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Mutations in ASH1L have been associated with a range of phenotypes, including 
intellectual disability (ID), autism spectrum disorder (ASD), attention deficit 
hyperactivity disorder (ADHD), seizures, as well as differences in skeletal, muscular, 
and sleep functions. In this study, we describe a patient diagnosed with mild ID, 
and whole-exome sequencing (WES) of the family identified a novel heterozygous 
nonsense variant, NM_018489.2: c.2479A > T (p.Lys827*), located in exon 3 of 
ASH1L, which was predicted to be pathogenic. The nonsense variant in the mild 
ID patient may disrupt ASH1L function by destabilizing its spatial conformation, 
leading to decreased activity of the catalytic H3K36 methylation, thereby affecting 
neurological function. A review of reported ASH1L nonsense mutations to explore 
genotype–phenotype correlations suggested that these variants typically result in a 
loss of function. Our findings contribute to understanding the neurodevelopmental 
pathogenesis of mild ID in patients with the ASH1L nonsense variant mutation.
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Introduction

Intellectual disability (ID) includes a variety of developmental disorders defined by 
limitations in cognitive abilities and adaptive behavior according to the diagnostic and statistical 
manual of mental disorders, 5th Edition (1). An intelligence quotient (IQ) under 70 implies a 
deficit in intellectual functioning, which in combination with adaptive functioning determines 
further classification as severe, or profound, moderate and mild. ID can manifest in varying 
degrees of severity and is often accompanied by challenges in learning, communication, and 
daily life skills. The onset of ID typically occurs before the age of 18 and affects approximately 
1–3% of the global population (2–4). ID is primarily limited to individuals over 5 years old, 
while global developmental delay (DD) is used for children 5 years old or younger (5, 6).

ID may arise from both genetic and non-genetic factors. Non-genetic causes include 
nutritional deficiencies, exposure to toxic substances, maternal infections during pregnancy, 
hypoxic–ischemic events, brain radiation, encephalitis and traumatic brain injuries (7). However, 
a significant proportion of ID cases are attributed to genetic causes, such as chromosomal 
abnormalities including trisomies, deletions, and duplications (8, 9). Genetic syndromes 
associated with ID frequently present with additional clinical symptoms, including motor, 
psychiatric, and sensory impairments (10). These co-occurring conditions can make diagnosis 
more difficult and may hinder the correct identification. The children with congenital hearing 
loss may face developmental delays that resemble conditions like autism (11). Furthermore, 
sensory impairments like hearing loss may be mistaken for behavioral issues (12), complicating 
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both diagnosis and treatment. Advances in genomic technologies, 
including array-comparative genomic hybridization (Array-CGH) and 
WES, have enabled the identification of many genetic variants linked to 
ID (13, 14). The discovery of these genes reveals its underlying causes 
and expands our understanding of the disease.

Among these genes, ASH1L (Absent, small, or homeotic1-like) 
has garnered significant attention due to its critical role in brain 
development. ASH1L (also referred to as KMT2H, ASH1-like, 
ASH1L1, ASH1, or huASH1) is a enzyme classified as a histone-lysine 
N-methyltransferase and encoded by the ASH1L gene which is located 
at chromosomal band 1q22 (15). As a member of the trithorax group 
family, ASH1L facilitates the methylation of specific histone lysine 
residues and lays a key role in regulating transcription and chromatin 
remodeling (16, 17). Mutations or loss of function in ASH1L were 
linked to various developmental disorders, including ID and 
ASD. These mutations typically result in a nonfunctional enzyme, 
disrupting histone methylation and altering gene expression, which in 
turn affects brain development. First described ASH1L variant in 
patients in clinical study involving three patients with ID or ASD due 
to de novo ASH1L missense variants (18–20). In addition, ASH1L 
mutation have also been linked to seizures, which broadens the 
diversity of both genetic and clinical features seen in ASH1L-related 
neurodevelopmental disorders (21). ASH1L mutations result in altered 
methyltransferase enzyme activity and changes in neuronal 
morphology, leading to cognitive impairments and disruption of 
ASH1L’s regulatory functions (22). Mutations within the ASH1L 
PHD-BAH domain may disrupt interaction with methyltransferase 
enzyme in vitro, potentially compromising chromatin remodeling 
(23). Mouse models with ASH1L exon 4 deletion resulting in a 
premature stop codon (p.V1693Afs*2) exhibit abnormal cortical 
neuron differentiation and craniofacial abnormalities, providing 
insights into the molecular mechanisms underlying ASH1L-associated 
neurodevelopmental disorders (24). While previous reports have 
identified several heterozygous loss-of-function (LOF) variants in 
ASH1L, such as nonsense, frameshift, and deletions, the phenotypic 
spectrum remains incompletely understood. In particular, the 
relationship between these mutations and the severity or specific 
features of the associated disorders is still being explored.

To address this gap, our study specifically aims to clarify the 
genotype–phenotype relationship of ASH1L variants, refine diagnostic 
criteria for ASH1L-associated neurodevelopmental disorders, and 
inform future research into targeted therapeutic strategies. Here, 
we  identified a novel heterozygous nonsense variant of ASH1L, 
NM_018489.2: c.2479A > T (p.Lys827*), in a patient diagnosed with 
mild ID. This variant adds to the growing body of evidence supporting 
ASH1L’s role in neurodevelopmental disorders and expands the 
known phenotypic spectrum of this condition. Our findings 
emphasize the importance of larger-scale studies to further 
characterize the clinical impact of ASH1L nonsense variants and 
highlight the need for more comprehensive neurological evaluations.

Materials and methods

Subjects

The research informed consent was undersigned by the patient 
and parents. This study was carried out in accordance the ethics 

requirement. The study involved the proband and both parents. Family 
members were selected based on their relationship to the proband and 
symptoms of intellectual disability. The clinical assessment of Wechsler 
Adult Intelligence Scale (WAIS) was conducted prior to genetic testing 
to ensure thorough phenotypic characterization. The proband in our 
research is a 23-year-old female with a novel variant (c.2479A > T, 
p.Lys827*; NM_018489.3). She is the only child born to a 
non-consanguineous couple, and her prenatal, labor, and postnatal 
medical history are entirely normal, with no noted abnormalities. The 
proband has a score of 65 on the WAIS assessment, indicating 
borderline cognitive functioning. Additionally, it is reported that the 
proband has mild ID with poor learning abilities and poor memory. 
She can manage her daily life independently but shows slightly delayed 
responses. Her mother exhibits similar symptoms. Family history is 
important for the characteristics of ID on the mother’s side. The 
proband has no characteristics reported in other probands, for 
example, seizures. The proband is found to be non-dysmorphic. The 
results of Multiplex Ligation-dependent Probe Amplification (MLPA) 
test for the proband did not reveal any large segment variants within 
the detection range of the P070 kit. It is noteworthy that following 
clinical testing, this proband participated in a research study that 
uncovered four variants of unknown significance (VUS). The first is a 
missense variant in ACTL6B, which, according to OMIM, is associated 
with developmental and epileptic encephalopathies (OMIM#618468), 
and intellectual developmental disability with severe speech and 
walking deficits (OMIM# 618470). Another variant is a missense 
mutation in COQ8A, which has been linked to primary coenzyme 
Q10 deficiency (OMIM# 612016). The third is also a missense variant 
in DPP6 related to the intellectual developmental disabilities (OMIM# 
616311). The last is an in-frame variant in SETD1B, which is associated 
with intellectual developmental disabilities accompanied by seizures 
and speech delays (OMIM# 619000).

Genomic DNA preparation

Whole blood was collected in EDTA anticoagulant tubes (4 mL 
from the proband, 2 mL from parents and family members). Samples 
were processed and stored at −80°C to preserve DNA integrity during 
transportation to Kangxu Diagnostics (Beijing, China). Genomic 
DNA was extracted using the Qiagen FlexiGene DNA Kit, with quality 
assessed by Qubit 2.0 and NanoDrop 2000. We ensured ≥1.5 μg of 
DNA with a concentration of 50–100 ng/μL and OD 260/280 ratio of 
1.8–2.0. DNA was fragmented into 180–280 bp segments, followed by 
end repair, A-tailing, adapter ligation, and exon capture using Agilent 
SureSelect Human ALL Exon V6 probes. Sequencing was performed 
on the T7 platform with 100× depth and PE150 reads. Libraries were 
validated using Qubit 2.0 and Agilent 2,100, with a minimum library 
concentration of 3 nM before sequencing.

Genetic analysis and ACMG integration

The Ethics Committee of the Ganzhou Maternal and Child Health 
Hospital approved this research. Single-person WES was performed 
by Kangxu Diagnostics (Beijing, China). Given the proband’s complex 
phenotype, WES provided a more comprehensive genetic assessment, 
enhancing the likelihood of discovering relevant variants beyond 
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well-characterized gene sets.Variants screening were based on clinical 
phenotypes of the affected subjects. Variants were filtered using 
biological information prediction tools (Polyphen2 Mutation Taster, 
SIFT and Splice Al), population database (ExAC, 1,000 Genome, 
dbSNP) and disease database (Clinvar., HGMD, OMIM). Thresholds 
for pathogenicity were determined based on ACMG guidelines, 
ensuring a standardized and reliable classification of variants. The 
ACMG guidelines were systematically applied to classify the 
pathogenicity of identified variants, incorporating multiple lines of 
evidence into a weighted framework: PVS1 (Pathogenic Very Strong): 
The novel variant identified in the ASH1L gene (c.2479A > T, 
p.Lys827Ter) results in a premature stop codon, predicted to lead to 
nonsense-mediated decay (NMD) and loss-of-function (LoF). This 
aligns with the established pathogenic mechanism of LoF for ASH1L-
related disorders. PM2_Supporting (Pathogenic Moderate 
Supporting): The variant is absent in population databases, including 
ExAC and gnomAD, indicating it is a rare mutation. Following ACMG 
guidelines, the combined evidence supports classification of the 
ASH1L variant as “likely pathogenic.” The variant was confirmed by 
Sanger sequencing in the proband and family members, further 
validating its authenticity.

Genotype–phenotype correlation

A review was conducted of all ASH1L truncating mutations 
(NM_018489.2) reported in HGMD through November 2024,1 with a 
summary of these mutations and their associated disease descriptions 

1 https://www.hgmd.cf.ac.uk/

provided in Table 1. Truncating variants including frameshift and 
nonsense mutations cause significant protein malformations and 
typically lead to complete loss of function and haploinsufficiency.

Protein structure prediction

The protein sequence of ASH1L consisting of 2,965 amino acid 
residues was downloaded from uniprot web.2 By using the AlphaFold 
web server,3 the wild-type and mutant-type (ASH1L: c.2479A > T) 3D 
structure of the ASH1L protein could be predicted (25). Based on 
pLDDTs prediction scores, we selected the most reliable model for our 
studies, with higher scores indicating greater confidence in the 
structure. The prediction models were edited and visualized through 
PyMOL program.4

Protein–protein interaction network and 
functional annotation analysis

The PPI network associated with ASH1L was constructed using 
STRING.5 The target genes in PPI network downloaded from STRING 
were used for reactome pathway enrichment analysis. The expression 
data was from the GTEX public database6 and was used to analyze the 
expression of ASH1L in different isoform and exon.

2 https://www.uniprot.org/

3 https://golgi.sandbox.google.com/about

4 https://pymol.org/

5 https://string-db.org/

6 https://gtexportal.org/home/gene/ASH1L

TABLE 1 Nonsense mutations described in the ASH1L gene, with their nucleotide position and associated phenotype.

Mutation HGMD access 
ID

Mutation type Disease PMID Inheritance

160C > T CM2316043 Arg54Term
Neurodevelopmental 

psychiatric disorder
36,475,376 Not determined

1348C > T CM2234398 Gln450Term Autism spectrum disorder 35,982,160 De novo

1420A > T CM217232 Lys474Term Neurodevelopmental disorder 33,860,439 De novo

1450C > T CM217231 Arg484Term Neurodevelopmental disorder 33,860,439 De novo

6427G > T CM1617300 Glu2143Term Autism spectrum disorder 27,824,329 De novo

6826C > T CM222749 Arg2276Term
Intellectual disability and 

autism
33,879,512 Not determined

7189C > T CM1513932 Arg2397Term Autism spectrum disorder 26,325,558 De novo

7252C > T CM2059558 Arg2418Term Developmental disorder 33,057,194 De novo

7261C > T CM180259 Arg2421Term
Intellectual disability/

developmental delay
29,276,005 De novo

7603C > T CM2234397 Arg2535Term Autism spectrum disorder 35,982,160 De novo

8071C > T CM2210986 Arg2691Term
Mental retardation, autosomal 

dominant
35,599,849 De novo

8731C > T CM2316046 Arg2911Term
Neurodevelopmental 

psychiatric disorder
36,475,376 De novo

8887C > T CM177684 Arg2963Term Autism spectrum disorder 28,263,302 De novo
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Results

Identification of the novel heterozygous 
ASH1L nonsense variant

The patient’s whole-exome sequencing (WES) uncovered a novel 
heterozygous mutation (c.2479A > T/p.Lys827*) in the ASH1L gene. 
Cosegregation analysis revealed that the variant was passed down 
from the mother (Figure 1A). Sanger sequencing verified the presence 
or absence of this mutation in the family members (Figure  1B). 
Moreover, this variant have not been reported in any public 
population databases, including the 1,000 Genomes Project and 
GnomAD. The ASH1L c.2479A > T mutation is located on 
chromosome 1, specifically in exon 18 of the ASH1L gene. This 
mutation results in the substitution of adenine (A) with thymine (T) 
at nucleotide position 2,479, leading to the introduction of a 
premature stop codon at the protein level (p.Lys827*), which 
truncates the resulting protein (Figure 1C). The variant was conserved 
among species, including humans, rat, mice, cavpo, pig, bovine, and 
horse (Figure 1D). According to the American College of Medical 
Genetics and Genomics (ACMG) guidelines for interpreting sequence 
variants, this mutation was classified as pathogenic, based on two key 
factors: (1) it is a predicted loss-of-function (LOF) variant in a gene 
where LOF is a known cause of disease. (2) No additional point 
mutations or copy number variants (CNVs) in candidate genes, 
including those linked to epilepsy, were detected under models of 
autosomal recessive.

Mutations in ASH1L carried by patient with 
ID affect the molecular structure

In order to analyze the effect of the novel variant NM_018489: 
c.2479A > T/p.Lys827*, on the structural integrity of the ASH1L 
protein, we employed the AlphaFold tool to predict potential changes 
in the protein’s structure. The NM_018489: c.2479A > T variant in 
ASH1L induces a frameshift mutation, resulting in a truncated ASH1L 
protein containing only 827 amino acids out of the 2,695 present in 
the full-length mature protein (Figures 2A,B). ASH1L is a multidomain 
protein composed of a long, unannotated N-terminus, a catalytic SET 
domain and three C-terminal histone binding domains: bromodomain 
(BRD), plant homeodomain (PHD) and bromo-associated homology 
(BAH) (26). The SET domain is responsible for histone 
methyltransferase (HMT) activity (16). The BRD domain of ASH1L 
targets acetylated chromatin to facilitating gene regulation. The BAH 
domain stabilizes ASH1L’s chromatin association and mediates 
interactions with other regulatory proteins (27). A crucial role of PHD 
domain is identifying histone modifications at specific sites and 
facilitating the recruitment of regulatory proteins (28). More and more 
research has reported that ASH1L mutations are associated with 
various neurodevelopmental disorders, including ID, ASD, and 
microcephaly (MCA) (Figure 2C) (19, 29, 30). The truncation caused 
by this variant results in the absence of key functional regions of 
ASH1L. Without these domains, the truncated ASH1L protein is likely 
unable to perform its typical biochemical functions. This alteration is 
expected to affect the stability of ASH1L, disrupt its enzymatic ability, 
and impede its role in chromatin remodeling, ultimately leading to 
disease pathology.

Functional effect of the heterozygous 
ASH1L nonsense variant

To identify gene-level characteristics that could support the 
biological basis for such a cluster, we began by searching the GTEx 
(Genotype-Tissue Expression) (see text footnote 6) and discovered 
that the full-length, canonical transcript is the only isoform expressed 
at an significant level in any adult human tissue (Figure 3A). In further 
support of this conclusion, exon-normalized expression was 
uniformly distributed across all exons in each tissue analyzed from the 
GTEx dataset (Figure 3B). Next, we investigated whether the existence 
of ASH1L have broader functional genomic effects. We  then 
conducted a PPI network analysis using STRING to investigate 
potential genes that interact with ASH1L. As shown in Figure 3C, the 
PPI network consisted of 11 nodes. The top three proteins with higher 
degrees are MORF4L1, MORF4L1, and YY1AP1. The GO enrichment 
analysis (Figure  3D) showed that these genes were enriched in 
regulating methylate histone lysines, chromatin modifying enzymes 
and TGF dependent signaling in response to WNT. This suggests a 
multifaceted role for ASH1L in regulating chromatin structure and 
signal transduction processes.

Discussion

Mild ID is a chronic neurodevelopmental disorder characterized 
by limitations in cognitive functioning and adaptive behaviors, with 
an increasing incidence observed in recent years (31). However, 
current drug treatments for patients with mild intellectual disabilities 
are often unsatisfactory and seriously affect their physical and mental 
health, particularly among youth. The primary interventions for 
managing mild ID include a variety of therapeutic approaches, such 
as educational support and behavioral therapies (32). Despite the 
advancements made in treatment strategies, the development of 
effective therapies for mild ID individuals remain a critical challenge. 
Therefore, improving our understanding of its pathogenesis would 
contribute to the development of new treatment in clinical.

The present study advances our understanding of ASH1L’s 
involvement in neurodevelopmental disorders by identifying a novel 
heterozygous nonsense variant, NM_018489.2: c.2479A > T 
(p.Lys827*), in a patient with mild ID. This discovery is aligned with 
the ASH1L’s critical role in chromatin remodeling and gene 
transcription within neural development pathways (33, 34). Given 
ASH1L’s role as a histone-lysine N-methyltransferase, this mutation 
likely disrupts crucial epigenetic processes necessary for normative 
brain development. This disruption broadens the phenotypic 
spectrum associated with ASH1L mutations and strengthens the link 
between ASH1L loss-of-function variants and a range of 
neurodevelopmental outcomes, including ID and ASD. It has been 
highlighted ASH1L play an important role in epigenetic regulation, 
particularly through its function in catalyzing the methylation of 
histone H3 at lysine 4 (H3K4) (35). H3K4me3 promotes gene 
activation when NURF complexes are present. It maintains chromatin 
in an active “on” state through the plant homeodomain (PHD) 
domain. This allows transcription factors to access DNA within the 
chromatin (36). ASH1L regulates the expression of essential 
developmental genes by antagonizing polycomb- mediated gene 
silencing. This action finally limits the accessibility of target genes.
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FIGURE 1

A novo variant of ASH1L were identified in the patients. (A) The pedigrees and genotypes of the families are presented, with probands having 
undergone whole-exome sequencing (WES). Filled symbols represent affected individuals. (B) Sanger sequencing chromatograms display the ASH1L 
variant identified in the families. (C) Localization of the ASH1L: c.2479A > T variant found in the study. (D) Amino acid conservation of the novel variant 
p.Lys827* in different species.
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As seen in other neurodevelopmental disorders, H3K4 dysregulation 
can lead to varied neurobehavioral and cognitive phenotypes depending 
on the specific mutation and affected neural pathways (37–39). 
Moreover, previous research has established a phenotypic range in 
ASH1L-associated conditions with pathogenic variants linked to severe 
and mild cognitive impairments, language deficits, and neurobehavioral 
disturbances (40, 41). The presence of a novel nonsense variant, 
p.Lys827*, adds to this evidence, emphasizing the variability in clinical 
outcomes associated with ASH1L mutations. Mouse models deficient in 
ASH1L have displayed abnormal cortical neuron differentiation and 
craniofacial abnormalities, supporting a strong genotype–phenotype 
correlation and mirroring human neurodevelopmental features 
associated with ASH1L loss-of-function (42, 43). However, most human 
studies to date have focused on more severe clinical cases of ASH1L-
associated ID. This makes our discovery of a nonsense variant in a mildly 
affected individual particularly relevant for expanding the clinical profile 
of ASH1L-related neurodevelopmental disorders.

Importantly, our findings in nonsense mutation demonstrates WES’s 
value in identifying rare variants and establishes ASH1L as a key candidate 
for further study in mild ID. A limitation of our study was that WES was 
performed only on the proband sample. This single-sample approach 

restricts our ability to fully assess the inheritance pattern and the broader 
genetic context of the mutation. To address this limitation, future research 
should include family-based sequencing to better understand how the 
mutation is inherited and its potential interaction with other genetic 
factors, providing a more comprehensive view of ASH1L-related 
disorders. Future studies could leverage multi-omics approaches to 
explore the transcriptional, proteomic, and epigenetic alterations resulting 
from ASH1L loss-of-function mutations, particularly nonsense variants. 
Transcriptomic analyses could provide insights into specific gene 
expression disruptions linked to ASH1L mutations, while proteomic 
studies might elucidate downstream signaling pathways that are 
dysregulated. However, there are significant methodological differences 
between the construction, tissue sampling, RNA preparation, and analysis 
of the two models. Moreover, the use of patient-derived induced 
pluripotent stem cells (iPSCs) and neuronal differentiation models could 
enable in-depth functional studies, helping to identify molecular targets 
for potential therapeutic interventions. Additionally, to understand how 
ASH1L haploinsufficiency affects cognitive and behavioral phenotypes, it 
would help to do long-term studies on groups of people and use brain 
imaging to see how specific brain areas change in structure and function 
over time.
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FIGURE 2

Potential impact of the c.2479A > T mutation on ASH1L protein structure. The wild-type structure of the ASH1L protein in (A) and the mutant protein 
structure shown in (B) contained a truncated ASH1L protein that contains 827 of the 2,695 amino acids of the mature protein. (C) Schematic diagram 
of ASH1L protein including five functional domains (AWS, SET, Post-SET, Bromo, PHD, BAH) are shown. All truncating mutations are indicated by sticks.
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In conclusion, the identification of the novel ASH1L p.Lys827* 
nonsense variant contributes significant insights to the complex 
genetic landscape of ID and ASH1L-related neurodevelopmental 

disorders. By broadening the clinical spectrum associated with 
ASH1L mutations, this study provides a foundation for genotype–
phenotype correlations and emphasizes the necessity for 

FIGURE 3

Gene expression and pathway analysis analysis of ASH1L. (A) GTEx data demonstrate that only a single, full-length ASHIL isoform 
(ENST00000368346.7) is expressed at an appreciable level in any adult human tissue represented. (B) The exon expression of ASH1L was obstained 
from GTEx data. (C) Bulk tissue gene expression for ASH1L. (D) The PPI network analysis of interacting genes with ASH1L and reactome pathway 
enrichment were downloaded from STRING.
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comprehensive genetic and functional analyses in mild ID cases. 
Future research should continue to investigate the specific 
pathways affected by ASH1L mutations and explore potential 
targeted therapeutic interventions that address the potential 
epigenetic dysregulation in ASH1L-related disorders.
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