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In chronic moderate-to-severe TBI (msTBI), depression is one of the most common 
psychiatric consequences. Yet to date, there is limited understanding of its neural 
underpinnings. This study aimed to better understand this gap by examining 
seed-to-voxel connectivity in depression, with all voxel-wise associations seeded 
to the bilateral anterior prefrontal cortices (aPFC). In a secondary analysis of 
32 patients with chronic msTBI and 17 age-matched controls acquired from 
the Toronto Rehab TBI Recovery Study database, the Personality Assessment 
Inventory Depression scale scores were used to group patients into an msTBI-Dep 
group (T ≥ 60; n = 13) and an msTBI-Non-Dep group (T < 60; n = 19). Resting-
state fMRI scans were analyzed using seed-based connectivity analyses. F-tests, 
controlling for age and education, were used to assess differences in bilateral 
aPFC rsFC across the 3 groups. After nonparametric permutation testing, the left 
aPFC demonstrated significantly increased rsFC with the left (p = 0.041) and right 
(p = 0.013) fusiform gyri, the right superior temporal lobe (p = 0.032), and the 
right precentral gyrus (p = 0.042) in the msTBI-Dep group compared to controls. 
The msTBI-Non-Dep group had no significant rsFC differences with either group. 
To our knowledge, this study is the first to examine aPFC rsFC in a sample of 
patients with msTBI exclusively. Our preliminary findings suggest a role for the 
aPFC in the pathophysiology of depressive symptoms in patients with chronic 
msTBI. Increased aPFC-sensory/motor rsFC could be associated with vulnerability 
to depression post-TBI, a hypothesis that warrants further investigation.
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1 Introduction

Depression is one of the most frequently reported psychiatric 
sequelae of moderate-to-severe traumatic brain injury (msTBI), 
affecting 26–40% of survivors (1–3). A substantial portion of patients 
develop depressive symptoms in the chronic stages (operationalized 
here as >6 months) post-injury (4–7), which can impede ongoing 
cognitive and functional recovery and is associated with increased 
suicidal ideation (2, 8–10). A better understanding of the neural basis 
of depression in chronic msTBI informs treatment research through 
offering an objective and quantitative biomarker as a treatment target/
outcome measure that can supplement behavioral outcome measures. 
As well, such a biomarker can be used for neuromodulation research 
e.g., transcranial direct current stimulation (11–13).

Resting-state functional connectivity (rsFC) is a correlation of the 
blood oxygen level-dependent timeseries of two voxels or regions of 
interest and may constitute a data-driven avenue to explore depression 
in msTBI (14, 15). rsFC patterns have been extensively studied in 
patients with major depressive disorder through non-invasive 
methods (16–18) and are reproducible across various task states (19, 
20). With regard to the neuroimaging correlates of depression 
following TBI of all severities, a recent systematic review identified 10 
rsFC studies on comorbid depression and TBI (21), although only 
three studies examined patients with a moderate-to-severe injury not 
exclusively (22–24). Irrespective of TBI severity, notably inconsistent 
results were reported across the 10 studies, potentially attributable to 
their variable data acquisition and neuroimaging processing methods, 
choice of regions of interest, and differing clinical and demographic 
sample characteristics. Further, different studies operationalize 
depression using different cutoffs, depressive phenotypes, and time 
post-injury. These discrepancies may explain the limited progress in 
identifying a biomarker of depression in TBI (14, 21, 25). This is 
similarly the case for non-TBI related depression despite it being 
extensively studied (26–29).

The anterior prefrontal cortex (aPFC; Brodmann area 10 (BA10)) 
is a relevant target given the documented occurrence of cognitive 
control deficits in both depression (30–32) and msTBI (33–35) 
independently. It is implicated in cognitive control as a hub within the 
frontoparietal control network (36, 37) as well as salience detection as 
part of the salience network (38–40). To our knowledge, only two 
studies have investigated aPFC rsFC in patients with comorbid 
depression and chronic TBI (22, 23). The first utilized seed-based 
connectivity analyses and reported reduced rsFC connectivity 
between the aPFC and regions including the superior temporal gyrus, 
frontal pole, and the inferior parietal lobule in patients with TBI, 
irrespective of depressive symptom severity, as compared to healthy 
controls (22). In a subsequent study by this group using an expanded 
participant cohort, the authors examined the effects of cognitive 
training on depressive symptoms in patients with chronic TBI and 
depressive symptoms (23). Results revealed that training-induced 
reductions in cognitive depressive symptom severity were positively 
associated with rsFC between the aPFC and the inferior temporal 
gyrus, precentral gyrus, and postcentral gyrus, underscoring the 
implication of the aPFC in the occurrence of depression post-TBI.

In the context of non-TBI related depression, very few studies 
have examined rsFC of the aPFC specifically within the 
PFC. Examining the PFC broadly, increased rsFC between the PFC - 
specifically the inferior frontal gyrus—and amygdala was reported in 

patients with major depressive disorder (MDD) as compared to 
healthy controls, which decreased after treatment with antidepressant 
medication (41). The hyperconnectivity was interpreted as the PFC 
increasing its inhibition of the amygdala in depressed states, 
simultaneously leading to an increased frequency of negative 
emotions. Conversely, another study examined rsFC of the 
corticolimbic system to report reduced dlPFC-amygdala rsFC in 
unmedicated patients with MDD as compared to healthy controls 
(42). Moreover, recent seminal work has parceled brain activity/
connectivity of patients with depression and anxiety disorders into 6 
distinct biotypes in a study of task-based MRI (43). The profiles were 
based on symptom severity, behavioral performance, and response to 
treatment. Although the medial superior, anterior medial, and 
ventromedial prefrontal cortices emerged as key in differentiating the 
biotypes, this circuit-level approach precludes us from understanding 
the unique contributions of specific brain regions including the aPFC 
(44, 45). Therefore, targeted investigation into the aPFC is necessary 
to better understand its role in comorbid depression and TBI.

Given the lack of studies in this area, this present study aimed to 
contribute groundwork research towards the identification of a neural 
signature of depressive symptoms in chronic msTBI by examining rsFC 
of the aPFC to other brain regions voxel-wise. Thus, aPFC seed-based 
connectivity analysis comparisons were undertaken between the groups 
of patients with and without depression as well as healthy controls to 
examine group differences in bilateral aPFC rsFC. Based on the findings 
of rsFC alterations in the frontoparietal control network (46–48) and 
salience network (30, 49, 50), in depression and msTBI (22), and the 
occurrence of cognitive control deficits in both comorbidities (30, 32–
34), we hypothesized reduced rsFC between the aPFC and other brain 
regions in the chronic msTBI groups as compared to healthy controls. 
Additionally, we also hypothesized reduced right aPFC rsFC with other 
regions in the group of patients with chronic msTBI compared to those 
with comorbid msTBI and depression (23).

2 Materials and methods

2.1 Participants

This is a secondary data analysis of prospectively collected data 
from the Toronto Rehab TBI Recovery Study, a longitudinal study 
examining neural, cognitive, and mental health recovery following 
msTBI (51–54). All patients provided written informed consent for 
their participation in the study.

2.1.1 TBI groups: msTBI-Dep and msTBI-Non-Dep
Inclusion criteria for the parent study comprised: (1) diagnosis of 

msTBI; (2) between 18 and 80 years in age; (3) able to follow 
commands in English; (4) able to use at least 1 upper extremity; and 
(5) able to provide informed consent for participation or availability 
of a legal decision-maker. Exclusion criteria included: (1) prior history 
of TBI; (2) other pre-existing central nervous system disorder; (3) 
current diagnosis or history of a psychotic disorder; (4) persisting PTA 
at 6 weeks post-injury; and (5) metal implants that precluded 
MRI. Further details on the inclusion/exclusion criteria of the parent 
study are detailed in reports directly related to said study (51, 55). An 
additional inclusion criterion for the current study was availability of 
valid fMRI scans and a completed Personality Assessment Inventory 
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(PAI) (56) questionnaire in the chronic stage of the msTBI (> 
6 months post-injury). Pairwise deletions were made for patients with 
invalid responses on the PAI based on internal validity indices (56). 
Specifically, individuals with T scores ≥75, ≥ 73, ≥ 68, and ≥ 92 on 
the Infrequency, Inconsistency, Positive Impression Management, 
and/or Negative Impression Management (NIM-Tot) scale, 
respectively, were excluded (32). See Table 1.

Depression status was operationalized using a T-score cutoff of 60 
on the PAI’s Depression clinical scale’s total score (DEP-Tot), as 
employed by other studies assessing depressive symptoms in TBI 
populations (57, 58). Participants with DEP-Tot T-scores ≥60 were 
assigned to the msTBI-Dep group (n = 13; mean = 74.54 (SD = 13.61)) 
and those with DEP-Tot scores <60 were placed in the msTBI-
Non-Dep group (n = 19; mean = 47.79 (SD = 5.96)).

2.1.2 Healthy control group
The healthy control group comprised n = 25 healthy controls 

matched on age and education to the msTBI groups. Inclusion criteria 

were: (1) between 18 and 80 years in age; (2) able to follow commands 
in English; and (3) commitment to completing the imaging scans. 
Exclusion criteria included: (1) previous history of TBI requiring 
hospitalization including concussion; (2) history of any disease 
affecting the central nervous system; (3) current diagnosis of 
depression; and (4) presence of magnetic materials affecting MRI scan 
acquisition. Applying these criteria, we obtained a sample of n = 17 
healthy controls.

2.2 Materials

2.2.1 Personality assessment inventory (PAI)
The PAI is a 344-item self-report scale, with high internal 

consistency (56) and construct validity (59). The PAI has 
been validated for msTBI (54). To classify patients into study 
groups, we employed the total score of the Depression clinical 
scale (DEP-Tot), which represents a composite of its three 

TABLE 1 Demographic and injury characteristics: msTBI-Dep vs. msTBI-Non-Dep groups.

Demographics Healthy controls 
Mean (SD)

msTBI-Dep 
Mean (SD)

msTBI-Non-
Dep Mean (SD)

p-value Effect size

Participants 17 13 19

Age (years) 38.59 (15.12) 37.15 (13.69) 38.47 (16.71) 0.653 0.018

Sex (% males) 29.41% 53.85% 68.42% 0.067 0.336

YOE 15.12 (2.63) 14.15 (2.21) 15.42 (1.84) 0.315 0.050

Race

  White - 11 16 1.00 0.161

  Asian 2 2

  Other 0 1

Time post-injury (months) - 20.23 (8.53) 18.89 (10.58) 0.343 0.1737

History of depression (%) - 15.38% 5.26% 0.737 0.220

LPTA

  1–7 days - 4 3 0.198 0.338

  1–4 weeks 4 11

  >4 weeks 5 3

  N/A 0 2

Lowest GCS Score Reported - 4.64 (1.61) 7.61 (3.58) 0.024* 0.3972

ACLOS (days) - 38.27 (25.61) 34.89 (22.0) 0.808 0.0501

Mechanism of injury (%)

  MVA - 69.23% 63.16% 1.00 0.214

  Fall 30.77% 26.32%

  Assault 0% 5.26%

  Sports injury 0% 5.26%

  Other 0% 0%

DEP-Tot - 74.54 (13.61) 47.79 (5.96) <0.001* 0.7907

  DEP-C - 69.00 (17.18) 47.89 (6.32) <0.001* 0.6468

  DEP-A - 74.23 (13.39) 46.58 (6.73) <0.001* 0.806

  DEP-P - 68.85 (12.15) 49.47 (6.75) <0.001* −2.011

SD, standard deviation; LPTA, length of posttraumatic amnesia; GCS, Glasgow Coma Scale; ACLOS, acute care length of stay; MVA, motor vehicle accidents; DEP-Tot, full scale total score 
from the Personality Assessment Inventory; DEP-C, Personality Assessment Inventory Depression-Cognitive subscale; DEP-A, Personality Assessment Inventory Depression-Affective 
subscale; DEP-P, Personality Assessment Inventory Depression-Physiological subscale; *Significant at p < 0.05.
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subscales: Depression-Cognitive (DEP-Cog), Depression-
Affective (DEP-Aff), and Depression-Physiological (DEP-Phys) 
symptoms.

2.2.2 Neuropsychological tests
We examined the performances of the msTBI-Dep and msTBI-

Non-Dep groups on a range of neuropsychological tests to identify 
potential differences between the groups that might contribute to 
aPFC rsFC differences. A comprehensive clinical battery 
measuring attention, speed of processing, verbal and visuospatial 
memory, executive functioning, verbal and performance IQ, and 
estimated premorbid IQ was administered by a trained 
psychometrist under the supervision of a neuropsychologist. 
Additional details of the battery are listed in a previous publication 
by our group (52).

2.3 Design and procedures

2.3.1 Imaging data acquisition
MRI data were obtained using a General Electric (GE) Signa-

Echospeed 1.5 Tesla HD scanner (SIGNA EXCITE, GE 
Healthcare, Milwaukee, Wisconsin) with an 8-channel head coil 
configuration. First, high-resolution T1-weighted three-
dimensional gradient-echo echo-planar images were acquired 
with the following parameters: sagittal T1-weighted spin 
echo,  repetition time = 300 msec, echo time = 13 msec, slice 
thickness = 5 mm no gap, slice spacing of 2.5 mm, matrix = 256 
× 128, and field of view (FOV) = 22 cm. Resting-state scans 
(rs-fMRI) lasting 5 min were then acquired via whole-brain 
gradient-echo echoplanar images with the following parameters: 
repetition time = 2,000 msec, echo time = 40 msec, flip 
angle = 85°, slice thickness = 5.0 mm and 150 axial slices, 
interleaved in order. Participants were instructed to keep their 
eyes closed for the 5-min resting scans.

2.3.2 MRI data preprocessing
Resting-state fMRI data were preprocessed using FMRIB 

Software Library (FSL version 5.0.1; http://fsl.fmrib.ox.ac.uk/) 
FEAT. This was done using similar steps to those performed in a 
previous study by our lab group (55). Preprocessing included: (1) 
discarding the first five functional volumes, resulting in 145 
volumes for analysis; (2) skull stripping using FSL BET; (3) 
motion correction using FSL MCFLIRT; (4) spatial smoothing 
with a Gaussian kernel of 5 mm full-width at half-maximum; (5) 
Gaussian-weighted high pass temporal filter (100 s); (6) artifact 
denoising via ICA-AROMA (60) which has been validated for 
seed-based analyses (61); (7) cerebrospinal fluid and white matter 
signal regression with thresholds of 1 and 0.98, respectively, via 
FSL FAST; and (8) linear registration with 12 degrees of freedom 
to MNI152 through FSL FLIRT. The final outputs were in 
Montreal Neurological Institute (MNI) space (62). Global signal 
regression was not applied given that it can introduce 
anticorrelations into the functional data (60, 63). For quality 
assurance, the data were visually inspected by a neuroradiologist 
following registration to ensure that there were no contusions 
and/or excessive motion (n = 3 patients were excluded  
accordingly).

2.3.3 Whole-brain seed-based connectivity 
analysis

Following preprocessing, whole-brain seed-based connectivity 
analyses were implemented through FSL FEAT (64). Two 5 mm radius 
spheres were created and centered on the following MNI coordinates: 
left aPFC: −36, 57, 9; right aPFC: 34, 52, 10. These ROI were delineated 
following the approach of a previous study identifying significant aPFC 
rsFC differences in patients with msTBI in comparison to healthy 
controls (22). The average BOLD signal time series within each aPFC 
seed were extracted and entered as the primary regressors in a first-
level general linear model (GLM) for the left and right aPFC, 
independently. In all first-level analyses, cluster-based thresholding was 
employed with a z-threshold of 3.1 and a significance level of 0.05. FSL 
FILM pre-whitening was applied to correct for time series 
autocorrelations and improve estimation accuracy.

2.3.4 aPFC rsFC group comparisons
To identify bilateral aPFC rsFC differences across the msTBI-Dep, 

msTBI-Non-Dep, and healthy control groups, higher-level group 
comparisons were conducted via an F-test in FSL (65). The F-test 
simultaneously assessed all possible pairwise differences between the 
three groups, controlling for age and education. For any significant 
comparisons that emerged (FWE-corrected p < 0.05), two-tailed 
unpaired t-tests were subsequently performed to investigate the 
directionality of findings.

To preserve the study’s statistical power, we undertook a data-
driven approach in addition to consulting the literature to identify the 
covariates that were included, and thus, controlled for in the GLM of 
the seed-based analyses. First, education was included due to the high 
variability in education attained across participants (range: 9 to 
18 years) as well as the differences between the msTBI-Dep, msTBI-
Non-Dep, and healthy control groups in education with a moderate 
effect size (H(2, N = 49) = 2.31, p = 0.315, ε2 = 0.0.050). Second, it was 
important to control for age given its documented effects on rsFC of 
various brain regions and networks in depression (66, 67). Apart from 
its effect on rsFC, older age at injury also portends poorer functional 
outcomes post-TBI (53, 68). Despite the wide range in inclusion 
criteria for age, only 2 patients were 65+, distributed across the healthy 
control and msTBI-Dep groups. Altogether, age and education (both 
measured in years) were centered over the global mean of each group 
and added as covariates of non-interest. Total intracranial volume 
(TIV) was not added as a covariate because of the limited sample size. 
Despite this, all fMRI scans were normalized and registered to the 
standard MNI-152 template. This would’ve at least partially reduced 
potential influences of TIV (69).

Between-group differences in aPFC rsFC were assessed using FSL’s 
non-parametric permutation-based Randomize. Threshold-free 
cluster enhancement (TFCE) was used with 5,000 permutations to 
avoid the use of an arbitrary cluster-forming threshold, and family-
wise error (FWE) correction was undertaken to correct for multiple 
comparisons. TFCE is preferred over traditional cluster thresholding 
methods given that it substantially reduces the rate of false positive 
results (70, 71). Significant clusters were localized and labeled using 
FSL’s Harvard-Oxford Cortical and Subcortical Structural Atlas (72). 
The sizes of these clusters were identified and denoted k. Effect sizes 
for the connectivity maps, that is, Cohen’s d values, were computed 
from t-statistic maps using the standard Cohen’s d calculation formula 
for two-sample t-tests.
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2.3.5 Statistical analyses
Statistical analyses for all demographic, clinical, and 

neuropsychological assessment data were carried out on IBM SPSS 
Statistics (version 28.0.1.0). The data were first subjected to 
normality testing using the Shapiro–Wilk normality test. 
Subsequently, the msTBI-Dep group and the msTBI-Non-Dep group 
were compared on all demographic, clinical and neuropsychological 
variables to identify any significant group differences that could 
influence rsFC findings. An α level of 0.05 was utilized to identify 
significant differences. As for effect sizes, Cohen’s d was computed 
for independent-samples t-tests, effect size r was computed for 
Mann–Whitney U tests, KW-epsilon squared for the Kruskal-Wallis 
test, and Cramer’s V for Fisher’s exact test (see Table 1).

3 Results

3.1 Demographic and injury-related 
variables

The msTBI-Dep and msTBI-Non-Dep group differed in terms of 
the lowest GCS recorded, which was significantly higher in the msTBI-
Non-Dep group with a medium effect size (U = 49.5, p = 0.024, 
d = 0.3972). Length of post-traumatic amnesia and acute care length 
of stay did not differ significantly between the two msTBI groups 
(p’s > 0.05). Otherwise, there were no significant differences between 
the three study groups in the remaining demographic, injury-related, 
and clinical variables.

3.2 Neuropsychological tests

With regards to the neuropsychological assessments examined, no 
significant difference was found between the msTBI-Dep group and the 
msTBI-Non-Dep group on any assessment, and the effect sizes were all 
small with the exception of the Stroop color-naming, word-reading, and 
Stroop interference tests which were medium (Cohen’s d = 0.4–0.6).

3.3 aPFC rsFC group comparisons

There were no significant differences between the msTBI-Non-Dep 
group and the msTBI-Dep group nor the msTBI-Non-Dep group and 
the healthy control group (FWE-corrected p < 0.5) in bilateral aPFC 

rsFC. However, rsFC of the left aPFC with 4 brain regions was 
significantly higher in the msTBI-Dep group as compared to the 
healthy control group, with large effect sizes. The 4 regions consisted of 
the left fusiform gyrus (BA37; t = 3.65, TFCE = 22,729, FWE-corrected 
p = 0.041, k = 119, Cohen’s d = 1.35), the right fusiform gyrus (BA37; 
t = 4.39, TFCE = 30,761, FWE-corrected p = 0.01, k = 11,867, Cohen’s 
d = 1.62), the right superior temporal lobe (STL; BA22; t = 4.43, 
TFCE = 24,941, FWE-corrected p = 0.032, k = 685; Cohen’s d = 1.63), 
and the right precentral gyrus (BA4; t = 4.34, TFCE = 22,443, 
FWE-corrected p = 0.042, k = 29, Cohen’s d = 1.60). These differences 
were non-significant between the two other study groups (p > 0.05). 
See Table 2 and Figure 1.

4 Discussion

The overarching aim of this study was to address a gap in the 
research with regard to the clinical neuroimaging biomarkers of 
depression in msTBI (21). This was the first study to examine the 
question of biomarkers of depression in bilateral aPFC rsFC through 
seed-based connectivity analyses in (1) a homogenous group of 
patients with msTBI (i.e., not integrated with mild TBI) and (2) in the 
chronic stages of injury.

We found increased rsFC in the msTBI-Dep group as compared to 
the healthy control group between the left aPFC and four sensory and 
motor regions (bilateral fusiform gyri, right STL, and right precentral 
gyrus). In this preliminary study, the implication of the aPFC - a brain 
region involved in cognitive control and salience detection - and these 
4 regions aligns with past literature reporting rsFC alterations to these 
aforementioned modalities in both msTBI (73) and depression (32, 
74) populations.

Broadly, dysfunction of the PFC has been consistently implicated 
in affective disorders, including MDD (75). Focusing on the aPFC 
specifically, it is associated with the salience network, and thus, 
implicated in salience detection, attention control, and emotional 
regulation (39, 76). Additionally, as a key hub within the frontoparietal 
control network, it contributes to cognitive control (36) and action 
selection through reward tracking (77). Dysfunction of the salience 
and frontoparietal control networks are commonly reported in 
clinically depressed populations (30, 78, 79). Despite this, there exists 
a very limited range of studies examining aPFC rsFC in depression 
following chronic msTBI (22, 23). It is therefore important to interpret 
these findings in the context of the cognitive and affective roles that 
these implicated regions have.

TABLE 2 Left aPFC rsFC group comparisons: msTBI-Dep Group > healthy control group.

Region Peak Voxel Coordinatesa Cluster Size 
(k)

TFCE p-valueb Effect Sizec

X Y Z

Fusiform gyrus 36 −68 −20 11,867 30,761 0.013* 1.61

Superior temporal lobe 54 −12 −4 685 24,941 0.032* 1.63

Fusiform gyrus −30 −18 −30 119 22,729 0.041* 1.35

Precentral gyrus 62 6 36 29 22,443 0.042* 1.60

Regions showing significant differences in left aPFC rsFC between the msTBI-Dep group and the healthy control group. aPFC, anterior prefrontal cortex; rsFC, resting-state functional 
connectivity; msTBI, moderate-to-severe traumatic brain injury; hem, hemisphere; TFCE, threshold-free cluster enhancement.
aCluster locations reported in MNI coordinates.
bAnalyses were conducted using a conservative FWE-corrected threshold of 0.05, through 5,000 permutations.
cEffect size computed via Cohen’s d and T-statistics.
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As it relates to brain-behavior relationships, the fusiform gyrus 
has been known to facilitate object and facial recognition (80) and 
plays pivotal roles in affect and emotional processing (81–83). 
Similarly, in addition to coordinating motor movements as part of the 
primary motor cortex (84, 85), the precentral gyrus plays a critical 
role in regulating emotional circuitry involving the amygdala (86, 
87). Increased activity of the precentral gyrus was reported during 
the perception of threatening emotional stimuli as compared to 
neutral stimuli, supporting the engagement of this motor region in 
emotional processing (88). Not surprisingly, increased rsFC between 
motor regions including the supplementary motor area and self-
related regions including the pregenual ACC was reported in patients 
with depression as compared to healthy controls (89). Lastly, as part 
of the affective network (90), the STL has been implicated with 
emotional processing in patients with MDD (91, 92) as well as healthy 
patients (93). Evidently, regardless of whether it is a primary function 

or not, these sensory and motor regions have documented roles in 
emotional processing and regulation.

Frontal regions, including the PFC, exert top-down control over 
emotion processing regions as a regulatory mechanism (94–96). In 
patients with mild TBI, Iraji et al. (97) reported increased rsFC 
between the aPFC and the thalamus at the acute stage post-injury. 
This hyperconnectivity was hypothesized to serve as a compensatory 
mechanism for depression through capitalizing on additional 
networks and connectivity. Therefore, given the roles of these four 
regions, it is possible that the increased rsFC between the aPFC and 
these sensory and motor regions reflects an attempt to increase 
top-down control over the excessive bottom-up emotional 
processing experienced in depression in the msTBI-Dep group. In 
other words, this hyperconnectivity could be  a marker of 
compensatory mechanisms that down-regulate the heightened 
reactivity to negative emotional stimuli that emerges in depression 

FIGURE 1

LaPFC rsFC Comparisons: msTBI-Dep Group > healthy control group. Significant clusters obtained from the F-test computed for the left anterior 
prefrontal cortex, specifically the msTBI-dep > healthy control contrast, after controlling for age and education. Images represent threshold-free 
cluster enhancement and family-wise error rate-corrected p-values thresholded at an α level of 0.05, overlaid on a standardized MNI-152 brain. The 
left hemisphere of the brain corresponds to the right side in this image and vice versa. See Table 2.
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following injury (97). However, such hyperconnectivity is ultimately 
without functional gain as reflected by the elevated PAI DEP-Tot 
scores, and hence, the presence of depressive symptoms in the 
msTBI-Dep group.

Conversely, the observed pattern of non-adaptive  - or 
potentially maladaptive - hyperconnectivity between the aPFC and 
the four sensory and motor regions could itself be an underlying 
neuropathology of depressive symptomatology in the msTBI-Dep 
group. This hypothesis is supported by the literature findings 
wherein patients with MDD exhibited PFC-amygdala 
hyperconnectivity that decreased over the course of 8 weeks of 
treatment with antidepressant medication (41). Interestingly, 
hyperconnectivity within higher-order cognitive and sensory 
networks was also reported in chronic msTBI, which the authors 
hypothesized to be attributable to compensatory mechanisms and/
or underlying TBI symptomatology (98). Because the msTBI groups 
had non-significant aPFC rsFC differences in the present study, it is 
thus plausible to consider that the aPFC hyperconnectivity in our 
msTBI-Dep group may be due to either compensatory mechanisms, 
underlying TBI symptomatology, or both. Although future research 
is needed to delineate the mechanisms behind these rsFC changes, 
the findings of this present study show that aPFC rsFC may have 
potential as a neuroimaging marker for characterizing the changes 
that occur in the presence of depressive symptoms in patients with 
chronic msTBI.

4.1 Clinical implications

Despite being one of the most common sequelae of msTBI, 
current clinical treatment strategies for the management of depression 
post-TBI are lacking (10, 21). This renders chronic msTBI patients at 
an increased risk of developing depression and its associated 
functional impediments (99, 100). What is more, associations between 
rsFC and depression scores have been reported in chronic msTBI in 
the absence of associations between whole-brain grey matter volume 
and depression scores, contributing to the psychiatric sequelae that 
emerge after TBI while evading detection through structural imaging 
tools (14).

The observed aPFC hyperconnectivity in depression post-TBI 
informs treatment research through aiding the prediction and 
monitoring response to treatment. Consequently, non-invasive 
neuromodulation-based therapies, e.g., transcranial magnetic and 
deep brain stimulation can be utilized to normalize aberrant aPFC 
rsFC, alleviating depressive symptoms and augmenting quality of life 
(11–13). This is particularly important given previous research from 
our lab showing an escalation in the number of patients with clinically 
significant symptoms of depression in the chronic stages of 
msTBI (101).

5 Strengths, limitations, and future 
directions

In terms of strengths, employing seed-based connectivity analyses 
to identify a signal for depressive symptoms post-TBI signifies that 
our findings are restricted to a specific seed region as opposed to the 
network(s) with which the region is associated. Although 

network-based approaches such as independent component analysis 
enable a more holistic understanding of brain rsFC, the aPFC seed-
based connectivity analyses undertaken in this study serve as a 
starting point for understanding brain rsFC alterations in a research 
area that is yet to be explored.

Small sample size was a notable limitation of this study, which 
may have limited our statistical power; it also precluded control 
for additional potential confounds within the models such as TIV, 
injury severity, history of depression or anxiety, and participant 
sex which may have affected the aPFC rsFC reported. However, 
although participant sex has been reported to impact rsFC in 
depression (102, 103), there were no significant differences in sex 
distribution between our three study groups via Fisher’s exact test 
(p > 0.05, Cramer’s V = 0.34). Given that the effect size was 
moderate, additional sensitivity analyses were run to complement 
this finding. This included correlational analyses between sex 
distribution and the PAI DEP-Tot depression scores which were 
also non-significant in our msTBI groups (p = 0.615). Similarly, 
although the inclusion criteria for age were 18–80, only 2 patients 
were 65+, with this variable controlled for within the GLM.

Because this study was a secondary analysis on prospectively 
collected data, we did not have control over the study parameters and 
outcomes, including the imaging scanner acquisition hardware and 
software. One notable limitation in this regard was that the 
neuroimaging data employed in this study were acquired with a 1.5 
Tesla scanner, which may have limited our signal-to-noise ratio, and 
thus, spatial resolution.

Replication studies should address these limitations. To build 
additional mechanistic insight, future studies should consider 
exploring aPFC rsFC using a seed-to-region of interest (ROI) 
analysis inclusive of the bilateral aPFC seeds and the precentral 
gyrus, the fusiform gyrus, and the STL as ROI. Future analyses 
could also be expanded to include ROIs previously implicated in 
depression following chronic msTBI (14, 24) as well as ROIs 
implicated in non-TBI related depression (104–107). The latter is 
warranted in light of the reported similarities in neurophysiological 
responses to depression occurring within and outside the context 
of msTBI (14, 108, 109). Such analyses would enrich our 
understanding of rsFC alterations occurring between the left 
aPFC and sensory and motor regions following chronic msTBI 
and whether the observed hyperconnectivity constitutes 
vulnerability or a compensatory reaction to depression following 
chronic msTBI.

6 Conclusion

This present study, to our knowledge, is first to investigate aPFC 
rsFC in a group of patients with exclusively msTBI (i.e., without 
patients in the mild range of TBI) and in the chronic stages of 
msTBI. Our findings revealed that aPFC-sensory/motor rsFC was 
significantly increased in the msTBI-Dep group compared to the 
healthy control group, though the nature of this hyperconnectivity 
necessitates further investigation. Our results provide support to 
findings established in depression literature, in the context of 
comorbid depression and msTBI. Altogether, these preliminary 
findings contribute novel empirical data towards characterizing the 
functional basis of depression in chronic msTBI.
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