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Background: As a major cause of disability worldwide, stroke affects about 
80% of survivors with upper limb (UL) motor dysfunction, significantly impairing 
their quality of life. Virtual reality (VR) has been recognized as an innovative 
rehabilitation tool; however, the effectiveness of VR systems with different 
immersion modalities is still uncertain. This systematic review and network 
meta-analysis (NMA) aims to evaluate the comparative effectiveness of 
intervention measures, including non-immersive gaming consoles, immersive 
VR (IVR), non-immersive VR (NIVR), and conventional therapy (CT) on upper 
limb motor function in stroke rehabilitation.

Materials and methods: A systematic search of PubMed, Embase, Cochrane 
Library, and Scopus identified randomized controlled trials (RCTs) published up 
to 12 June 2024. UL motor recovery was assessed using the Fugl-Meyer Upper 
Extremity (FMUE) scale. The NMA was performed using the Bayesian approach 
with the BUGSnet package in R software to calculate the relative effectiveness 
of each intervention.

Results: 34 RCTs involving 1,704 participants were included. Among non-
immersive gaming systems, Microsoft Kinect demonstrated the greatest effective 
in enhancing UL motor function, followed by Nintendo Wii, then NIVR and IVR 
head-mounted devices. CT showed the least effective. Specifically, Microsoft 
Kinect significantly improved FMUE scores (mean difference [MD] = 7.27, 95% 
confidence interval [CI]: 0.59 to 13.77, p < 0.05), followed by Nintendo Wii 
(MD = 4.53, 95% CI: 0.87 to 8.14, p < 0.05), and NIVR (MD = 3.57, 95% CI: 1.18 to 
6.01, p < 0.05). In contrast, IVR head-mounted devices showed no statistically 
significant differences in outcomes, with MD of 4.16 (95% CI: −0.02 to 8.38).

Conclusion: Non-immersive gaming console of Microsoft Kinect is the most 
effective intervention for improving UL motor function in stroke survivors. In 
contrast, IVR head-mounted devices did not offer significant advantages over 
CT. These findings suggest that non-immersive gaming consoles of Microsoft 
Kinect could be  a more cost-effective and accessible alternative for stroke 
rehabilitation.
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1 Introduction

Stroke represents a leading cause of global disability, impacting 
nearly 14 million individuals each year (1, 2). Although stroke-related 
mortality rates exhibit a downward trajectory, the prevalence of stroke 
survivors with long-term sequelae is increasing. This rise is primarily 
due to population growth and aging (3). As a result, the prevalence of 
persistent disabilities among adult populations is growing (4), which 
is increasing the demand for rehabilitation. Data from the Global 
Burden of Disease study indicate that over 2.4 billion people 
worldwide required rehabilitation services in 2019, with a significant 
proportion being stroke survivors with motor impairments (5). 
Among the various sequelae, approximately 80% of stroke survivors 
experience UL motor impairments. These impairments vary and often 
manifest as reduced hand grip strength, diminished finger dexterity, 
and limited elbow and shoulder mobility (6). Such deficits severely 
impact daily functioning, making it difficult for patients to perform 
tasks such as dressing, eating and maintaining personal hygiene. As a 
result, stroke survivors often experience a decline in autonomy and 
quality of life (7). Moreover, these impairments can increase 
dependence on others and lead to psychological distress and social 
isolation (8). Rehabilitation of UL motor function in stroke patients 
requires ongoing, dedicated efforts over an extended period. However, 
traditional rehabilitation approaches often encounter barriers like 
resource limitations and insufficient patient engagement (9), which 
lead to rehabilitation outcomes, emphasizing the need for innovative 
interventions. VR has emerged as a promising therapeutic modality 
to address these challenges. By providing a highly realistic three-
dimensional environment, VR enables patients to engage in simulated 
activities. Through the integration of visual, auditory, and tactile 
elements, VR provides real-time feedback to patients (10, 11). 
Additionally, VR may also facilitate functional recovery by activating 
mechanisms of neuroplasticity (12).

In the field of post-stroke UL functional recovery, VR technologies 
encompass a variety of applications. These primarily include IVR, 
such as head-mounted devices, NIVR, and non-immersive gaming 
consoles (e.g., Nintendo Wii and Microsoft Kinect) (13, 14). While 
IVR provides high immersion levels, which may enhance motor 
recovery (15, 16), its widespread adoption is limited by challenges 
such as high costs and patient discomfort (17). NIVR, in contrast, is 
more accessible but has shown variability in its effectiveness due to 
differences in technological features and interactivity (18, 19).

Many existing studies focus on individual VR modalities, leaving 
a gap in direct comparisons of different VR technologies for UL 
rehabilitation (20, 21). A 2022 NMA (22) suggested the potential 
benefits of IVR for UL motor recovery. However, it did not incorporate 
recent advances in VR technologies or newly published RCTs. 
Moreover, the study did not consider the practical limitations of IVR, 
which have prompted a growing interest in NIVR systems for scalable 
stroke rehabilitation. Based on these considerations, we hypothesize 
that non-immersive gaming consoles, such as Microsoft Kinect, may 
offer a superior effect due to their accessibility, affordability, and ease 
of integration into clinical and home-based rehabilitation. Therefore, 
we will test this through a systematic review and NMA to provide a 
comprehensive comparison of VR interventions with varying levels of 
immersion. By doing so, it offers updated evidence to guide clinical 
decision-making and enhance rehabilitation strategies for 
stroke survivors.

2 Materials and methods

2.1 Design

This systematic review and NMA was conducted in accordance with 
the guidelines provided by the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses statement (PRISMA-NMA) (23). The study 
was registered with PROSPERO (CRD42024610482), which can be found 
at https://www.crd.york.ac.uk/PROSPERO/view/CRD42024610482.

2.2 Search methods

A systematic search was performed across PubMed, Embase, the 
Cochrane Library, and Scopus from their inception up to 12 June 
2024. The search strategies were tailored for each database, combining 
controlled vocabulary terms and title/abstract keywords related to 
virtual reality, upper limb, stroke, and randomized controlled trials. 
The comprehensive search strategies are detailed in 
Supplementary Table S1. The literature review was restricted to peer-
reviewed journal articles reported human studies in English.

2.3 Eligibility criteria

Studies were eligible for our NMA if they met all following criteria:

 1. Study design: RCTs.
 2. Patient characteristics: adult individuals experiencing their 

initial ischemic or hemorrhagic stroke, with diagnosis 
established according to well-defined or internationally 
recognized diagnostic criteria, and with no restrictions on race 
or gender.

 3. Intervention: VR-based rehabilitation, encompassing IVR 
(such as head-mounted devices), NIVR, and non-immersive 
gaming consoles (such as Microsoft Kinect or Nintendo Wii).

 4. Comparison: CT, including conventional rehabilitation, 
occupational therapy, physical therapy, usual care alone, and 
UL conventional. The frequency and duration should 
correspond to those of the intervention group.

 5. Outcome: FMUE was used to assess upper extremity function.

Studies were excluded based on the following criteria:

 1. VR was integrated with robot-assisted therapy or 
neuromodulation in the intervention.

 2. The total treatment dosages administered to the VR group and 
the CT group were not equivalent.

 3. Studies with an intervention frequency lower than twice weekly 
and lacking clear specification of individual 
intervention durations.

 4. Studies with unclear outcome indicators that could not 
be accurately extracted, or those with missing data.

 5. Articles with only abstracts, reviews, case reports and 
study protocols.

 6. In instances of duplicate published studies, the research 
presenting the most comprehensive data was chosen 
for inclusion.
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2.4 Data extraction

Two independent reviewers evaluated studies for inclusion 
through a two-step process: initially screening titles and abstracts, 
followed by a comprehensive full-text assessment based on 
predetermined inclusion and exclusion criteria to determine final 
eligibility. Any disagreements were resolved through consultation with 
a third reviewer or by referencing to the original study. Data extraction 
was conducted using a standardized form to collect essential 
information, including the first author, publication year, study 
location, intervention and comparison group content and dosage, 
sample size, age, male proportion, and assessment time points for 
evaluating VR effects. Furthermore, elements critical for risk of bias 
assessment were recorded. In studies featuring multiple groups, only 
the CT group with a matched treatment dosage matching the VR 
group was included for comparison. For studies presenting both 
Per-protocol and Intention-to-Treat (ITT) analyses, ITT data were 
prioritized for extraction (24).

2.5 Assessment of the risk of bias

Version 2 of the Cochrane risk-of-bias tool for randomized trials 
(RoB-2) was employed to evaluate the quality of included studies (25). 
Two independent reviewers assessed six domains: bias in the 
randomization process, bias due to deviations from intended 
interventions, bias from missing outcome data, bias in outcome 
measurement, bias in selection of reported results, and overall bias. 
The studies were categorized as low risk of bias (all domains low risk), 
some concerns (concerns in at least one domain but no high risk), or 
high risk of bias (high risk in at least one domain). Discrepancies 
between reviewers were resolved through discussion to reach 
a consensus.

2.6 Statistical analysis

This study employed a Bayesian NMA to evaluate continuous 
outcome measures associated with UL function recovery in stroke 
patients. All statistical analyses were conducted using R (version 4.4.1; 
R Foundation for Statistical Computing, Vienna, Austria) with the 
“BUGSnet” package (26). We employed Bayesian NMA to model the 
posterior probability distribution, providing insights into the relative 
effects of treatments, quantifying uncertainty around parameter 
estimates and the ranking of the treatments within the network. The 
analysis employed a Markov Chain Monte Carlo (MCMC) with Gibbs 
sampling for robust parameter estimation (27), utilizing a Bayesian 
framework with 1,000 adaptations, 10,000 burn-ins, and 50,000 
iterations. Continuous outcome data were presented as mean 
differences (MD) with corresponding 95% credible intervals; p < 0.05 
suggests a statistically significant difference in outcome measures (28). 
Transitivity in this NMA was addressed by including studies with 
comparable patient populations, intervention designs, and outcome 
measures. Model selection and goodness-of-fit were evaluated 
through deviance information criteria (DIC), with lower values 
indicating superior model fit (29). Model adequacy was further 
evaluated by comparing the residual deviance with the number of 
unconstrained data points, where a close alignment suggested an 

adequate fit (30). Convergence was assessed using the Gelman–
Rubin–Brooks diagnostic, with a potential scale reduction factor 
(PSRF) value below 1.05 considered indicative of acceptable 
convergence (31).

Furthermore, surface under the cumulative ranking (SUCRA) 
values were employed to rank the various interventions, with higher 
SUCRA values signifying more effective interventions (32). SUCRA 
values approach one when a treatment consistently ranks first, and 
approach zero when it consistently ranks last (33). Following this 
analysis, we  developed the league table and heat plot, providing 
comprehensive information on the relative effectiveness and associated 
uncertainty for all possible intervention pairs.

3 Results

3.1 Study selection

The search strategy initially identified 4,631 studies from the 
databases. After eliminating duplicates, 4,049 studies remained for 
title and abstract screening. Subsequently, 387 articles underwent full-
text assessment based on predefined inclusion and exclusion criteria. 
Ultimately, 34 RCTs met the eligibility criteria and were included in 
this systematic review and NMA (34–67). The PRISMA flow diagram 
is depicted in Figure 1.

3.2 Characteristics of included studies

The current analysis encompasses 34 RCTs were included, all of 
which were two-arm studies, involving a combined total of 1,704 
participants. Table 1 provides a summary of the characteristics of 
these studies. Across included studies, the frequency, duration, and 
total dose of interventions were comparable between VR and CT 
groups. The intervention duration ranged from 2 to 16 weeks, with the 
total VR intervention dose spanning 7 to 56 h. All studies utilized the 
Fugl-Meyer assessment to evaluate UL function. Each study employed 
two measurement time points: baseline and post-intervention. 
Follow-up evaluations were conducted in some studies to assess long-
term effects. However, the follow-up time varied, with the longest 
being 12 weeks post-intervention (45, 55) and the shortest being 
3 weeks post-intervention (41). One study (40) conducted two 
follow-ups: at 4 weeks after the intervention and at 12 weeks 
post-intervention.

3.3 Risk of bias

The risk-of-bias assessment in the RCTs (Figure 2) demonstrated 
a low risk of bias across the analyzed trials.

3.4 Results of network meta-analysis

3.4.1 Network diagram
The network diagram is displayed in Figure 3. Six studies (39, 

41–44, 55) compared head-mounted devices to CT, while 16 studies 
compared NIVR systems to CT (38, 49–53, 56, 59–67). A total of 12 
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studies utilized non-immersive gaming consoles; four (34, 37, 45, 46) 
compared Microsoft Kinect to CT, and eight (35, 36, 40, 47, 48, 54, 57, 
58) compared Nintendo Wii to CT. Among these interventions, CT 
had the largest sample size (759 participants), followed by NIVR (613 
participants), Nintendo Wii (151 participants), head-mounted devices 
(114 participants), and Microsoft Kinect (67 participants).

3.4.2 Consistency and inconsistency
In terms of model fit, both fixed-effects and random-effects 

models were examined. As illustrated in Supplementary Figure S1, the 
random-effects model demonstrated a superior fit, with lower DIC 
values and visually minimized leverage outliers, showed a better fit for 
the data than the fixed-effects model. Consequently, the random-
effects model was selected for the final analysis. A Gelman–Rubin–
Brooks plot was utilized to evaluate the convergence, which revealed 

that the simulations were valid, as the PSRF was <1.05 
(Supplementary Figure S2, Gelman convergence plot).

Secondly, as consistency is a key assumption in NMA, 
we evaluated the model’s inconsistency by fitting a random-effects 
inconsistency model and comparing it with our random-effects 
consistency model. Supplementary Figure S3 illustrates the 
consistency and inconsistency models for FMUE. The consistency 
model demonstrated a marginally lower DIC value, suggesting a 
superior fit.

3.4.3 Treatment ranking analysis
A treatment rank probability analysis was conducted to compare 

the posterior probabilities of each treatment, determining their 
relative rankings for FMUE outcomes. Additionally, we generated 
SUCRA plots to visually illustrate the percentage probability of 

FIGURE 1

PRISMA flow diagram illustrating the process for searching and selecting eligible studies included in the network meta-analysis.
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TABLE 1 Characteristics of included randomized controlled trials.

Study VR type Experimental group Control group Assessment 
time points

Intervention Duration 
(min/

session)

Frequency 
(times/
week)

Total VR 
(wks)

Sample 
size

Age (year) Male (%) Intervention Duration 
(min/

session)

Frequency 
(times/
week)

Total (wks) Sample 
size

Age (year) Male 
(%)

Ain et al. 

(34)

Non-

immersive 

gaming 

console: 

Kinect

Xbox Kinect 

training
35–40 5 6 25 57.48 ± 10.60 92.00

Conventional 

exercise training
35–40 5 6 25 57.68 ± 10.43 76.00

Before and after 

6 weeks of 

intervention

Choi et al. 

(35)

Non-

immersive 

gaming 

console: 

Nintendo 

Wii

Wii VR 30 5 4 10 64.30 ± 10.30 50.00 OT 30 5 4 10 64.70 ± 11.30 50.00

Before and after 

4 weeks of 

intervention

da Silva 

Ribeiro 

et al. (36)

Non-

immersive 

gaming 

console: 

Nintendo 

Wii

Wii VR 60 2 8 15 53.70 ± 6.10 33.30 CPT 60 2 8 15 52.80 ± 8.60 40.00

Before and after 

8 weeks of 

intervention

Kim et al. 

(37)

Non-

immersive 

gaming 

console: 

Kinect

Kinect VR + OT 30 + 30 5 2 12 56.70 ± 17.80 58.30 Sham VR + OT 30+ 30 5 2 11 57.20 ± 15.0 90.90

Before and after 

2 weeks of 

intervention, 

4-week follow-up

Kottink 

et al. (38)
NIVR NIVR 30 3 6 8 65.30 ± 6.50 50.00

Conventional 

reach exercises
30 3 6 10 58.40 ± 14.80 90.00

Before and after 

6 weeks of 

intervention, 

4-week follow-up

Mekbib 

et al. (39)

IVR: head-

mounted 

device

Customized IVR 60 4 2 12 52.17 ± 13.26 75.00 COT 60 4 2 11 61.00 ± 7.69 72.73

Before and after 

2 weeks of 

intervention

Kong et al. 

(40)

Non-

immersive 

gaming 

console: 

Nintendo 

Wii

Wii VR 60 4 3 35 58.10 ± 9.10 81.80 CT 60 4 3 35 59.00 ± 13.60 71.40

Before and after 

3 weeks of 

intervention, 

4 weeks after 

intervention, 

12 weeks after 

intervention

Hsu et al. 

(41)

IVR: head-

mounted 

device

Immersive 

mirror feedback 

therapy

30 2 9 18 52.9 ± 11.8 44.44 COT 30 2 9 17 56.90 ± 13.00 29.41

Before and after 

9 weeks of 

intervention, 

3-week follow-up

(Continued)
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TABLE 1 (Continued)

Study VR type Experimental group Control group Assessment 
time points

Intervention Duration 
(min/

session)

Frequency 
(times/
week)

Total VR 
(wks)

Sample 
size

Age (year) Male (%) Intervention Duration 
(min/

session)

Frequency 
(times/
week)

Total (wks) Sample 
size

Age (year) Male 
(%)

Henrique 

et al. (42)

IVR: head-

mounted 

device

Motion Rehab 

AVE 3D VR
30 2 12 16 76.19 ± 10.09 43.75 CPT 30 2 12 15 76.20 ± 10.41 46.67

Before and after 

12 weeks of 

intervention

Huang et al. 

(43)

IVR: head-

mounted 

device

HTC VIVE VR 60 min × 2 3 16 15 50.80 ± 12.32 40.00 COT 60 min × 2 3 16 15 58.33 ± 11.22 27.00

Before and after 

16 weeks of 

intervention

Ogun et al. 

(44)

IVR: head-

mounted 

device

3D IVR with leap 

motion
60 3 6 33 61.48 ± 10.92 84.80

CT + sham 

virtual reality
45+ 15 3 6 32 59.75 ± 8.07 71.90

Before and after 

6 weeks of 

intervention

Hung et al. 

(45)

Non-

immersive 

gaming 

console: 

Kinect

Kinect2Screatch 

training
30 2 12 17 55.32 ± 15.29 70.59

Therapist-based 

training
30 2 12 16 58.54 ± 14.36 75.00

Before and after 

12 weeks of 

intervention, 

12-week follow-

up

Lee et al. 

(46)

Non-

immersive 

gaming 

console: 

Kinect

Kinect VR 30 3 8 13 66.46 ± 7.26 76.92
Group-based 

rehabilitation
30 3 8 13 69.92 ± 7.18 61.54

Before and after 

8 weeks of 

intervention

Junior et al. 

(47)

Non-

immersive 

gaming 

console: 

Nintendo 

Wii

Wii VR 50 2 8 11 55.50 ± 9.60 54.60
Conventional 

PNF
50 2 8 15 58.20 ± 7.70 53.40

Before and after 

8 weeks of 

intervention

Teremetz 

et al. (48)

Non-

immersive 

gaming 

console: 

Nintendo 

Wii

Wii VR 60 3 4 19 55.80 ± 12.66 69.00 CT 60 3 4 21 56.20 ± 12.52 53.00 Before and after 

4 weeks of 

intervention

Kiper et al. 

(49)

NIVR VR rehabilitation 

system

120 5 4 68 62.50 ± 15.20 54.40 CT 120 5 4 68 66.00 ± 12.90 63.20 Before and after 

4 weeks of 

intervention

Oh et al. 

(50)

NIVR Joystim VR 30 3 6 17 57.40 ± 12.20 38.70 CT 30 3 6 14 52.60 ± 10.70 29.00 Before and after 

6 weeks of 

intervention, 

4-week follow-up

(Continued)
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TABLE 1 (Continued)

Study VR type Experimental group Control group Assessment 
time points

Intervention Duration 
(min/

session)

Frequency 
(times/
week)

Total VR 
(wks)

Sample 
size

Age (year) Male (%) Intervention Duration 
(min/

session)

Frequency 
(times/
week)

Total (wks) Sample 
size

Age (year) Male 
(%)

Piron et al. 

(51)

NIVR Reinforced 

feedback in 

virtual 

environment

60 5 4 27 58.80 ± 8.30 62.96 CT 60 5 4 23 62.20 ± 9.75 52.17 Before and after 

4 weeks of 

intervention

Shin et al. 

(52)

NIVR RAPAEL system+ 

CT

30 + 30 5 4 24 57.20 ± 10.30 79.20 CT 60 5 4 22 59.80 ± 13.00 77.30 Before and after 

4 weeks of 

intervention, 

4-week follow-up

Shin et al. 

(53)

NIVR RAPAEL system+ 

CT

30 + 30 5 4 20 57.00 ± 12.78 50.00 CT 60 5 4 16 63.69 ± 8.58 43.75 Before and after 

4 weeks of 

intervention, 

4-week follow-up

Anwar et al. 

(54)

Non-

immersive 

gaming 

console: 

Nintendo 

Wii

Nintendo Wii 

Games

60 3 6 34 51.50 ± 7.20 / PT 60 3 6 34 51.35 ± 5.78 / Before and after 

6 weeks of 

intervention

Huang et al. 

(55)

IVR: head-

mounted 

device

IVR + CR 30 + 30 5 3 20 63.30 ± 14.30 65.00 CR 60 5 3 20 65.10 ± 6.10 55.00 Before and after 

3 weeks of 

intervention, 

12-week follow-

up

Shin et al. 

(56)

NIVR VR + OT 30 + 30 5 4 16 53.30 ± 11.80 68.75 OT 60 5 4 16 54.60 ± 13.40 81.25 Before and after 

4 weeks of 

intervention

Alves et al. 

(57)

Non-

immersive 

gaming 

console: 

Nintendo 

Wii

Nintendo Wii 

Games

75 5 2 17 55.05 ± 11.52 64.70 CT 75 5 2 10 60.16 ± 13.19 70.00 Before and after 

2 weeks of 

intervention

Assadi et al. 

(58)

Non-

immersive 

gaming 

console: 

Nintendo 

Wii

Nintendo Wii 

Games

60 3 4 10 63.95 ± 7.31 50.00 CT 60 3 4 10 71.92 ± 14.19 50.00 Before and after 

4 weeks of 

intervention

(Continued)
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TABLE 1 (Continued)

Study VR type Experimental group Control group Assessment 
time points

Intervention Duration 
(min/

session)

Frequency 
(times/
week)

Total VR 
(wks)

Sample 
size

Age (year) Male (%) Intervention Duration 
(min/

session)

Frequency 
(times/
week)

Total (wks) Sample 
size

Age (year) Male 
(%)

In et al. (59) NIVR VR + CT 30 5 4 11 63.45 ± 11.78 63.64 CT 30 5 4 8 64.50 ± 12.69 50.00 Before and after 

4 weeks of 

intervention

Johnson 

et al. (60)

NIVR Virtual therapy 45 2 8 28 64.70 ± 13.90 60.71 UC 45 2 8 30 59.30 ± 15.60 46.67 Before and after 

8 weeks of 

intervention

Kiper et al. 

(61)

NIVR VR rehabilitation 

system + TR

60 + 60 5 4 23 63.10 ± 9.50 61.00 TR 120 5 4 21 65.50 ± 14.20 71.00 Before and after 

4 weeks of 

intervention

Lam et al. 

(62)

NIVR Bilateral 

movement-based 

computer games 

+ CR

210 2 8 47 65.1 ± 10.02 57.40 Video-directed 

exercise + CR

210 2 8 46 66.00 ± 9.00 60.90 Before and after 

8 weeks of 

intervention, 

4-week follow-up

Levin et al. 

(63)

NIVR NIVR 45 3 3 8 58.10 ± 14.60 50.00 CT 45 3 3 6 59.80 ± 15.10 50.00 Before and after 

3 weeks of 

intervention, 

4-week follow-up

Park et al. 

(64)

NIVR VR rehabilitation 

system

30 5 4 13 53.50 ± 13.00 53.80 Control 30 5 4 13 51.50 ± 16.70 61.50 Before and after 

4 weeks of 

intervention, 

4-week follow-up

Piron et al. 

(65)

NIVR VR rehabilitation 

system

60 5 5–7 25 61.50 ± 9.40 68.00 CR 60 5 5–7 13 61.20 ± 6.60 61.54 Before and after 

5–7 weeks of 

intervention

Turolla et al. 

(66)

NIVR VR rehabilitation 

system+ ULC

120 5 4 263 60.20 ± 14.30 60.00 ULC 120 5 4 113 65.40 ± 12.50 64.00 Before and after 

4 weeks of 

intervention

Turolla et al. 

(67)

NIVR VR rehabilitation 

system

60 5 4 15 59.10 ± 8.60 92.30 CT 60 5 4 15 61.30 ± 10.50 53.33 Before and after 

4 weeks of 

intervention

VR, Virtual reality; NIVR, Non-immersive virtual reality; IVR, Immersive virtual reality; CR, Conventional Rehabilitation; TR, Traditional Rehabilitation; OT, Occupational therapy; CPT, Conventional physiotherapy; COT, Conventional occupational therapy; CT, 
Conventional therapy; PT, Physical therapy; UC, Usual care alone; ULC, Upper limb conventional; PNF, Proprioceptive neuromuscular facilitation.
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rankings. For FMUE, examining the SUCRA plot (Figure 4A) and 
treatment rank plot (Figure 4B), reveal that non-immersive gaming 
consoles of Microsoft Kinect (SUCRA value 0.847) was associated 
with the highest probability of improving UL function in stroke 
patients, thereby ranking as the most effective treatment. This was 
followed by non-immersive gaming console of Nintendo Wii (SUCRA 
value 0.614), Immersive VR: head-mounted device (SUCRA value 
0.557), and Non-immersive VR (SUCRA value 0.469). CT was 
identified as the least effective treatment, indicating minimal impact 
on improving FMUE.

3.4.4 Relative effectiveness of treatment
A league plot was generated to provide a comprehensive summary 

of the NMA results, comparing the effectiveness of various 
interventions in improving the FMUE score. The symbols (**) indicate 
statistically significant differences between treatments and 
comparators at a 95% confidence level, with p < 0.05. As shown in 
Figure 5, non-immersive gaming consoles, including the Microsoft 
Kinect and Nintendo Wii, significantly improved UL function 
compared to CT. Specifically, the non-immersive gaming consoles of 
Microsoft Kinect yielded MD of 7.27 (95% CI: 0.59 to 13.77), 
indicating a significant benefit (p < 0.05) over CT. While the 

non-immersive gaming console Nintendo Wii showed a significant 
improvement (p < 0.05) with MD of 4.53 (95% CI: 0.87 to 8.14). In 
addition, NIVR was also found to have a moderate benefit, with an 
MD of 3.57 (95% CI: 1.18 to 6.01) and p < 0.05. In contrast, IVR head-
mounted devices showed no statistically significant differences in 
outcomes, with MD of 4.16 (95% CI: −0.02 to 8.38).

To obtain the visualization of the MD differences with a 95% CI 
between interventions, forest plots were performed for FMUE 
(Figure 6). Both plots show approximately the same results, indicating 
that non-immersive gaming consoles of Microsoft Kinect 
interventions significantly improved FMUE, followed by the 
non-immersive gaming console Nintendo Wii intervention, and 
then NIVR.

4 Discussion

4.1 Principal findings

This systematic review and NMA examined 34 RCTs encompassing 
1,704 stroke survivors to assess VR interventions with varying immersion 
levels on UL motor function using the FMUE scale. The analysis 
indicates that non-immersive gaming consoles of Microsoft Kinect, 
demonstrated the most substantial improvement in UL function, 
followed by the Nintendo Wii and other NIVR systems. Conversely, IVR 
systems did not demonstrate significant superiority over CT.

4.2 Validity of evidence

The findings are supported by a rigorous methodological 
approach. All included studies ensured comparable intervention 
frequency and duration between VR and CT groups, minimizing 
potential confounding factors. This analysis included only high-
quality RCTs, with risk-of-bias assessments confirming low risk across 
all domains. The FMUE scale, consistently used as the primary 
outcome measure, provided a reliable, stroke-specific evaluation of UL 
recovery (68). Additionally, the Bayesian NMA facilitated the 
simultaneous comparison and ranking of multiple interventions, 
enhancing the robustness of the conclusions.

FIGURE 2

The quality assessment of the risk of bias summary of included studies using RoB-2.

FIGURE 3

Network of randomized controlled trials (RCTs) comparing different 
virtual reality modalities for upper limb recovery after stroke. The size 
of each circle represents the number of participants in the trial, while 
the thickness of the connecting lines corresponds to the number of 
participants directly comparing the two treatments. The numbers 
indicate the number of trials contributing to each treatment 
comparison. CT, Conventional therapy.
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4.3 Superiority of non-immersive gaming 
consoles

Our findings demonstrate the significant benefits of 
non-immersive gaming consoles of Microsoft Kinect in UL 
rehabilitation. Microsoft Kinect’s precise motion-sensing 
technology enhances interactivity, fostering greater patient 
engagement and motivation—crucial factors in motor relearning 
(69, 70). Moreover, its personalized training content and 
accessibility render it suitable for both clinical and home-based 
applications (71).

While the Nintendo Wii also provides interactivity, its limited 
motion capture accuracy and less advanced game design reduce its 
effectiveness in stroke rehabilitation (72, 73). Additionally, Microsoft 
Kinect has been shown to improve activities of daily living and 
cognitive engagement, further corroborating its therapeutic potential 
(74). Conversely, IVR systems, despite their immersive experiences, 
encounter substantial obstacles to widespread implementation due to 
hardware complexity, high costs, and patient discomfort, including 

motion sickness (75). These factors may impede training duration and 
adherence among elderly or physically frail patients (76).

Variations in UL rehabilitation outcomes may be attributed to 
differences in motion capture technology and task design. Microsoft 
Kinect (34, 37, 45, 46) systems employ camera-based motion tracking, 
enabling natural UL movements, while the Wii relies on handheld 
controllers, which potentially restrict distal upper extremity 
engagement (77).

4.4 Comparison with previous literature

Our findings are consistent with those of Soleimani et al. (78), who 
similarly demonstrated the significantly improve in UL motor recovery 
post-stroke through VR interventions. However, Soleimani’s meta-
analysis was constrained by pairwise comparisons, limiting the evaluation 
of different VR modalities. In contrast, our study employed the NMA 
framework, enabling for direct comparisons across multiple VR 
modalities and offering a more comprehensive ranking of interventions.

FIGURE 4

Results of the network meta-analysis of different modalities for upper limb recovery after stroke. (A) SUCRA plot for FMUE. (B) Rankogram plot of 
interventions for FMUE. SUCRA, surface under the cumulative ranking, represents the probability of ranking for each treatment, as shown in the graphs; 
FMUE, The Fugl-Meyer Upper Extremity; CT, Conventional therapy.

FIGURE 5

League table for all treatment in the network for FMUE. The symbol ** in the figure indicates significant differences between the treatments (p < 0.05). 
FMUE, The Fugl-Meyer Upper Extremity; CT, Conventional therapy.
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To the best of our knowledge, only one other NMA has assessed 
the efficacy of various VR interventions for UL motor function, 
involving 20 RCTs with 813 participants (22). However, our 
analysis identified non-immersive gaming consoles of Microsoft 
Kinect, as the most effective, while the previous NMA favored 
immersive VR. These differences may be attributed to advancements 
in NIVR technology and our analysis of a larger, more 
recent dataset.

4.5 Limitations

Several limitations should be considered when interpreting our 
findings. Firstly, the inability to differentiate between acute, subacute, 
and chronic stroke phases constrains the applicability of our results to 
specific rehabilitation stages. Secondly, the lack of long-term data 
limits our understanding of the sustainability of VR interventions 
beyond the post-intervention period. Thirdly, the absence of direct 
head-to-head comparisons among different VR systems restricts the 
robustness and comprehensiveness of the conclusions, as indirect 
comparisons may introduce additional uncertainties. However, 
we  included studies with highly similar designs and population 
characteristics to ensure the validity and consistency of the indirect 
comparisons. Additionally, we  employed a consistency model to 
minimize potential biases arising from the absence of direct 
comparisons. In light of these limitations, the findings of our network 
analysis should be  interpreted with caution. We  recommend that 
subsequent studies validate our findings through direct comparisons.

4.6 Implications for clinical practice and 
future research

This study underscores the cost-effectiveness and accessibility of 
non-immersive gaming consoles of Microsoft Kinect interventions for 
stroke rehabilitation. These platforms offer an interactive environment 
that promotes patient engagement and adherence—key factors for 
sustained recovery. Future research should focus on assessing long-
term outcomes and conducting comprehensive cost-effectiveness 
analyses. In future research, more refined classification methods 
should be employed, or studies should focus on individual stages of 
stroke recovery to enhance the applicability of the results to specific 
rehabilitation phases. Additionally, future studies should prioritize the 
evaluation of long-term outcomes and conduct comprehensive cost-
effectiveness analyses to gain a better understanding of the 
sustainability of VR interventions during the post-intervention period.

5 Conclusion

This NMA highlights the significant benefits of non-immersive 
gaming consoles of Microsoft Kinect, in enhancing UL motor function 
among stroke survivors. The findings support the integration of 
non-immersive gaming consoles of Microsoft Kinect interventions 
into clinical practice. However, our analysis also reveals that CT 
provides the least improvement in upper limb motor function, 
underscoring the need for more engaging and interactive rehabilitation 
tools. This comparison between the most effective (Microsoft Kinect) 

FIGURE 6

Forest plot for all treatments compared to conventional therapy as reference for FMUE. FMUE, The Fugl-Meyer Upper Extremity; CT, Conventional 
therapy.
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and least effective interventions clearly demonstrates the potential of 
gaming consoles in stroke rehabilitation.
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