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From pixels to prognosis: 
radiomics and AI in Alzheimer’s 
disease management
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Alzheimer’s disease (AD), the leading cause of dementia, poses a growing global 
health challenge due to an aging population. Early and accurate diagnosis is 
essential for optimizing treatment and management, yet traditional diagnostic 
methods often fall short in addressing the complexity of AD pathology. Recent 
advancements in radiomics and artificial intelligence (AI) offer novel solutions 
by integrating quantitative imaging features and machine learning algorithms to 
enhance diagnostic and prognostic precision. This review explores the application 
of radiomics and AI in AD, focusing on key imaging modalities such as PET and 
MRI, as well as multimodal approaches combining structural and functional data. 
We discuss the potential of these technologies to identify disease-specific biomarkers, 
predict disease progression, and guide personalized interventions. Additionally, 
the review addresses critical challenges, including data standardization, model 
interpretability, and the integration of AI into clinical workflows. By highlighting 
current achievements and identifying future directions, this article underscores 
the transformative potential of AI-driven radiomics in reshaping AD diagnostics 
and care.
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1 Introduction

Alzheimer’s disease (AD) is the most common neurodegenerative disorder and the leading 
cause of dementia. With the aging global population, the incidence of AD is expected to 
continue rising, placing increasing pressure on healthcare systems and families (1, 2). Early 
diagnosis not only helps patients and their families better plan and manage the disease but 
also allows patients to benefit sooner from available treatments and interventions. Despite 
advances in medical imaging technologies providing new perspectives for AD diagnosis, 
traditional imaging analysis methods have limitations when handling complex, 
multidimensional data. Existing limitations in technology are primarily related to diagnostic 
and detection models that focus on distinguishing this disease from others with similar 
symptoms (3, 4). Prognostic models aim to predict the potential progression and outcomes of 
the disease following diagnosis, including recovery patterns, responses to treatments, and 
long-term management. However, conventional linear and one-dimensional analytical 
approaches face challenges in processing complex, multidimensional, and nonlinear data, 
which restricts their accuracy, generalizability, and overall clinical utility. Additionally, 
radiologists face enormous workloads and time pressures, increasing the risk of diagnostic 
errors. Therefore, there is an urgent need to develop new tools and methods to improve 
diagnostic accuracy and efficiency. The combination of machine learning (ML) and radiomics 
offers a promising solution to these challenges. ML algorithms can process and analyze large 
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amounts of multidimensional data, while radiomics can extract rich 
quantitative information from medical images (5, 6). This combination 
is expected to enhance the diagnostic accuracy of AD, support clinical 
decision-making, and ultimately improve patient prognosis.This 
review aims to outline the applications of ML and radiomics in the 
diagnosis and prognosis of AD and discuss how these technologies 
can help overcome the limitations of traditional methods. We will 
explore the latest research advancements and discuss future research 
directions and potential clinical applications.

2 Overview of AD

Alzheimer’s disease is a neurodegenerative disorder affecting 
the majority of the elderly population, leading to the degeneration 
of neurons in selected regions (7). The deposition of amyloid 
plaques and neurofibrillary tangles represents major pathologies in 
the brain during AD, which, via synaptic dysfunction, results in 
neuronal loss and a general progressive decline in cognitive 
capabilities(Figure 1) (8, 9).

FIGURE 1

At a time when the field of artificial intelligence is hot, the field of imaging histology has followed the entry of ai technology and produced changes. 
The application of AI technology in medical image interpretation has gone through three main periods: the initial exploration period, the deep learning 
breakthrough period, and the clinical translation and integration period. For Alzheimer’s disease, the current result is machine learning combined with 
PET and MRI images.Positron emission tomography (PET) is used to identify amyloid plaques in the brain, while magnetic resonance imaging (MRI) 
provides detailed images of the brain structure.The combined use of PET and MRI provides more comprehensive pathological information, which helps 
in the diagnosis and research of AD. In addition, the hybrid multimodal approach, which integrates neuroimaging data with clinical data and uses AI to 
process and analyze data from multiple sources, improves classification accuracy.
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In the initial phase of Alzheimer’s disease (AD), patients often 
show memory deficits that are linked to the atrophy of both the 
hippocampus and the entorhinal cortex.As the disease progresses, 
pathological changes gradually spread to other brain regions, affecting 
more cognitive functions (10, 11). According to the cognitive decline 
in AD, it may be divided into several stages: first, the preclinical stage 
characterized by mild cognitive changes that can seldom be detected 
using the standard cognitive tests. The next stage is that of mild 
cognitive impairment, where although patients have a decline in 
cognitive abilities, it does not usually interfere with daily life; this is 
followed by the stage of dementia in which there is severe cognitive 
impairment with marked deterioration in daily functioning (12).

Diagnosis and monitoring could be performed for AD by using 
different neuroimaging techniques, such as PET, which would detect 
accumulation of amyloid and tau proteins, and structural MRI, which 
would show brain atrophy and white matter lesions.Furthermore, 
laboratory assessments, such as cerebrospinal fluid (CSF) analysis—
where a reduction in Aβ levels is observed—and blood biomarkers 
like neurofilament light chain, offer potential biomarkers that are 
indicative of AD.These imaging and biomarker data offer important 
bases for radiomics analysis (13, 14).Currently, predictive models of 
AD are becoming much finer and more personalized, considering 
demographic data such as age, sex, and education, and also genetic 
information, like the presence of the APOEε4 variants, which involves 
increased risk for AD and thus provides a scientific basis for early 
intervention and personalized treatment (15).

3 Basic concepts of radiomics

Radiomics is an emerging technology in medical imaging analysis 
that involves extracting numerous quantitative features from various 
medical imaging modalities, such as CT, MRI, and PET scans, with 
the aim of identifying patterns and potential biomarkers related to 
disease. Compared with traditional image analysis, radiomics can 
process and analyze vast amounts of imaging data, extracting 
thousands of features. It could potentially be applied across a range of 
imaging modalities, including both structural techniques, such as CT 
and MRI, as well as functional methods like positron emission 
tomography (PET) and single photon emission computed tomography 
(SPECT).Integration of data coming from several imaging modalities 
allows achieving a view of the disease more complete for a better 
diagnosis and accuracy of prediction (16, 17). In the field of 
neuromedicine, numerous researchers have integrated radiomics with 
the characteristics of neurological diseases to inform treatment and 
prognosis. For example, radiogenomic features have been utilized to 
evaluate the prognosis and treatment response of patients with 
low-grade glioma (LGG) (18).

4 Fundamentals of AI and machine 
learning

In radiology, trained physicians detect, characterize, and monitor 
diseases by visually evaluating medical images and reporting findings. 
This evaluation is typically influenced by factors such as education and 
experience, and it may occasionally involve subjective judgment (19, 
20). In contrast to these more qualitative approaches, artificial 
intelligence is adept at identifying intricate patterns within imaging 

data and can offer quantitative assessments in an automated way. 
When integrated into clinical workflows as a supplementary tool for 
physicians, AI has the potential to enhance the accuracy and 
reproducibility of radiological evaluations.

Machine learning (ML) algorithms, a subset of AI, allow systems 
to learn from structured data and past experiences. By identifying 
patterns in data, they can also use previously unrecognized trends to 
make predictions about future human-related data. There are 
supervised learning (SL), which involves testing against known or 
labeled dependent variable data, and unsupervised learning (UL), 
which uses unknown or unlabeled data. Machine learning has long 
been routinely applied to the screening of biomarkers, as well as the 
evaluation of prognosis and treatment outcomes for various diseases, 
including Alzheimer’s disease (AD). Currently, numerous mature 
machine learning models are available, and interdisciplinary research 
integrating machine learning with diverse diseases has developed to a 
highly sophisticated and varied extent (21, 22, 23).

Deep learning (DL), a subset of machine learning (ML), is 
particularly effective when dealing with large volumes of complex, 
unstructured data, and it integrates well with radiomics. DL involves 
multilayer algorithms of artificial neural networks (ANNs), with each 
algorithm providing interpretations of the data at different hierarchical 
levels. Deep learning algorithms are capable of learning feature 
representations from data autonomously, without relying on 
predefined definitions from human experts. This data-driven method 
facilitates the creation of more abstract feature definitions, which can 
enhance both their informativeness and generalizability. As a result, 
deep learning can assist in quantifying phenotypic characteristics of 
human tissues while reducing the need for extensive manual 
preprocessing(Figure 1) (24).

5 Applications of machine learning in 
Alzheimer’s disease

5.1 PET-based radiomics approach

The brain’s glucose metabolism rate is an important indicator of 
brain activity and neuronal function (25). In AD, decreased glucose 
metabolism in specific brain regions is closely linked to disease 
progression. The 18F-FDG-PET (fluorodeoxyglucose-PET) technique 
can quantify glucose metabolism rates in different brain areas, 
providing biomarkers for AD classification and prediction (26, 27). 
Radiomics methods can extract a large number of quantitative features 
from 18F-FDG-PET images, including texture analysis, shape analysis, 
and small voxel-based morphological measurements. These features 
reflect the heterogeneity of brain glucose metabolism and help 
differentiate AD patients from healthy controls, as well as predict the 
conversion of mild cognitive impairment (MCI) to AD. For instance, 
Jiaxuan Peng and his team utilized 18F-FDG-PET radiomic features 
derived from white matter, combined with machine learning 
techniques, to effectively predict the progression from MCI to 
AD. (28).

Amyloid plaques, a hallmark pathological feature of AD, play a 
crucial role in the disease’s development. Amyloid PET uses tracers 
such as 11C-PiB, 18F-AV45, 18F-Flutemetamol, and 18F-Florbetaben 
to directly image amyloid plaques, providing a clear diagnostic 
approach (29). Radiomics analysis can further extract features from 
amyloid PET images to enhance diagnostic accuracy (30). According 

https://doi.org/10.3389/fneur.2025.1536463
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Peng et al. 10.3389/fneur.2025.1536463

Frontiers in Neurology 04 frontiersin.org

to research by Ying-Hwey Nai and colleagues, three automated 
methods for classifying amyloid PET images were compared, showing 
that machine learning (ML) algorithms and deep learning (DL) 
networks achieved high accuracy and diagnostic confidence in 
amyloid PET image classification. The research analyzed 276 11C-PiB 
and 209 18F-AV45 PET scans from the ADNI database and a local 
cohort, comparing them through global average and maximum SUVR 
cut-points derived from ROC analysis. The findings suggested that the 
ML-based classification method achieved comparable accuracy to the 
ROC classification, but demonstrated superior convergence between 
training and unseen data, while requiring fewer training samples. 
Among 68 ML models, the Naive Bayes algorithm performed best 
overall (31). Amyloid PET has shown good performance in diagnosing 
AD, particularly in distinguishing AD from normal controls. However, 
distinguishing AD from MCI patients requires consideration of the 
potential for MCI patients to progress to AD. Multimodal diagnostic 
approaches and ML analysis may effectively enhance diagnostic 
accuracy. Future studies may further optimize ML methods for higher 
diagnostic precision.

Abnormal phosphorylation and aggregation of tau protein, 
leading to neurofibrillary tangles, is another key pathological feature 
of AD. Tau PET uses tracers such as 18F-flortaucipir to directly image 
the distribution and accumulation of tau protein, providing new 
insights into the disease’s pathological changes. Radiomics methods 
can extract detailed features from tau PET images, including the 
heterogeneity and distribution patterns of tau deposits. Park and his 
team developed a 3D-CNN deep learning network designed to classify 
AD, MCI, and healthy controls using tau PET images, highlighting its 
capability in distinguishing various stages of AD (32). Moreover, 
Gebre and colleagues introduced an advanced tau summary measure 
that quantifies tau deposition heterogeneity into a single number, 
called the Tau Heterogeneity Evaluation in Alzheimer’s Disease 
(THETA). This model uses region-specific SUV ratios and normalizes 
them against the uptake in the cerebellar cortex. Using explainable AI 
methods (Shapley additive explanation), the researchers estimated 
feature contributions and formulated a global tau summary measure 
for each participant. The THETA method achieved 95% balanced 
accuracy on the Mayo test set, with an accuracy of at least 87% on the 
validation set, highlighting its significant potential for accurately 
identifying tau deposition in clinical applications (33).

5.2 MRI-based radiomics approach

MRI data is also commonly used in radiomics analysis. A review 
by Avinash Chandra and colleagues emphasized the crucial role of 
MRI technology in distinguishing AD from MCI. MRI can identify 
brain damage patterns that distinguish AD from other neurological 
conditions and also highlight risk factors linked to the progression 
from MCI to AD (34). Deep learning (DL) is particularly useful when 
dealing with large and complex unstructured data. Shangran Qiu and 
his team developed a deep learning framework that integrates fully 
convolutional networks (FCN) with multilayer perceptrons (MLP) to 
generate high-resolution disease probability maps from MRI images. 
This framework can generate precise and intuitive individual AD risk 
assessments, enabling accurate diagnosis. The model was trained on 
the ADNI dataset and validated on independent cohorts from the 
Australian Imaging, Biomarker, and Lifestyle Flagship Study (AIBL), 

the Framingham Heart Study (FHS), and the National Alzheimer’s 
Coordinating Center (NACC). The model demonstrated excellent 
performance, maintaining consistent accuracy across datasets and 
outperforming diagnostic performance of practicing neurologists 
(35). MRI techniques, such as structural MRI, diffusion tensor 
imaging (DTI), arterial spin labeling (ASL), magnetic resonance 
spectroscopy (MRS), and functional MRI (fMRI), have shown 
potential in differentiating AD from MCI. However, at present, only 
traditional structural imaging is typically recommended for routine 
clinical application. Encouragingly, Samuel L. Warren and colleagues 
explored the use of functional MRI (fMRI) combined with deep 
learning techniques, particularly deep neural networks (DNNs), in 
AD diagnosis. fMRI can detect brain patterns in participants’ scans, 
and deep learning models can denoise these images to improve 
diagnostic accuracy. However, the study also pointed out limitations 
such as the need for large data sets, model interpretability issues, and 
generalization across different populations and datasets (36).

5.3 Combined neuroimaging approaches

Research integrating MRI and PET has demonstrated improved 
classification accuracy over studies that rely on a single neuroimaging 
modality (37). By using both MRI and PET data for training, more 
comprehensive information and higher predictive accuracy can 
be obtained for neuroimaging analysis. The combined MRI and PET 
dataset takes advantage of the complementary strengths of both 
modalities in structural and functional imaging: MRI provides clear 
anatomical structures and tissue characteristics, while PET reveals 
micro-dynamics of brain metabolic activities. When both data types 
are used in training, the model can capture both anatomical 
abnormalities and changes in metabolism and function, significantly 
enhancing disease detection sensitivity and specificity.

In practical applications, combining MRI and PET allows 
clinicians and researchers to obtain both structural and metabolic 
information in a single imaging process. For neurodegenerative 
diseases like AD, PET/MRI combined imaging can detect metabolic 
abnormalities while observing anatomical changes, helping identify 
early metabolic shifts in the disease and providing a basis for timely 
intervention and precise diagnosis. Deep learning models, such as 
convolutional neural networks (CNNs) and autoencoders, can 
automatically extract richer features from multimodal data, learning 
potential associations between the high-resolution structural 
information from MRI and the functional activity patterns from 
PET. This is particularly useful in the early detection and progression 
evaluation of AD (38, 39).

Furthermore, data fusion strategies (e.g., feature-level fusion and 
decision-level fusion) can integrate MRI and PET information into a 
unified framework to construct a joint feature space, enhancing the 
model’s generalization capability and predictive accuracy (40, 41).

5.4 Hybrid multimodal approaches

Recent research has investigated the integration of neuroimaging 
data with clinical information, such as CSF biomarkers, blood tests, and 
cognitive assessments, as a potential strategy for AD diagnosis. Research 
by Xianfeng Yu and colleagues demonstrated an innovative multivariate 

https://doi.org/10.3389/fneur.2025.1536463
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Peng et al. 10.3389/fneur.2025.1536463

Frontiers in Neurology 05 frontiersin.org

predictive model that integrates MRI radiomic features and plasma 
biomarkers to improve AD prediction accuracy. The study utilized two 
independent cohorts: the Sino Longitudinal Study on Cognitive Decline 
(SILCODE) and the Alzheimer Disease Neuroimaging Initiative 
(ADNI). Data collected included comprehensive assessments, MRI 
scans, plasma samples, and amyloid PET images. A new composite index 
was developed through multivariate logistic regression, incorporating 
both plasma and MRI radiomic biomarkers. The model’s performance 
and generalization ability were evaluated across two racially diverse 
cohorts, demonstrating the potential of multivariate models combining 
MRI radiomics and plasma biomarkers in predicting AD conversion, 
offering new perspectives for early diagnosis and treatment of AD (42). 
Integrating CSF biomarkers (e.g., Aβ42, p-Tau, t-Tau), blood biomarkers 
(e.g., neurofilament light chain, glial fibrillary acidic protein), and 
cognitive assessments (e.g., the Mini-Mental State Examination, MMSE) 
may offer valuable insights into the progression of AD. These biomarkers 
reflect molecular and cellular changes in the brain and aid in identifying 
the disease before symptoms appear.

6 Challenges and future directions

6.1 Data-related challenges

6.1.1 Foundations of reliable Radiomics
The optimal sample size is influenced by several factors, such as 

image quality, the algorithms used, and the desired predictive 
outcomes. In practice, especially for neuroimaging analysis, sample 
sizes are particularly hard to get. Small sample sizes most often 
result in overfitting of the model to the training data. This means 
the model performs well on the training set but generalizes poorly 
to new, unseen data. Overfitting overestimates the true performance 
of the model (43, 44). Andrius Vabalas et al. (43) and Robyn Larracy 
et al. (45) have suggested further that new strategies in collecting 
and sharing of data are developed in future, with a view to improve 
available sample size. The use of cross-validation and ensemble 
learning is also recommended to provide additional robustness and 
generalization where small sample size models are developed.

The radiomics workflow introduces significant variability, which 
may contribute to challenges in reproducibility and result in inconsistent 
findings. Different studies may use varying imaging parameters and 
preprocessing steps, such as image denoising, normalization, and 
segmentation, resulting in differences in data quality and feature 
extraction (46, 47). Radiomics analysis involves extracting a large 
number of features from imaging data, and different studies might select 
different feature sets, affecting model comparison and integration (48, 
49). The reporting of study results may lack uniform standards, making 
it difficult for other researchers to understand and replicate findings (50). 
As a result, there is currently no standardized protocol for ML-based 
radiomics analysis in neuroimaging. Future studies may aim to establish 
best practices and standardized workflows to improve consistency and 
reliability in this area (51).

6.1.2 Harmonizing various imaging data for 
comprehensive analysis

Integrating structural MRI with functional PET data may 
enhance diagnostic performance. However, challenges remain in 

ensuring the generalizability of these combined models and 
avoiding overfitting as dimensionality increases (52). Future 
research needs to focus on developing and implementing 
standardized processes, data dimensionality reduction techniques, 
effective model training and validation methods, and stringent 
quality control measures to overcome these challenges. For instance, 
statistical methods and machine learning techniques can be used to 
select the most predictive features, reducing model complexity. 
Methods such as Principal Component Analysis (PCA) and 
t-distributed Stochastic Neighbor Embedding (t-SNE) are useful for 
reducing data dimensionality while preserving key information 
(53). Applying L1 (LASSO) or L2 (ridge regression) regularization 
can limit model complexity and enhance generalization capabilities 
(54, 55).

6.2 Balancing model complexity and 
clinical practicality

Concerns have also been raised about the interpretability of 
current ML models. In many studies, models are selected through 
multiple comparisons to assess the predictive accuracy of various 
algorithms, often prioritizing the most accurate model. In the 
study by Sucheta Chauhan and colleagues, four different methods 
were compared: Convolutional Neural Networks (CNN), Ridge 
Regression (RR), PCA-based RR (PCA + RR), and a hybrid model 
combining higher-order CNN features with PCA + RR. The 
predictive accuracy of these methods was evaluated through 
multiple comparisons. Although CNN models exhibited higher 
predictive accuracy in some cases, they are often considered 
“black box” models because their decision-making processes are 
opaque and difficult to interpret. This leads to a lack of 
understanding of why the models perform well and what key 
features they identify. The lack of transparency not only affects 
the comprehension of model performance but also impacts the 
medical interpretation of predictive results. In clinical 
applications, understanding why a model makes a specific 
prediction is crucial, as it is essential for the model’s acceptance 
and practical use (56).

Amid the current boom in artificial intelligence, the field of 
radiomics is undergoing transformation with the integration of AI 
technology. This is not merely an upgrade in equipment technology 
and diagnostic capabilities; broadly speaking, it is a revolution from 
labor (radiologists) to medical productivity. From a labor 
perspective, the combination of deep learning and multiple 
diagnostic platforms requires primary diagnosing physicians to have 
certain statistical literacy, especially radiologists. During the 
incomplete phase of deep learning and radiomics development, they 
need to apply models with different focuses and capabilities to 
various patient situations to maximize diagnostic performance. 
From a productivity standpoint, with the help of AI, the efficiency 
of a highly trained radiologist far exceeds that of multiple traditional 
high-level radiology technicians. This does not imply a reduction in 
future radiologist positions; rather, it necessitates more high-level 
radiologists proficient in new technologies and AI multidisciplinary 
researchers. In an ideal scenario where technological advancement 
in AI and labor structure reform complement each other, it is 
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possible to achieve productivity far exceeding traditional levels with 
the same number of personnel.
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