrophy and brain morphology 
changes. In previous studies, the decrease in gray matter volume, 
mean curvature and cortex thickness due to the loss of neurons and 
synapses in the cortex and specific subcortical areas has been proven 
to be  closely related to the conversion of MCI to AD (33–35). 
Moreover, we observed 28 features that were mostly located in the 
insular, frontal and temporal cortex, regions that play crucial roles in 
memory and cognition (36–38). Atrophy of these neurons was linked 
to the emergence of neuropsychiatric impairments in patients 
suffering from AD (38–41). In our previous studies (42), we reported 
that the characteristics of these brain regions are helpful in reflecting 
disease progress.

In this study, we established a nomogram for early AD prediction, 
which could help doctors make personalized treatment decisions in 
clinical practice. Compared with previous research (42), our 
nomogram had higher accuracy and simpler features. In the calibration 
curves, the estimates showed good coherence with clinical outcomes 
that actually occurred. Most previous studies have tracked MCI 
patients for 1 to 3 years (9–11, 34, 43). All individuals in our study were 
followed up for 5 years, which brought our model closer to the real 
situation. In this study, the median of the model could correctly classify 
individual patients into high-risk and low-risk categories. In the high-
risk group, over 75% of the MCI population developed AD within 
5 years. This risk stratification has considerable value for the early 
clinical detection and timely treatment of high-risk MCI patients.

In this study, we utilized artificial intelligence and cortical 
features on T1WI sequences to establish a radiomics model and 

multi-predictor nomogram, which could accurately predict the 
early occurrence of Alzheimer’s disease. According to the median 
output of the joint model, MCI patients could be divided into 
stable and progressive subgroups, which would help identify 
high-risk individuals and enable them to receive timely treatment. 
There were several limitations in our study. First, being derived 
from a multicenter cohort, the ADNI database contains data from 
many hospitals in the United States and Canada, and heterogeneity 
between scanners was inevitable. Second, our research lacked 
independent external validation. Third, this study did not analyze 
dynamic follow-up data. Finally, we used a normalization method 
for anatomical templates, as in other experiments, to ensure that 
the network size was consistent across different populations. This 
process might have template-dependent effects. Further research 
should overcome these limitations and use larger samples to 
examine the relationship between the dynamic changes and the 
occurrence of AD.
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