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Background: Aneurysmal subarachnoid hemorrhage caused by cerebral 
aneurysm rupture has a poor prognosis, with mortality exceeding 30% despite 
treatment advancements. Surgical neck clipping remains the standard for 
preventing rupture, but intraoperative rupture rates vary significantly (3–50%) 
and are influenced by vascular complexity and technical challenges. Thinning 
of the vascular wall near the aneurysm neck, particularly with microaneurysm 
formation, has emerged as a significant risk factor, yet these changes often go 
undetected in preoperative imaging.

Objective: This study aimed to evaluate the utility of computational fluid 
dynamics (CFD) analysis for predicting microaneurysm formation in the parent 
artery adjacent to unruptured cerebral aneurysms, using the parent artery 
radiation sign (PARS) as a predictive marker.

Methods: We conducted a single-center, retrospective observational study of 
89 patients with unruptured middle cerebral artery (MCA) aneurysms treated 
with neck clipping from May 2020 to April 2022. Based on preoperative three-
dimensional computed tomography angiography (3D-CTA), CFD analysis 
identified PARS through specific hemodynamic indicators. Intraoperative findings 
were analyzed and compared between PARS-positive and PARS-negative 
groups. The sensitivity and specificity of PARS for predicting microaneurysm 
formation were investigated.

Results: Of the 87 aneurysms analyzed, 25 (28.7%) were PARS-positive, and 62 
(71.3%) were PARS-negative. Microaneurysms were identified intraoperatively in 
nine cases, eight of which were in the PARS-positive group. The sensitivity and 
specificity of PARS for detecting microaneurysms were 89 and 78%, respectively. 
The positive likelihood ratio was 4.1, while the negative likelihood ratio was 
0.142.

Conclusion: CFD analysis using PARS offers a reliable method for predicting 
microaneurysm formation in the parent artery, potentially guiding surgical 
planning and reducing intraoperative rupture risk. While promising, these 
findings are limited by the retrospective, single-center design, highlighting the 
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need for further research in larger, multicenter cohorts. Incorporating CFD 
analysis into preoperative assessment could significantly enhance the safety 
and outcomes of neck clipping procedures for unruptured cerebral aneurysms.

KEYWORDS

computational fluid dynamics analysis, microaneurysm, unruptured cerebral 
aneurysm, neck clipping, parent artery radiation sign

1 Introduction

Aneurysmal subarachnoid hemorrhage, resulting from the 
rupture of cerebral aneurysms, carries a poor prognosis exceeding 
30% despite advancements in treatment options (1). Direct surgery to 
prevent rupture is recommended under specific conditions, with neck 
clipping as an established surgical technique. Intraoperative rupture, 
the most significant complication of neck clipping, occurs at rates 
ranging from 3 to 50% (2, 3). This variability depends on the 
complexity of the aneurysm’s vascular anatomy and the challenges of 
the surgical technique.

The risk of this complication is exceptionally high during the 
dissection phase of aneurysm exposure. Factors contributing to this 
include the technical difficulty of exposing the aneurysm, brain 
swelling, and the extent of manipulation during clipping (2, 3). The 
presence of a bleb in a cerebral aneurysm significantly increases the 
risk of intraoperative rupture during dissection (4). Furthermore, 
thinning of the vascular wall near the aneurysm neck, especially with 
microaneurysms, has been recognized to heighten intraoperative risk. 
These changes often elude detection in preoperative three-dimensional 
computed tomography angiography (3D-CTA) and become apparent 
intraoperatively, potentially confusing the surgeon and increasing 
procedural risk.

The number of reports related to computational fluid dynamics 
(CFD) analysis in the field of cerebral aneurysms has been increasing 
in recent years, and it is gaining more attention. There has been a 
substantial accumulation of research regarding CFD analysis 
specifically targeting cerebral aneurysms. These studies have primarily 
focused on aspects such as rupture risk, growth risk, hemodynamic 
changes related to treatment procedures, and post-treatment 
recurrence. Consensus has been gradually reached regarding 
parameters such as wall shear stress, wall pressure, and the vector of 
streamlines in aneurysms (5, 6). We have also conducted CFD analyses 
focusing on cerebral aneurysms themselves. Through our experience, 
we discovered abnormalities in CFD findings at sites of thinning of 
the parent artery wall and at locations where microaneurysms form. 
Based on these findings, we retrospectively analyzed the parent artery 
adjacent to cerebral aneurysms using preoperative 3D-CTA (7, 8) and 
defined this unique CFD finding as the “parent artery radiation sign” 
(PARS) (9). This study is significant because it focuses on 
morphological changes in the parent artery adjacent to the 
cerebral aneurysm.

However, previous studies with limited case numbers have not 
thoroughly examined the relationship between individual case factors 
and the significance of PARS in predicting microaneurysms 
preoperatively. Therefore, this study aims to investigate these aspects 
in detail, using a more extensive case series to evaluate the sensitivity 
and specificity of PARS for predicting microaneurysm formation in 
the parent artery near cerebral aneurysms.

2 Materials and methods

This single-center, retrospective observational study reviewed 89 
cases of unruptured cerebral aneurysms treated with direct clipping 
between May 2020 and April 2022. Background factors compared 
included age, gender, aneurysm diameter, presence of multiple 
aneurysms, prior treated aneurysms, history of subarachnoid 
hemorrhage (SAH), family history of cerebral aneurysms, underlying 
conditions (hypertension, diabetes, dyslipidemia), statin use, and 
lifestyle factors (alcohol consumption and smoking habits). As in our 
previous report, aneurysm locations were limited to the bifurcation of 
the middle cerebral artery (MCA) to facilitate observation and ensure 
compatibility with computational fluid dynamics (CFD) analysis.

The CFD analysis method has been previously reported. In 
summary, blood flow impingement on cerebral aneurysm walls is 
associated with wall thinning (10). Streamlines visualizing blood flow 
pathways can identify impingement and turbulence sites, which may 
promote vessel wall thinning and aneurysm formation (11). PARS was 
defined by three CFD findings indicating blood flow impingement 
and elevated vessel wall pressure relative to surrounding areas: (1) 
streamline collisions with the vessel wall adjacent to the aneurysm; (2) 
radial dispersion of wall shear stress vectors at the same site; and (3) 
increased wall pressure. We compared intraoperative findings between 
the PARS-positive group (PARS group) and the PARS-negative group 
(control group).

Three-dimensional vascular images for CFD analysis were generated 
from CTA scans (TOSHIBA Aquilion One 320 columns) using the 
Ziostation2 image-processing workstation (Ziosoft, Tokyo, Japan) to 
extract blood vessels around the aneurysm. CFD images were then 
created using Hemoscope Project Manager 2015 (EBM/AMIN, Tokyo, 
Japan). Hemoscope has the advantage of enabling CFD analysis for target 
cases in a relatively short amount of time in clinical settings. There have 
been prior studies conducted by our research group as well as reports 
from other groups (12–14). Specifically, this software consolidates 
essential workflows for CFD analysis—including imaging, rendering, 
modeling, meshing, blood properties, boundary conditions, 
computation, visualization, and analysis—facilitating the full automation 
of CFD blood flow simulations. Prior to analysis, preparation involves 
extracting the region surrounding the target aneurysm from vascular 
images obtained via CTA. Upon launching the software and selecting 
either the steady flow or pulsatile flow mode, processes such as mesh 
generation, input of blood properties, setting of boundary conditions, 
selection of discretization schemes, and control of iterative computations 
are all automatically managed within the software. In this study, all CFD 
analyses were conducted in steady flow mode. Cases were excluded if 
they involved suspected dissecting aneurysms, incomplete CFD data, or 
non-circumferentially observed aneurysms. Four neurosurgeons familiar 
with CFD analysis and unruptured aneurysm surgery were randomly 
assigned to evaluate CFD findings and intraoperative outcomes related 
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to wall shear stress vectors, with agreement rates calculated. 
Microaneurysms in the parent artery adjacent to the aneurysm were 
defined as microaneurysms located within 5 mm proximal or distal to 
the primary cerebral aneurysm. Discrepancies in PARS status or 
intraoperative microaneurysm findings were resolved through secondary 
CFD evaluation by a different assessor and an independent, blinded 
review of intraoperative findings. All procedures in this study adhered to 
the l9atest Declaration of Helsinki guidelines and were approved by the 
institutional ethics committee (No. HM24–061).

2.1 Data collection and statistical analysis

Laboratory data for all patients were obtained within 2 weeks 
before surgery. Additionally, statin medication history was extracted 
from the medication handbook, while patients’ self-reports were used 
to gather information on family history, medical history, alcohol 
consumption, and smoking habits. All statistical analyses were 
performed using R software (version 4.2.2).

3 Results

During the study period, 89 patients with 94 unruptured middle 
cerebral artery (MCA) aneurysms underwent open clipping surgery. 
After applying the exclusion criteria, 82 patients with 87 aneurysms 
were included in the analysis, as depicted in the patient selection 
flowchart (Figure 1).

Background factors for the 82 patients are presented in Table 1.
According to the CFD analysis results, 25 aneurysms (28.7%) were 

categorized as PARS-positive, while 62 aneurysms (71.3%) were 
classified as PARS-negative (control group).

Intraoperative findings identify microaneurysms on the parent 
artery adjacent to the aneurysm in nine of 87 MCA aneurysms, 
corresponding to an incidence rate of approximately 10% for 
microaneurysm formation on adjacent vessel walls. All cases with 
microaneurysm formation underwent additional clipping. Of the nine 
aneurysms with microaneurysm formation, eight were in the PARS 
group, while the remaining one was in the control group.

Table 2 summarizes the relationship between PARS positivity and 
the presence of microaneurysms on vessel walls adjacent to 
aneurysms. The sensitivity and specificity analysis of PARS positivity 
for microaneurysm detection yielded a sensitivity of 89% and a 
specificity of 78%. The positive likelihood ratio for PARS positivity in 
detecting microaneurysm formation on vessel walls was 4.1, while the 
negative likelihood ratio was 0.142.

Table 3 presents a univariate logistic regression analysis comparing 
background factors with the presence of PARS in the nine aneurysms 
with microaneurysms. PARS positivity was statistically significant for 
microaneurysms, while no other factors showed statistical significance. 
Multivariate analysis could not be  performed due to minimal 
intergroup differences for factors other than PARS and insufficient 
cases. For patients with multiple MCA aneurysms, the aneurysm size 
shown in the table corresponds to the larger aneurysm. However, 
separate analyses of the smaller aneurysm showed no statistically 
significant differences.

3.1 Case presentations

Case 1: A 77-year-old woman with a right MCA aneurysm.
The CFD images and intraoperative view in Case 1 illustrate the 

radial spread of wall shear stress vectors and elevated wall pressure 
adjacent to the aneurysm within the encircled area (Figure 2). The 

FIGURE 1

Patient selection flowchart.
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intraoperative view reveals a microaneurysm (circled) adjacent to the 
aneurysm. The preoperative CTA showed no morphological changes 
at the same site.

Case 2: A 70-year-old woman with a right MCA aneurysm.
The CFD images and intraoperative view in Case 2 also illustrate 

the radial spread of wall shear stress vectors and the elevated wall 
pressure adjacent to the aneurysm within the encircled area 
(Figure  3). The intraoperative view similarly reveals a 
microaneurysm (circled) adjacent to the aneurysm. The 
preoperative CTA showed no morphological changes at the 
same site.

4 Discussion

Previous studies analyzing cerebral aneurysms using CFD have 
reported findings predicting wall irregularities of the aneurysm (15–
17). In contrast, this study focuses on the vessel wall outside the 
aneurysm, demonstrating the potential of CFD analysis to predict wall 
thinning and microaneurysm formation in the parent artery near the 
aneurysm, which were not detected by preoperative vascular imaging. 
The radial dispersion of wall shear stress vectors indicates localized 
force application, particularly susceptible to microaneurysm 
formation (18). Thus, PARS may enhance sensitivity by highlighting 
areas where relatively strong forces are applied to the vessel wall. As 
defined in our previous research, PARS’s ability to predict 
unpredictable morphological changes in vessel walls with a sensitivity 

and specificity of 89 and 78%, respectively, is highly valuable for 
developing treatment strategies for unruptured cerebral aneurysms.

Assessing this method, alongside routine preoperative imaging, 
could be valuable in planning safe brain retraction and approaches to 
access the aneurysm, potentially improving surgical outcomes for 
unruptured cerebral aneurysms.

In recent years, endovascular treatments such as coil embolization, 
intrasaccular flow disruption, or flow diverter treatment have become 
more popular than surgical clipping for managing unruptured 
cerebral aneurysms (19–22)—however, coil embolization and 
intrasaccular flow disruption target only the aneurysm for occlusion. 
Flow diverter treatment, a device placed in the parent artery, may aid 
in repairing the parent artery near the aneurysm. Nonetheless, the use 
of this treatment for bifurcation aneurysms, such as the middle 
cerebral artery aneurysms in our study, remains debated (23, 24). 
Direct clipping may be  preferable in cases like ours, where 
microaneurysms are present in the parent artery near the aneurysm 
neck (25). Thus, positive PARS findings from pre-treatment CFD 
analysis could aid in selecting appropriate treatment techniques.

4.1 Limitations

This was a single-center, retrospective observational study, and 
selection bias cannot be completely ruled out. Using CTA as the basis, 
detailed DSA might have detected subtle morphological changes in 
the vessel wall that CTA could not (26, 27). Based on deformed three-
dimensional structures derived from preoperative CTA images, CFD 
analysis may overlook tiny aneurysms and perforating branches, 
potentially failing to capture true hemodynamics (27, 28). In this 
study, we used Hemoscope, a CFD analysis software package that is 
highly convenient and useful. However, it has the limitation of being 
unable to incorporate detailed parameters specific to individual cases, 
such as blood pressure and blood viscosity. To ensure analytical 
accuracy, this study focused on middle cerebral artery aneurysms, as 
evaluating blood flow and accurately depicting vessels at sites such as 
the anterior communicating artery or the internal carotid artery-
posterior communicating artery bifurcation remains challenging. 
Additionally, CFD analysis is limited to angiographically visualized 
structures, which complicates its application to thrombotic or giant 
aneurysms (29, 30). Using only simple parameters may reduce 
accuracy, as different results could emerge if parameters such as 
oscillatory shear index, shear strain rate, pulsatility, and viscosity were 
included (13, 16, 31, 32).

5 Conclusion

This study demonstrates that computational fluid dynamics 
(CFD) analysis, mainly using the parent artery radiation sign (PARS), 
is valuable for predicting microaneurysm formation in the parent 
artery near unruptured cerebral aneurysms. With a sensitivity of 89% 
and specificity of 78%, PARS can guide preoperative planning for neck 
clipping, potentially reducing intraoperative rupture risk and 
improving surgical outcomes. Despite its promise, the study’s 
retrospective, single-center design presents limitations, necessitating 
further research with more extensive multicenter cohorts. Integrating 
CFD analysis into routine preoperative assessments may improve the 

TABLE 1 Background data of the 82 patients included in the study.

Variable N = 82

Age (median[IQR]) 71 (57.3–76.8)

Male (%) 16 (19.5)

Multiple aneurysm (%) 29 (35.4)

Treated history of other aneurysm (%) 18 (22.0)

SAH (%) 6 (7.3)

Family history of SAH (%) 11 (13.4)

HT (%) 52 (63.4)

DM (%) 13 (15.9)

DL (%) 28 (34.1)

History of statin agent taking (%) 24 (29.3)

Alcohol (%) 12 (14.6)

Smoking (%) 17 (20.7)

TABLE 2 PARS in preoperative CFD analysis and intraoperative findings 
with/without microaneurysm of the adjacent mother vessel of the 
cerebral aneurysm.

Microaneurysm 
(+)

Microaneurysm 
(−)

Total

PARS 

(+)

8 17 25

PARS 

(−)

1 61 62

Total 9 78 87
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TABLE 3 Univariate analysis of the association between background factors and PARS With microaneurysm formation in the parent artery adjacent to cerebral aneurysms.

N = 82 Microaneurysm n (%) OR 95% CI p value

lower upper

Age†
<70 39 4 (10.3)

0.98 0.93 1.04 0.470
≧70 43 5 (11.6)

Sex
Male 16 2 (12.5)

1.20 0.17 5.66 0.828
Female 66 7 (10.6)

Multiple aneurysm
+ 29 2 (6.9)

0.49 0.07 2.19 0.390
− 53 7 (13.2)

Treated history of other aneurysm
+ 18 1 (5.6)

0.41 0.02 2.48 0.418
− 64 8 (12.5)

SAH
+ 6 0 (0.0)

− − − −
− 82 9 (10.1)

Family history of SAH
+ 11 1 (9.1)

0.79 0.04 5.01 0.830
− 71 8 (11.1)

HT
+ 52 3 (5.8)

0.24 0.05 1.01 0.061
− 30 6 (20.0)

DM
+ 13 0 (0.0)

− − − −
− 69 9 (13.0)

DL
+ 28 1 (3.6)

0.21 0.01 1.25 0.155
− 54 8 (14.8)

History of statin agent taking
+ 24 0 (0.0)

− − − −
− 58 9 (15.5)

Alcohol
+ 12 1 (8.3)

0.70 0.04 4.43 0.752
− 70 8 (11.4)

Smoking
+ 17 1 (5.9)

0.45 0.02 2.70 0.461
− 65 8 (12.3)

Size of aneurysm††
<5 mm 33 2 (6.1)

1.25 0.87 1.77 0.209
≧5 mm 49 7 (14.3)

PARS
+ 25 8 (32.0)

26.35† 4.40 507.14 0.003
− 57 1 (1.8)

† The “Age” item was analyzed as a continuous variable.
†† The “Size of Aneurysm” item was analyzed as a continuous variable, with the larger aneurysm used for those with multiple aneurysms.
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FIGURE 2

Case 1: A 77-year-old woman with a right MCA aneurysm. The CFD images and intraoperative view illustrate the radial dispersion of wall shear stress 
vectors and elevated wall pressure adjacent to the aneurysm within the encircled area (A). The intraoperative view of additional clipping for a 
microaneurysm adjacent to the aneurysm (B). Preoperative 3D-CTA image of the middle cerebral aneurysm at the angle of intraoperative findings (C).

FIGURE 3

Case 2: A 70-year-old woman with a right MCA aneurysm. The CFD images and intraoperative view depict the radial dispersion of wall shear stress 
vectors and elevated wall pressure adjacent to the aneurysm within the encircled area (A). The intraoperative view of additional clipping for a 
microaneurysm adjacent to the aneurysm (B). Preoperative 3D-CTA image of the middle cerebral aneurysm at the angle of intraoperative findings (C).
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safety and effectiveness of surgical interventions for 
cerebral aneurysms.
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