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Background: Peak width of skeletonized mean diffusivity (PSMD) is a novel 
marker of small vessel disease. This study aimed to investigate the presence of 
small vessel disease in patients with occipital lobe epilepsy (OLE) using PSMD.

Methods: We enrolled 27 patients newly diagnosed with OLE and included 29 
healthy controls. The age and sex of the patients and controls were comparable. 
Diffusion tensor imaging (DTI) was performed using a 3 T MRI scanner. 
We measured the PSMD based on DTI in several steps, including preprocessing, 
skeletonization, application of a custom mask, and histogram analysis, using 
the FSL program. We compared PSMD between patients with OLE and healthy 
controls. Additionally, we performed a correlation analysis between PSMD and 
clinical factors in patients with OLE.

Results: Our findings revealed that the patients with OLE exhibited higher PSMD 
compared to healthy controls (2.459 vs. 2.079 × 10−4 mm2/s, p < 0.001). In 
addition, PSMD positively correlated with age (r = 0.412, p = 0.032). However, 
the PSMD of the patients with OLE was not associated with other clinical factors 
such as age at seizure onset and duration of epilepsy.

Conclusion: We demonstrated that patients with OLE had a higher PSMD than 
healthy controls, indicating evidence of small vessel disease in patients with 
OLE. This finding also highlights the potential of PSMD as a marker for detecting 
small vessel diseases in epileptic disorders.
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1 Introduction

Occipital lobe epilepsy (OLE) is a relatively uncommon type of focal epilepsy, originating 
in the occipital lobe and accounting for approximately 2–8% of surgical cases (1). It can result 
from structural brain abnormalities, such as tumors, strokes, or hemorrhages. However, it also 
occurs as part of self-limited focal epilepsies in childhood, including self-limited epilepsy with 
autonomic seizures or childhood occipital visual epilepsy (2).

Diffusion tensor imaging (DTI) is a magnetic resonance imaging (MRI) sequence that 
measures the diffusion of water molecules in tissues. Traditionally, DTI has been utilized in 
epilepsy surgery to define surgical margins using tractography (3). It also provides valuable insight 
into the microstructural integrity of white matter tracts, which cannot be  visualized with 
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conventional brain MRI (4, 5). DTI can facilitate calculations of fractional 
anisotropy (FA) and mean diffusivity (MD) values, which serve as 
indicators of white matter microstructure. In patients with focal epilepsy, 
FA values generally increase, while MD values tend to decrease compared 
to healthy controls, with more pronounced changes observed on the 
ipsilateral side than the contralateral side (6). In addition, DTI can 
be used to investigate the structural connectivity of the brain. In patients 
with OLE, global integration is reduced, and alterations in local networks 
beyond the occipital lobe have been observed (7). Recently, DTI has been 
used to investigate the glymphatic system function of the brain, with 
dysfunction in this system identified in patients with OLE (8). Therefore, 
DTI is increasingly being used in both research and clinical practice, 
particularly for patients with epilepsy, including those with OLE.

Peak width of skeletonized mean diffusivity (PSMD) is a recently 
proposed neuroimaging marker derived from DTI that serves as an 
objective index for quantifying white matter damage caused by small 
vessel disease (9, 10). PSMD can be fully automatically calculated in a 
short time and has shown a stronger correlation with cognitive 
impairment than conventional DTI measures such as FA or MD. As a 
result, active research using PSMD has been conducted in various 
neurological diseases, such as multiple sclerosis, stroke, cerebral amyloid 
angiopathy, and dementia (11–15). However, white matter damage due 
to small vessel disease in patients with epilepsy, particularly OLE, has 
never been studied using PSMD.

Therefore, in this study, we aimed to investigate the degree of white 
matter damage due to small vessel disease in patients with OLE 
compared to healthy controls using PSMD. Additionally, we investigated 
the volumes of white matter hypointensities, which is another MRI 
marker for white matter damage based on T1-weighted imaging, in 
patients with OLE and compared them with healthy controls. 
We hypothesized that white matter damage in patients with OLE might 
be associated with small vessel disease than in the healthy control group.

2 Methods

2.1 Participants

This study was approved by the Institutional Review Board, and 
informed consent was obtained from all participants. We enrolled 27 

patients newly diagnosed with OLE according to the ILAE criteria 
(16, 17). Only patients whose ictal semiology clearly indicated OLE 
and whose electroencephalography showed ictal or interictal 
epileptiform discharges originating in the occipital lobe were 
included in this study. DTI and T1-weighted MRI was performed at 
the time of OLE diagnosis in the drug-naïve state. We excluded the 
following participants from this study: (1) those with structural 
lesions on brain MRI that could influence the results of imaging 
analysis, (2) those with any neurological diseases other than OLE, (3) 
those with risk factors for small vessel disease, such as diabetes, 
hypertension, or dyslipidemia, or (4) those who did not consent to 
participate in the study. We also enrolled 29 age- and sex-matched 
healthy controls who had not been diagnosed with any medical or 
neurological diseases. The healthy controls underwent DTI and 
T1-weighted MRI, and their brain MRI revealed no structural lesions. 
Like the patients, the healthy controls did not have the risk factors 
associated with small vessel disease.

2.2 DTI scan

All DTI and T1-weighted MRI scans were performed using a 
3.0 T MRI scanner (AchievaTx; Phillips Healthcare, Best, Netherlands) 
equipped with a 32-channel head coil for both patients with OLE and 
healthy controls. The DTI scans utilized spin-echo single-shot echo-
planar pulse sequences with 32 different diffusion directions 
(repetition time/echo time, 8,620/85 ms; flip angle, 90°; slice thickness, 
2.25 mm, acquisition matrix, 120 × 120; field of view, 240 × 240 mm2; 
and b-value, 1,000 s/mm2). The three-dimensional T1-weighted 
images were scanned using the following parameters: inversion 
time = 1,300 ms, repetition time/echo time = 8.6/3.96 ms, flip 
angle = 8°, and isotropic voxel size = 1 mm3.

2.3 Obtaining the PSMD

Figure 1 shows the process for obtaining PSMD from DTI 
using the FSL program installed on a Linux system, involving a 
total of four steps (9, 10). The first step preprocesses the DTI, 
which includes motion and eddy current correction, brain 

FIGURE 1

The process for obtaining PSMD: we perform DTI acquisition on the participants, followed by preprocessing steps including motion and eddy current 
correction, brain extraction, and tensor fitting (A). Subsequently, we conducted skeletonization, which included normalization, projection onto the 
skeleton template, and the application of a custom mask (B). Finally, we performed histogram analysis and calculated PSMD based on the difference 
between the 95th and 5th percentiles (C). PSMD, peak width of skeletonized mean diffusivity.
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extraction, and tensor fitting. The second step is skeletonization, 
which involves tract-based spatial statistics obtained by registering 
an FA map to the common space and projecting it onto the 
skeleton. The same transformation matrices were used for MD 
data to obtain a skeletonized MD map. The third step was the 
application of a custom mask using the template thresholded at an 
FA value of 0.3 and a custom-made mask. The fourth step was 
histogram analysis, in which the width of the histogram (the 
difference between 95 and 5) derived from the MD values of all 
voxels included in the skeleton was obtained.

2.4 White matter hypointensities 
segmentation

To segment white matter hypointensities from T1-weighted 
images and acquire the volumes of white matter hypointensities, 
we used WMH-SynthSeg (18), which provides segmentation for white 
matter hyper- or hypointensities from scans of any resolution and 
contrast without retraining, available as module in the development 
version of Freesurfer.

2.5 Statistical analysis

An independent sample t-test was used to compare age and 
PSMD values between patients with OLE and healthy controls. The 
Mann–Whitney test was used to compare the volumes of white 
matter hypointensities between the groups. The chi-square test was 
used to compare sex differences between the groups. Pearson’s 
correlation test was used for correlation analysis. The performance 
of the classification was evaluated using the receiver operating 
characteristic (ROC) curve analysis. Statistical significance was 
considered when the p-value was less at p < 0.05. All statistical 
analyses were performed using MedCalc® Statistical Software 
version 22.009 (MedCalc Software Ltd., Ostend, Belgium; https://
www.medcalc.org; 2023).

3 Results

3.1 Demographic and clinical 
characteristics of participants

Table 1 shows the demographic data in the participants and 
clinical characteristics of patients with OLE. There were no 
significant differences in age or sex between the OLE patients and 
the healthy control group.

3.2 Difference in the PSMD between the 
groups

There was a significant difference in the PSMD between patients 
with OLE and healthy controls. The patients with OLE exhibited 
higher PSMD compared to healthy controls (2.459 vs. 
2.079 × 10−4 mm2/s, p < 0.001) (Figure 2).

3.3 Difference in the volumes of white 
matter hypointensities between the groups

The volumes of white matter hypointensities were higher in 
patients with OLE than that in the healthy controls [1309.6 
(interquartile range, 1165.5–2793.2) vs. 1141.0 (interquartile range, 
874.1–1298.9) mm3, p = 0.011].

3.4 ROC curve analysis

ROC curve analysis using PSMD showed an area under curve 
(AUC) of 0.747 in distinguishing the patients with OLE and healthy 
controls (p < 0.001). Additionally, ROC curve analysis using the 
volumes of white matter hypointensities revealed an AUC of 0.699 in 
distinguishing the groups (p = 0.005). Although the AUC using PSMD 
was higher than that of the volumes of white matter hypointensities, 
there were no significant difference in the comparison of AUC 
between PSMD and the volumes of white matter hypointensities in 
distinguishing the groups (p = 0.602) (Figure 3).

3.5 Correlation between the PSMD and 
clinical characteristics

In patients with OLE, a positive correlation was observed between 
PSMD and age (r = 0.412, p = 0.032) (Figure 4). However, PSMD was 
not associated with other clinical factors, such as age at seizure onset 

TABLE 1 Demographic data in participants and clinical characteristics of 
patients with OLE.

Patients 
with JME 
(N = 27)

Healthy 
controls 
(N = 29)

p-value

Demographic data

Age, years (SD) 34.2 (15.6) 32.8 (4.1) 0.627

Men, N (%) 12 (44.4) 11 (37.9) 0.623

Clinical data

Age of seizure 

onset, years (SD)
16.5 (15.9)

Duration of 

epilepsy, months 

(SD)

156.0 (154.4)

Number of 

seizures prior to 

treatment

5 (2.3)

Initial seizure semiology

Visual symptoms, 

N (%)
18 (66.6)

Oculomotor 

symptoms, N (%)
8 (29.6)

Others, N (%) 1 (3.7)

PSMD, peak width of skeletonized mean diffusivity; OLE, occipital lobe epilepsy; SD, 
standard deviation.
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(r = 0.082, p = 0.695), duration of epilepsy (r = −0.127, p = 0.545), and 
number of seizures prior to treatment (r = 0.058, p = 0.770).

4 Discussion

This study is the first to demonstrate that PSMD is higher in 
patients with OLE than in healthy controls, indicating the presence 
of white matter damage due to small vessel disease in these patients. 
In addition, in patients with OLE, PSMD increases proportionally 
with age, confirming that small vessel disease progresses further 
with aging.

This study demonstrates the presence of white matter damage due 
to small vessel disease in patients with OLE, which aligns with 
previous studies. Maxwell et al. (19) investigated the presence of small 
vessel disease in 105 patients with epilepsy, particularly late-onset 
epilepsy, and 105 healthy controls. They used periventricular and 
subcortical white matter lesions as indicators of small vessel disease. 
They found that small vessel disease was present in 49.5% of patients 
with epilepsy, compared to 32.3% of the healthy controls, concluding 
that small vessel disease is more prevalent in individuals with epilepsy. 
Hanby et  al. (19) analyzed white matter hyperintensities with 
automatic quantitation in patients with focal epilepsy and healthy 
controls, revealing higher white matter hyperintensities volume in 
patients with epilepsy (1,340 mm3) compared to controls (514 mm3) 
(20). Another study examined the correlation between the location of 
white matter lesions and the frequency of clinical symptoms such as 
stroke, seizure, vertigo, and gait apraxia. They reported that seizures 
were more frequent when lesions were located in the parieto-occipital 
lobe (21). This finding suggests an association between OLE and small 
vessel disease, similar to the present study. However, a previous study 
reported that epilepsy associated with leukoaraiosis was most closely 
related to the temporal lobe; therefore, further research is needed (22).

The cross-sectional design of this study makes it challenging to 
establish a cause-and-effect relationship between small vessel disease 
and OLE. Thus, two primary hypotheses were considered. The first 
hypothesis for the small vessel disease-OLE relationship is that small 
vessel disease may cause OLE. Previous animal experiments 
demonstrated in hypertensive rats that small vessel disease induced 
focal epilepsy more often than generalized epilepsy (23). It was 
observed that early treatment with enalapril could reduce the incidence 
of epilepsy in these animals, suggesting a role for small vessel disease in 
epileptogenesis (23). Additionally, studies on humans have 
demonstrated that hypertension is an independent risk factor for 
epilepsy (24, 25). Patients with hypertension are approximately twice as 
likely to develop epilepsy compared to those without, with those having 
uncontrolled hypertension being up to 10 times more likely to develop 
epilepsy (24, 25). Small vessel disease can cause endothelial dysfunction 
and blood-brain barrier leakage, leading to extravasation of serum 
proteins and inflammation, which may contribute to epileptogenesis. 

FIGURE 2

Difference in the PSMD between patients with OLE and healthy 
controls. The PSMD was higher in the OLE group than in the healthy 
control group (2.459 vs. 2.079 × 10−4 mm2/s, p < 0.001). PSMD, peak 
width of skeletonized mean diffusivity; OLE, occipital lobe epilepsy. 
*p < 0.05.

FIGURE 3

ROC curve analysis. ROC curve analysis using PSMD and the 
volumes of white matter hypointensities shows an area under curve 
(AUC) of 0.747 and 0.699, respectively, in distinguishing the patients 
with OLE and healthy controls. Although the AUC using PSMD is 
higher than that of the volumes of white matter hypointensities, 
there are no significant difference in the comparison of AUC 
between PSMD and the volumes of white matter hypointensities in 
distinguishing the groups (p = 0.602). PSMD, peak width of 
skeletonized mean diffusivity; WMH, the volumes of white matter 
hypointensities.

FIGURE 4

Correlation analysis between age and PSMD in patients with OLE. 
PSMD positively correlated with age (r = 0.412, p = 0.032). PSMD, 
peak width of skeletonized mean diffusivity; OLE, occipital lobe 
epilepsy.
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Diffuse cerebral microangiopathy can impair cerebral perfusion, 
leading to epileptogenesis via neurovascular uncoupling (26, 27).

Another hypothesis is that small vessel disease is caused by seizures 
that occur in patients with OLE. Recurrent seizures have shown to 
cause depolarization of pericytic mitochondria and subsequent 
vasoconstriction, resulting in small vessel disease, which is associated 
with impaired neurovascular coupling and increased blood-brain 
barrier permeability (28). Arteriole vasoconstriction, mediated by 
cyclooxygenase-2 and L-type calcium channels, plays an important 
role in hypoperfusion/hypoxia resulting from recurrent seizures (29). 
Furthermore, while the cerebral cortex is primarily involved in 
epileptic seizures, secondary changes in the cerebral white matter, 
including major association, commissural, and projection fibers, are 
well-documented. These changes are correlated with age of seizure 
onset and duration of epilepsy (30–32) and maybe induced by multiple 
mechanisms, including excitotoxicity with excessive glutamate release, 
inflammation response by microglia and astrocytes, oxidative stress by 
reactive oxygen species, and blood-brain barrier disruption (30–32).

We also confirmed that white matter damage due to small vessel 
disease worsened with age in patients with OLE. Several factors 
contribute to this worsening with age: endothelial dysfunction, 
atherosclerosis, increased reactive oxygen species, and chronic 
low-grade inflammation. The endothelium is located inside the blood 
vessels, and with aging, its function declines, making it difficult to 
maintain the integrity of the blood vessels and reducing its ability to 
regulate blood flow (33). Atherosclerosis is caused by the development 
of plaques in both large and small blood vessels. This plaque buildup 
impedes blood flow, increases vessel rigidity, and reduces perfusion 
(34). The increase in reactive oxygen species with age causes injury to 
the blood vessel walls (35). Finally, as we  age, chronic low-grade 
inflammation occurs, which increases vessel stiffness and plaque 
formation, resulting in the destruction of the vascular endothelium 
(36). Through this study, we  confirmed that small vessel disease 
worsens with age in patients with OLE, even in the absence of vascular 
risk factors, such as hypertension, diabetes, or dyslipidemia.

This study is the first to demonstrate white matter damage due to 
small vessel disease in patients with OLE. However, it has some 
limitations. The sample size, i.e., the number of patients enrolled in this 
study, was relatively small due to the rarity of OLE and the exclusion of 
patients with structural lesions that could affect DTI analysis. 
Additionally, to exclude the influence of anti-seizure medications on DTI 
measurements, only patients with their first diagnosis of epilepsy at the 
time of DTI imaging were enrolled. Another limitation of this study is 
the cross-sectional design, which did not allow us to establish a cause-
and-effect relationship between small vessel disease and OLE. The study 
was conducted at a center specializing in epilepsy disorders; hence, the 
results cannot be generalized to all patients with epilepsy. In addition, the 
results were limited to OLE; therefore, further research with a larger 
sample size is needed for other focal epilepsy or generalized epilepsy. 
Lastly, we could not analyze the volumes of white matter hyperintensities, 
since some datasets lacked fluid attenuated inversion recovery images. 
Instead of the volumes of white matter hyperintensities, we analyzed the 
volumes of white matter hypointensites, which is another MRI marker 
for white matter damage based on T1-weighted imaging. Although the 
volumes of white matter hyperintensities are more accurate and widely 
used to assess white matter damage, they have strong correlation with the 
volumes of white matter hypointensites.

5 Conclusion

We demonstrated that patients with OLE had a higher PSMD 
than healthy controls, indicating the presence of small vessel 
disease in patients with OLE. This finding also highlights the 
potential of PSMD as a marker for detecting small vessel disease 
in epilepsy.
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