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Introduction

Nearly a decade ago, a paravascular pathway, enabling cerebrospinal fluid (CSF) to

flow through the brain parenchyma, was discovered (1). Known as the “glymphatic” (glial-

lymphatic) system, it has emerged as a critical process for clearing waste from the brain’s

interstitial tissue, which lacks histologically distinct lymphatic vessels (2).

In addition to the conventional CSF circulation from the choroid plexus through

arachnoid granulations and venous sinuses; in the glymphatic system (Figure 1), arterial

pulsations propagate CSF through the perivascular spaces (PVS) (2). These PVS are formed

by the vascular endfeet of astrocytes, which facilitate CSF flow through the abundant

expression of aquaporin-4 (AQP4) (1–3). The CSF then diffuses through the brain’s

interstitial fluid and exits via perivenous spaces, draining either through meningeal and

cervical lymphatic vessels or arachnoid granulations (4, 5).

The glymphatic system was initially discovered in rodent models (1), and its presence

has also been demonstrated in humans (6–8) through intrathecal contrast MRI studies

by demonstrating contrast flow through the subarachnoid spaces, perivascular spaces, and

finally into the brain parenchyma (7, 8).

Interestingly, the glymphatic system is most active during non-rapid eye movement

(NREM) sleep, particularly N3 stage (9, 10). Human studies support that glymphatic

activity is enhanced during sleep, increasing with higher delta activity and decreasing with

higher beta activity and heart rate (11). Moreover, sleep position influences glymphatic

efficiency (lateral more efficient than supine or prone) (12).

The glymphatic system plays a vital role in clearing soluble proteins and brain

metabolites, facilitating fluid and solute exchange across the brain parenchyma. This

includes glucose for energy metabolism, lipid transport, signaling molecules, and the

removal of waste products such as amyloid-beta and tau, as demonstrated in both animal

models and humans (1, 5, 13–17). In humans, sleep deprivation impairs CSF-to-blood

clearance of amyloid-beta and tau (17), and a sleep-active glymphatic system contributes

to the clearance of these proteins from the brain (14). Demonstration of the glymphatic

system in humans is a breakthrough that connects aging, sleep, cardiovascular health, and

brain health.

Measurement of glymphatic function in humans

Multiple approaches have been proposed tomeasure glymphatic activity or dysfunction

in humans (18). The glymphatic system was initially demonstrated through intrathecal

contrast-based studies, which revealed a centripetal enhancement pattern moving from the
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FIGURE 1

Glymphatic system. In the glymphatic system, arterial pulsations propagate CSF through the perivascular spaces as penetrating arteries arise from

major arteries within the subarachnoid cisterns. These PVS are formed by the vascular endfeet of astrocytes, which facilitate CSF flow through the

abundant expression of AQP4. The CSF then di�uses through the brain’s interstitial fluid and exits via perivenous spaces, draining either through

meningeal and cervical lymphatic vessels or arachnoid granulations. CSF: cerebrospinal fluid, PVS: perivascular space. ISF, Interstitial fluid.

subarachnoid space into the parenchyma (gray and white matter)

along the perivascular spaces (7, 8, 19).

Subsequently, intravenous contrast-based methods were also

developed. These techniques employ region-of-interest analyses of

the brain parenchyma and account for both vascular and CSF

contributions to parenchymal enhancement (11, 20). However,

IV or intrathecal contrast methods often require sequential MRI

measurements to track contrast flow.

Another widely used approach is diffusion-derived MRI,

specifically the assessment of diffusivity along the perivascular

space (ALPS) (21, 22). This method is quick, non-invasive, does not

require contrast; however, it does not capture the entire glymphatic

system (i.e., gray matter). Instead, it relies on diffusion tensor

imaging of white matter at the level of the lateral ventricles (23).

Enlarged perivascular spaces (ePVS) have been proposed as an

indirect marker of glymphatic dysfunction and can be visualized on

conventional MRI, particularly T2-weighted sequences (18). Still,

they may reflect diverse pathophysiological processes rather than

glymphatic function specifically. For instance, basal ganglia ePVS

are commonly associated with lacunar strokes, whereas centrum

semiovale ePVS often correlate with cerebral amyloid angiopathy

(24, 25).

Various other methods to evaluate glymphatic function are

discussed elsewhere (18). A key challenge in the field is the

development of techniques that are minimally invasive, widely

accessible, and capable of real-time assessment.

More recently, an investigational non-invasive device for

measuring brain parenchymal resistance (Rp) was introduced,

offering a promising method for predicting sleep-active glymphatic

function (11). This approach demonstrated that glymphatic activity

in humans also increases with higher EEG delta power, lower EEG

beta power, and reduced heart rate—mirroring findings in animal

models (9). Because this device relies on measuring Rp, it provides

high temporal resolution (nearly continuous measurement) but has

limited anatomical information.

Dysfunction of glymphatic system in
neurological diseases

Dementia and cognitive impairment

The glymphatic system plays a crucial role in clearing

amyloid-beta and tau from CSF and the brain (14, 16, 17).

Consequently, dysfunction of glymphatic system can contribute

to the pathophysiology of dementia (2). Furthermore, glymphatic

dysfunction and dementia share common risk factors, including

aging, sleep abnormalities, and cardiovascular diseases. For

example, in older adults or individuals with dementia, NREM

sleep—the stage when the glymphatic system is most active—

tends to decrease (26, 27). In addition, obstructive sleep apnea, a

modifiable risk factor for Alzheimer’s disease (AD) and Parkinson’s

disease (PD) (28), has been associated with reduced glymphatic

function (demonstrated by a low ALPS index) (29, 30).

Glymphatic dysfunction has been observed in both AD and

PD. Studies indicate reduced ALPS indices in individuals with

AD, including those in prodromal and preclinical stages, and these

lower ALPS values predict an accelerated accumulation of amyloid-

beta on PET imaging (31–33). In PD, a decreased ALPS index is

associated with more rapid clinical deterioration, as measured by
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MDS-UPDRS parts II and III, as well as the Symbol DigitModalities

Test (34, 35). Moreover, a recent meta-analysis encompassing 11

studies on AD and 12 studies on PD provided strong evidence for

reduced ALPS indices in both diseases (36).

Additionally, Eide et al. (37) demonstrated impaired

glymphatic function in normal pressure hydrocephalus (NPH)

through an intrathecal contrast-based MRI study involving 30

patients with idiopathic NPH and 8 control patients. Their findings

revealed delayed CSF contrast clearance in NPH, supporting the

notion that diminished amyloid-beta clearance may contribute to

cognitive dysfunction in this population.

Stroke

Stroke risk factors, such as diabetes and hypertension, are

associated with glymphatic dysfunction (38–41), as discussed in the

next section. In turn, stroke itself can cause ipsilateral glymphatic

impairment (42). Glymphatic dysfunction could also be a stroke

risk factor; because ePVS is associated with increased stroke risk

(5, 43); however, this relationship warrants further investigation,

given that ePVS is only an indirect marker of glymphatic function.

Glymphatic impairment following stroke predominantly

occurs on the side of the infarct (42, 44). Toh et al. (42) reported

decreased ALPS indices ipsilateral to the stroke location in patients

with ischemic stroke (n = 50) compared with controls (n = 44),

and ALPS index inversely correlated with stroke size and improved

over time. In a smaller cohort (n = 18) with large-vessel occlusion

(LVO), Zhu et al. (44) corroborated these findings, demonstrating

impaired ipsilateral glymphatic function early after stroke (days 1

and 3), which then recovered by day 7.

Zhu et al. (44) also proposed that glymphatic function could

modulate the extent of brain edema following ischemic stroke.

Using a rodent middle cerebral artery occlusion (MCAO) model,

they found that glymphatic recovery coincided with improvements

in post-stroke edema, despite a worsening of blood–brain barrier

dysfunction by day 7 (44, 45). Moreover, pharmacological

enhancement of glymphatic activity via adrenergic receptor

antagonists alleviated edema by day 2, reduced amyloid-beta

deposition, and improved cognitive function (44).

Furthermore, glymphatic dysfunction may play a role in post-

stroke epileptogenesis and cognitive impairment (46), potentially

through glutamate excitotoxicity and amyloid-beta/tau deposition.

EPVS asymmetry has been linked to focal seizures (47), but

longitudinal studies in stroke patients are needed to establish

the relationship between asymmetric ePVS and the occurrence of

focal seizures.

Glymphatic dysfunction is also evident in hemorrhagic

stroke—indicated by an increased ePVS burden—and in

subarachnoid hemorrhage, where preclinical models have shown

altered AQP4 polarization (5). These conditions are discussed in

more detail elsewhere (5).

Cerebral small vessel disease

Cerebral small vessel disease (CSVD) and glymphatic

dysfunction share common risk factors and etiologies,

including hypertension, diabetes, aging, sleep disruption, and

neuroinflammation (48). EPVS acts as a marker of CSVD (49)

and also serve as an indirect marker of glymphatic dysfunction

(18). In older adults, ePVS is associated with the progression of

white matter hyperintensities, subcortical infarcts, microbleeds,

and vascular dementia (49, 50).

CSVD is generally categorized into two pathophysiological

subtypes: amyloid [cerebral amyloid angiopathy (CAA)] and non-

amyloid (hypertensive arteriopathy), both of which can present

with microbleeds and microinfarcts (51). In the amyloid subtype,

CAA is associated with a lower ALPS index, and reduced

glymphatic function correlates with a higher CSVD burden, poorer

cognitive performance, larger white matter hyperintensities, white

matter lacunes, and disease recurrence (52). In non-amyloid

CSVD, in addition to lesions (e.g., microinfarcts) that may

contribute to glymphatic impairment (53), arteriosclerosis may

theoretically further impair the glymphatic system by affecting

arterial pulsatility (54).

Recent evidence also indicates that glymphatic dysfunction

is linked to cognitive impairment in CSVD (55). Among 133

patients with CSVD, those with cognitive impairment (n = 83)

showed a lower ALPS index compared to cognitively normal CSVD

individuals (n= 50), after adjusting for multiple variables including

other CSVD imaging markers. The ALPS index was positively

associated with cognitive test scores (e.g., MoCA, AVLT-sum,

SDMT) and negatively correlated with TMT B–A scores (55).

Multiple sclerosis

Glymphatic dysfunction has been observed in MS patients (21,

56). Cartenuto et al. (21) reported lower ALPS index in MS patients

compared to HC, and progressive MS with even further lower

ALPS compared to relapsing-remitting MS. Potential mechanisms

for glymphatic disruption in MS include altered CSF dynamics,

abnormal AQP4 expression near lesion sites, a predilection for

lesions in perivenular areas, and impaired meningeal lymphatic

vessels affecting CSF outflow (57).

Traumatic brain injury

A lower ALPS index has been reported in patients with

traumatic brain injury, and potential mechanisms include sleep

impairment and loss of polarized location of AQP4 (58). In

patients with TBI, the ALPS index negatively correlating with

serum neurofilament levels (59). This suggests that greater axonal

injury is associated with more severe glymphatic dysfunction.

Migraine

Preliminary studies have shown no significant decrease in

the DTI-ALPS index among migraine patients (60, 61). However,

two recent studies report varying glymphatic function in chronic

migraine (62, 63). Further research is needed to clarify the role

of the glymphatic system in migraine pathophysiology; it may
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act as an important modifier by serving as a sink for calcitonin

gene-related peptide (64).

Idiopathic intracranial hypertension

Lower glymphatic function has been demonstrated in patients

with idiopathic intracranial hypertension (IIH) using intrathecal

contrast MRI (15 IIH patients and 15 controls) (65). The

study revealed delayed parenchymal clearance of the CSF tracer,

particularly in regions such as the hippocampus and entorhinal

cortex, which are susceptible to amyloid-beta and tau deposition

and are associated with Alzheimer’s disease (AD).

Controlling comorbidities to improve
glymphatic system

Sleep disorders

Poor sleep quality is a known trigger for migraines, provoked

seizures, and delirium, and it is commonly observed in

neurodegenerative disorders and depression. The glymphatic

system may serve as a critical link between sleep and brain health.

During wakefulness, higher levels of norepinephrine increase

brain parenchymal resistance, thereby suppressing glymphatic

activity (10, 66). Interestingly, locally blocking norepinephrine

receptors in awake mice significantly enhances glymphatic

function, bringing it closer to the levels observed during sleep or

anesthesia (10, 66).

Sleep architecture is an important determinant of glymphatic

function, with the system being most active during NREM sleep,

particularly in stage N3 when delta activity is highest. Disruption

of N3 sleep has been associated with conditions such as dementia

(26, 67), highlighting the potential benefit of interventions aimed

at improving slow-wave sleep (67).

Addressing insomnia is thus essential for brain health, and

future pharmacological and non-pharmacological interventions

should be evaluated for their effects on sleep architecture and,

in turn, glymphatic function. For example, in a randomized trial

comparing melatonin, temazepam (a benzodiazepine), zolpidem

(a benzodiazepine-like drug), and placebo, temazepam and

zolpidem significantly decreased NREM slow-wave activity on EEG

compared to placebo, whereas melatonin did not significantly alter

overall slow-wave activity (68).

Other studies also indicate that benzodiazepines drugs disrupt

sleep architecture by reducing delta activity and N3 sleep,

which may explain why these agents, despite increasing total

sleep duration, fail to improve daytime functioning (26, 69–71).

Furthermore, benzodiazepines have been associated with brain

atrophy in regions such as the hippocampus and amygdala (72).

Non-pharmacological interventions, such as acoustic

stimulation, transcranial direct current stimulation, and

transcranial magnetic stimulation, are also demonstrated to

enhance slow-wave sleep (26, 73–75). Future research into these

non-invasive methods and their impact on glymphatic function

will be particularly valuable.

Finally, sleep-related breathing disorders can also play a

relevant role in glymphatic dysfunction. For example, in patients

with obstructive sleep apnea, the ALPS index has been reported to

decrease, correlating with disease severity (29, 30).

Depression

Depression is frequently accompanied by insomnia and linked

to increased REM sleep and decreased slow-wave sleep (76). The

effects of antidepressant medications on the glymphatic system

are not well studied. Nevertheless, antidepressants have varying

impacts on sleep architecture. For example, SSRIs and SNRIs

typically increase REM latency, may have mixed effects on slow-

wave sleep, and can reduce sleep continuity in the short term (77).

Clinicians should be mindful of these effects when managing sleep

disturbances in patients with depression.

Cardiovascular diseases

Cardiovascular health is critical for glymphatic function, as it

relies on arterial pulsatility to drive CSF through PVS and into the

interstitial fluid (ISF) of the brain.

Cardiovascular diseases that impair cardiac output, such

as heart failure with reduced ejection fraction or arrhythmias,

as well as conditions that reduce arterial wall elasticity—

such as arteriosclerosis, hypertension, small vessel disease, and

atherosclerosis—can theoretically disrupt CSF flow through the

PVS in the glymphatic (2). In humans, hypertension is associated

with glymphatic dysfunction, reflected by a lower ALPS index

(41). Similarly, in mouse models, hypertension impairs glymphatic

function, increases ePVS, and disrupts AQP4 polarity (54).

Diabetes, another significant cardiovascular risk factor, has also

been associated with a decreased ALPS index (38–40). Moreover,

insulin resistance has been shown to negatively correlate with

glymphatic function as well (39).

Importance of exercise

Exercise improves overall cardiovascular health and can

enhance glymphatic system during both the awake and

sleeping states (78–81), through mechanisms such as improved

cardiovascular dynamics and sleep quality.

Regular exercise lowers resting heart rate (82), which is

associated with higher glymphatic function (11). Exercise also

helps regulate hypertension, a condition linked to glymphatic

dysfunction, though the causal relationship remains unclear (41).

Preclinical mouse studies further support that voluntary running

improves glymphatic function, except during active exercise when

the brain deprioritizes waste clearance, likely due to the inhibitory

effects of norepinephrine (78, 80).

Exercise also impacts sleep architecture. A recent study found

that both low-intensity and moderate-to-vigorous physical activity

increased NREM sleep in humans, decreased REM sleep, and

extended REM latency (81).
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FIGURE 2

Dysfunction of glymphatic system in various neurological disorders.

Discussion

The glymphatic system offers a novel framework for

understanding the interplay between sleep, exercise, cardiovascular

health, and brain function. Glymphatic dysfunction has been

implicated in numerous neurological diseases (Figure 2),

highlighting the need for further research to determine whether

augmenting glymphatic activity can prevent or improve disease

outcomes. From neuromodulation in post-stroke recovery to

reducing toxic solute burden in neurodegenerative diseases and

modulating the neuro-inflammatory milieu, the glymphatic system

represents a promising area for clinical neurology.

Advancing this field requires two key steps. First, the

development of faster, more accessible, and non-invasive tools

to assess glymphatic function in humans is crucial, and progress

is already underway (11). Second, more studies are needed to

directly target glymphatic function—whether through revisiting

established techniques like acoustic stimulation or exploring

pharmacological and biological approaches, such as enhancing

AQP4 functionality (83).
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