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1 Introduction

This opinion article attempts to connect knowledge about post-COVID syndrome

(PCS) gained in neuropsychiatry and immunology. It discusses some misunderstandings

about PCS in light of the interplay between the serotonergic system and the kynurenine

pathway (KP). From a new perspective, potential biomarkers for further research and

therapeutic targets are identified.

Due to the severity and extent of PCS, researchers are urgently searching for its

causes and treatments. For neurocognitive and autonomic nervous system problems such

as present in PCS, it is common to encounter dysregulated neurotransmitter systems.

Among the neurotransmitters, serotonin plays a special role in the immune system

and in regulating inflammatory responses by central and peripheral mechanisms (1–5).

Serotonin—also known as 5-hydroxytryptamine (5-HT)—is a neurotransmitter with a

stimulating effect that influences memory, mood, self-confidence, sleep, emotion, orgasm

and eating (6–9).

Serotonin not only binds to serotonergic receptors on neurons, but also to receptors on

immune cells (3, 5, 10, 11).Many studies indicate that serotonin and its receptors, especially

5-HT3 receptors (one of the serotonin receptors), are involved in the pathogenesis of

chronic inflammatory conditions (5, 10, 11). Therapeutic applications of 5-HT3 receptor

antagonists for instance have been reported in rheumatoid arthritis (5, 11, 12). An essential

amino acid in the serotonin system and also in the KP is tryptophan, a precursor of

both serotonin and kynurenine (see Figure 1) and part of a regular diet (14). The KP is

a pathway creating an important energy factor and is modulated in conditions as infection

and stress (1, 5). Kynurenine regulates the balance between two types of thymus cells (T-

cells): regulatory T-cells (Treg-cells), and subsets of T helper 17 cells (Th17 cells) that

produce cytokines and have a signaling function (15).

Strong alterations in PCS in intestinal gene expression upregulate genes involved in

viral recognition and inflammation pathways and downregulate genes involved in nutrient

metabolism, like that of tryptophan (16). This downregulation result in serum serotonin

reduction (16). Various researchers suspect this might be the cause of neurocognitive

complaints in PCS (13, 16–19).

In this opinion article I address the question whether disruptions in the serotonin- and

kynurenine pathway metabolism lead to new biomarkers and treatment in PCS.

Frontiers inNeurology 01 frontiersin.org

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2025.1532383
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2025.1532383&domain=pdf&date_stamp=2025-02-13
mailto:rusvries@ziggo.nl
https://doi.org/10.3389/fneur.2025.1532383
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fneur.2025.1532383/full
https://orcid.org/0009-0007-5209-3973
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Rus 10.3389/fneur.2025.1532383

FIGURE 1

The kynurenine pathway (KP) uses the same building block tryptophan as the serotoninergic system. Reproduced from Rus et al. (2023) (13), CC-BY

4.0.

2 Discussion

2.1 Serotonin in five studies: a reliable
biomarker in PCS?

In the important study ‘Serotonin reduction in post-acute

sequelae of viral infection’ by Wong et al. (16) they investigated

Abbreviations: 5-HT, 5-hydroxytryptamine (serotonin); 5-HT3, 5-

hydroxytryptamine receptor (one of the serotonin receptors); 5-HTP,

5-hydroxytryptophan; ACE2, angiotensin converting enzyme; AHR, aryl

hydrocarbon receptor; FSCV, fast-scan cyclic voltammetry; fMRI, functional

magnetic resonance imaging; GESIs, genetically encoded serotonin

indicators; GMV, gray matter volumes; HPA-axis, hypothalamic–pituitary–

adrenal–axis; IL 2, interleukin 2; KP, kynurenine pathway; lc-ms/ms, Liquid

Chromatography—Mass Spectrometry technology; MAO, monoamine

oxidase; NAD+, nicotinamide adenine dinucleotide; PBMCs, peripheral

blood mononuclear cells; PET, positron emission tomography; PCS, post-

Covid-syndrome; PFC, prefrontal cortex; RCT, randomized controlled

trial; SNRI, selective serotonin and norepinephrine reuptake inhibitor; SSRI,

selective serotonin reuptake inhibitor; ASM, sphingomyelinase acid; BH4,

tetrahydrobiopterin; T-cells, thymus cells (lymphocytes); Th17 cells , T

helper cells.

PCS in four human cohorts, in animal models of viral infection

and in organoid cultures. First, they conducted a study among

1,540 PCS patients who presented to a post-COVID center with

severe complaints. They identified eight clusters of patients based

on clinical symptoms, varying from mainly physical problems,

such as loss of strength in muscles, to mainly neurocognitive

complaints such as memory disorders. The researchers performed

targeted plasma metabolomics on 58 representative PCS patients

3–22 months after infection and found serum serotonin reduction

compared with 30 healthy controls.

For this important finding they present three causes: a)

diminished intestinal absorption of the serotonin precursor

tryptophan. Because of downregulation of genes of the angiotensin

converting enzyme (ACE2) these receptors are strongly decreased.

Furthermore, not only tryptophan, but also the COVID-19 virus

with its spike proteins attaches to these receptors (20, 21). As

a consequence, during the COVID-19 infection, tryptophan

has to compete with the virus over a reduced number of ACE2

receptors; b) micro-clots of thrombocytes. Thrombocytes contain

serotonin. The micro-clots reduce the number of thrombocytes

and thus the availability of serotonin; and c) enhanced

monoamine oxidase (MAO) that promotes the breakdown

of serotonin.
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In a study by Sadlier et al. (17), a cohort of 20 hospitalized

PCS patients were compared to 20 healthy controls, 4–6 months

and 6–9 months after infection. Levels of multiple metabolites

with immunomodulatory properties were elevated like quinolinate,

a toxic KP metabolite. There were reduced serotonin levels and

among other things the serum glutamate (a neurotransmitter) level

was increased.

Su et al. (18) performed a longitudinal multi-omic analysis

in COVID-19 patients (n = 209). This cohort was followed

immediately after the COVID-19 infection and had less severe

symptoms. They measured autoantibodies, specific COVID-

19 RNAemia, metabolic profiles, global plasma proteomic and

peripheral blood mononuclear cells (PBMCs) in blood draws. They

found no reduced serum serotonin levels compared with 457

healthy controls. What stands out is that the patients reporting

neurological symptoms exhibited elevated proteins associated with

the negative regulation of the circadian sleep/wake cycle. The

hormone melatonin is responsible for this and is produced in the

brain (in the pineal gland) from serotonin.

Wong et al. conclude that PCS patients with serious complaints

have a greater chance of permanently retaining reduced serotonin

levels than PCS patients with mild complaints. They checked

this with a cohort of Peluso et al. (22) and found that serum

serotonin levels did indeed negatively correlate with the severity of

the complaints.

However, in the retrospective study by Mathé et al. (19)

no reduced serum serotonin levels were found using the Liquid

Chromatography—Mass Spectrometry (lc-ms/ms) technology in a

cohort of 34 PCS patients at least 6 months after infection and with

serious complaints, which they compared with 14 healthy controls.

Although the study by Wong and colleagues is the most

comprehensive of all the studies with interesting and important

results, I agree with the conclusion of Mathé and colleagues that

serum serotonin is not a reliable biomarker in PCS and should not

be used in routine diagnostic assessment, based on two arguments.

2.2 Two arguments against serotonin as a
biomarker

The first reason is that serotonin cannot cross the blood-

brain barrier (14). It appears that only some peripheral serotonin

reaches the brain via the cranial nerve, the vagus nerve (16). This

nerve normally uses Acetylcholine (Ach) as neurotransmitter (9).

So, peripheral serum serotonin level is not directly related to the

serotonin level in the brain. Based on animal models, Wong et al.

assume that serotonin in the brain is not reduced in PCS. In vivo,

however, it is technically very difficult to measure serotonin in

the brain. With all possible techniques [microdialysis, functional

magnetic resonance imaging (fMRI), fast-scan cyclic voltammetry

(FSCV), genetically encoded serotonin indicators (GESIs) and

positron emission tomography (PET)] either the spatiotemporal

resolution is too poor or the technique is too invasive or/and too

expensive (23).Wong et al. conclude that with reduced serotonin in

the peripheral serum in PCS, less serotonin can move up the vagus

nerve to the hippocampus, the control center of memory, possible

causing the memory disorders in PCS. In our article in which we

describe a study into the treatment of 95 PCS patients with selective

serotonin reuptake inhibitors (SSRIs; 16), we give however another

explanation. We hypothesize that serotonin reduction also occurs

in the brainstem and the brain. After all the pons in the brainstem

is the origin of the serotoninergic system and from there, axons

are sent throughout the central nervous system (CNS; 6, 7). The

afferent vagus nerve also arises from the pons (6, 7) and not from

the hippocampus, which Wong and colleagues assume (16). The

brainstem is full of ACE2 receptors, to which not only tryptophan

but also the COVID-19 virus can attach (20). Hypometabolic areas

are found in the pons in PCS (24, 25).

Recent research from Besteher et al. (26) confirms this

argument. They found with fMRI scans from PCS patients

suffering from neuropsychiatric symptoms (n = 30) significantly

larger gray matter volumes (GMV) than in healthy controls (n

= 20). For example in the prefrontal cortex (PFC)—which is

involved in a range of higher order cognitive functions and

in the hippocampus, control center of memory (27). In these

brain areas the neurotransmitter serotonin predominates (27,

28). The authors state the enlargement of the GMV could be

a sign of recovery through neurogenesis or compensation (26).

Another potential explanation is cerebral swelling caused by

immune reactions (26). Given that the neuropsychiatric symptoms

persist, it seems likely that the enlargement of the GMV is

caused by pathology. Moreover, it provides a plausible explanation

for the positive effect of SSRIs on neurocognitive disorders in

PCS when there are serotonin balance problems in those brain

regions (13).

Furthermore, Su et al. (18) found that melatonin, which is

produced in the brain from serotonin, was reduced. This is an

additional support—contrary to the conclusion of Wong at al.

—that cerebral serotonin may be reduced.

The second reason to reject serotonin as a biomarker, is the

variability in the degree of serum serotonin reduction between

the cohorts in the different studies (16–19). The causes of this

variability can probably be found in the many different variables

between the studies. Such as: the time passed between infection

and measurement: ranging from 0 to 22 months, the severity of the

PCS complaints, their exact quantification (especially for subjective

complaints such as neurocognitive complaints) and to which of the

eight subgroups the patients belonged in a special cohort. I believe

that the methodology used and therefore the results in these studies

vary too much to conclude that serotonin is a reliable biomarker in

PCS research.

Unlike serotonin, tryptophan can cross the blood-brain barrier

(9, 14) and may therefore be a better biomarker option (13, 15). In

the case of a comparative study however, the above variables should

preferably be more comparable.

2.3 Four causes of serotonin reduction

Beside the three causes for the serotonin reduction given

by Wong and colleagues, there may be a fourth cause: the

KP, a pathway to create the energy factor nicotinamide adenine

dinucleotide (NAD+), which interacts extensively with the

immune system, seems strongly activated in COVID-19 and PCS
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(15, 29–31). This results in the formation of many toxic kynurenine

metabolites (15, 29–31). This process demands a lot of tryptophan

(14; see Figure 1) and because tryptophan is an important precursor

of serotonin, a deficiency of tryptophan can also cause a deficiency

of serotonin (9).

In the Wong et al. study, the kynurenine metabolites decline

as PCS lasted longer. Therefore, the researchers conclude that an

activated KP may not be a major cause of serotonin reduction.

However, in a study by Guo et al. (30) PCS patients show

persistently elevated levels of INDO-2, an enzyme which stimulates

the production of kynurenine (Figure 1). In the study by Cron

(15) the PCS patients had elevated levels of kynurenine metabolites

(such as quinoline), while tryptophan was depleted. Additionally,

Cysique et al. found a significant relationship between the level of

toxic kynurenine metabolites in blood and the severity of cognitive

impairment in PCS (29). These authors conclude that the severity

of neurocognitive symptoms seems to be directly related to the

degree of overactivity of the KP. The more active the KP, the less

tryptophan is left for the production of serotonin.

2.4 An overactive KP also causes
deficiencies in other hormones and
neurotransmitters

Figure 1 illustrates that serotonin deficiency can lead to a

melatonin deficiency too. The hormone melatonin regulates the

circadian sleep/wake cycle (17, 32). Many PCS patients have sleep

problems (13, 33).

Too much kynurenine due to a runaway positive feedback

loop of the KP, blocks tetrahydrobiopterin (BH4), a coenzyme for

the production of the neurotransmitter dopamine, which in turn

ensures the production of the neurotransmitter (nor)epinephrine

(9). Norepinephrine from the sympathetic autonomic nervous

system increases the frequency and force of muscle contractions

(34) why PCS patients with muscle complaints have more symptom

reduction with an SNRI (selective serotonin and norepinephrine

reuptake inhibitor) compared with an SSRI (13).

If we look at the toxic KP metabolites, we see that

both kynurenine acid and quinolinic acid are glutaminergic

receptor antagonists. This causes glutamate (a neurotransmitter)

accumulation (35) which leads to various problems, such as

reduced concentration and palpitations (35), complaints that PCS

patients often suffer from (13, 33). That is why we recommend in

our article (13) research into N-acetylcysteine as a drug to restore

the glutaminergic balance in PCS (35).

2.5 Treatment

2.5.1 Tryptophan or 5-HTP?
In one of the experiments of Wong and colleagues (16)

they gave tryptophan to mice infected with COVID-19 and

suffering from PSC, after which the serotonin levels rose and

the mice seemed to recover. In the article “Investigating the

Role of Serotonin Levels in Cognitive Impairments Associated

with Long COVID-19” of Eslami et al. they advise to treat

humans with tryptophan (36). However, tryptophan stimulates—

besides the serotoninergic pathway—also the pathological

overactive KP and thus the toxic metabolites (15, 29–31).

Therefore, I propose that it would be preferable to choose

5-hydroxytryptophan (5-HTP, not to be confused with 5-HT)

instead of tryptophan. 5-HTP is a more direct precursor to

serotonin that does not feed the KP and that can cross the

blood-brain barrier.

2.5.2 SSRIs
An SSRI reduces the reuptake of serotonin and—to a lesser

extent—norepinephrine in the presynaptic neuron (9). This allows

these additional neurotransmitters in the synapse to transmit their

signal to the postsynaptic neuron over a longer period of time (9).

SSRIs are usually described for depression or anxiety disorders (37).

Wong and colleagues found that in PCS mice treated with

fluoxetine (an SSRI) the cognitive function improved (16).

Previously, several researchers found that when patients with

COVID-19 took SSRIs, they had a lower chance of developing

PCS (38–43).

In our exploratory study we found that two thirds of the

PCS-patients showed a considerable or even strong decline of

the symptoms after being treated with SSRIs (13). The study by

Wong et al. confirmed our hypothesis regarding the importance

of the serotoninergic system in PCS. We formulated seven

potential mechanisms of action of SSRIs in PCS and one

hypothetical mechanism. In short: a. the positive influence of

SSRIs on the hypothalamic—pituitary—adrenal-axis [HPA-axis,

part of the limbic system; (44–51)], b. the positive influence on

the circulatory system (52, 53), c. by prolonging the clotting

time which could theoretically help dissolve microclots (54), d.

SSRIs lower oxidative stress (52, 53), e. the SSRIs fluvoxamine

and fluoxetine have been shown to have extra anti-inflammatory

effects by inhibiting sphingomyelinase acid [ASM; (55)], f. SSRIs

reduces the pro-inflammatory cytokines interleukin 2 (IL 2) and

IL 17 in the CNS (56)—in order to achieve these effects, the SSRI

must then be a sigma 1 receptor agonist [an agonist stimulates

a receptor; (56)], g. SSRIs also stimulate the production of

serotonin cells in the hippocampus (9, 57). Finally, we formulated

the hypothesis that SSRIs could slow down the overactive

KP (9).

3 Conclusion and outlook

Disruptions in the serotonin- and KP metabolism in PCS

provide a clear direction for advancing this line of inquiry. While

it is evident that many scientists who explore the cause of PCS

focus on or the KP route (15, 29–31) or the serotonergic route (16–

19, 36), they typically overlook the possibility that these two routes

are related.

Additionally, serotonin is not a biomarker to choose for

diagnostic assessment of PCS, because it cannot cross the blood-

brain barrier (14, 16–19, 22). Tryptophan can cross the blood-

brain barrier and may therefore be a better option. In the case of

a comparative study however, the variables should preferably be

more comparable.
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Toxic KP metabolites in serum are good biomarkers as well,

because researchers found a significant relationship between the

level of toxic KP metabolites in serum and the severity of cognitive

impairment in PCS (29).

Various researchers advised to examine the treatment of PCS

with an SSRI or with a precursor of serotonin (13, 16, 17, 36). A

randomized controlled trial (RCT) on the effect of SSRIs in PCS

patients should follow under strict conditions, such as testing the

pharmacogenetic profile in advance, since many patients absorb

and break down an SSRI too quickly while other patients do

this too slowly (13). This can lead to a lack of the desired

effect or too many side effects. These patients should be excluded

from an RCT with a specific SSRI and can be treated with

another SSRI outside the context of the RCT. PCS patients are

more sensitive to side effects of SSRIs than other patients (13).

Therefore, the trial must also provide for an option to stop

increasing the dosage if the balance between effect and side

effects threatens to tip without affecting the requirements of

an RCT.

Furthermore, a treatment with the precursor tryptophan is

not recommended because it also stimulates the overactive KP.

Therefore, 5-HTP could be a better option.

This opinion article is also a call for better collaboration

between immunologists, neurologists and psychiatrists in the study

and treatment of PCS through the field of neuroimmunology.

There are already many examples of psychiatric and neurological

diseases that are treated immunologically, such as schizophrenia

(58–62), childhood depression (61, 63, 64) or multiple

sclerosis (65).

There is still much to unravel in neuroimmunology and

treatment of immunological disorders with psychotropic drugs

should be considered.
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