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Interpretable prediction of stroke 
prognosis: SHAP for SVM and 
nomogram for logistic regression
Kun Guo 1,2, Bo Zhu 1, Lei Zha 1, Yuan Shao 2, Zhiqin Liu 1, 
Naibing Gu 1* and Kongbo Chen 2*
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Background: Ischemic Stroke (IS) stands as a leading cause of mortality 
and disability globally, with an anticipated increase in IS-related fatalities by 
2030. Despite therapeutic advancements, many patients still lack effective 
interventions, underscoring the need for improved prognostic assessment tools. 
Machine Learning (ML) models have emerged as promising tools for predicting 
stroke prognosis, surpassing traditional methods in accuracy and speed.

Objective: The aim of this study was to develop and validate ML algorithms for 
predicting the 6-month prognosis of patients with Acute Cerebral Infarction, 
using clinical data from two medical centers in China, and to assess the feasibility 
of implementing Explainable ML in clinical settings.

Methods: A retrospective observational cohort study was conducted involving 
398 patients diagnosed with Acute Cerebral Infarction from January 2023 to 
February 2024. The dataset included demographic information, medical histories, 
clinical evaluations, and laboratory results. Six ML models were constructed: 
Logistic Regression, Naive Bayes, Support Vector Machine (SVM), Random Forest, 
XGBoost, and AdaBoost. Model performance was evaluated using the Area Under 
the Receiver Operating Characteristic curve (AUC), sensitivity, specificity, predictive 
values, and F1 score, with five-fold cross-validation to ensure robustness.

Results: The training set, identified key variables associated with stroke prognosis, 
including hypertension, diabetes, and smoking history. The SVM model 
demonstrated exceptional performance, with an AUC of 0.9453 on the training set 
and 0.9213 on the validation set. A Nomogram based on Logistic Regression was 
developed for visualizing prognostic risk, incorporating factors such as the National 
Institutes of Health Stroke Scale (NIHSS) score, Barthel Index (BI), Watanabe 
Drinking Test (KWST) score, Platelet Distribution Width (PDW), and others. Our 
models showed high predictive accuracy and stability across both datasets.

Conclusion: This study presents a robust ML approach for predicting stroke 
prognosis, with the SVM model and Nomogram providing valuable tools 
for clinical decision-making. By incorporating advanced ML techniques, 
we enhance the precision of prognostic assessments and offer a theoretical and 
practical framework for clinical application.
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1 Introduction

Ischemic stroke (IS) is a leading cause of mortality and disability 
worldwide, with a stark increase in global IS-related deaths reaching 
3.29 million in 2023, and projections estimate a rise to 4.9 million by 
2030 (1). The rapid aging and industrialization of societies, along with 
the spread of unhealthy lifestyle and dietary habits, have made IS the 
primary cause of death and disability among adults in China (2, 3). 
Despite advancements in the management, treatment, and prevention 
of IS, many patients still lack effective interventions. The prognosis of 
stroke is a complex process, influenced by a multitude of factors (4, 5). 
Timely determination of prognosis is crucial for physicians to adjust 
intervention strategies, prevent recurrence, ascertain adverse 
outcomes, and provide precision treatment plans (6). However, 
traditional statistical methods have limitations in terms of prognostic 
accuracy. The advent of machine learning has shown immense 
promise in handling large datasets and identifying complex patterns, 
offering a new horizon in the assessment of stroke prognosis.

Machine learning (ML) models have garnered attention for their 
prowess in handling vast datasets and discerning complex patterns (7). 
In the realm of prognosis assessment, these models swiftly identify 
independent predictive factors associated with adverse outcomes (8). 
The precision of these models is enhanced through a rigorous evaluation 
that encompasses a spectrum of metrics, including accuracy, recall, F1 
score, Area Under the Receiver Operating Characteristic curve (AUC), 
and Shapley Additive explanations (SHAP) values. This approach not 
only surpasses traditional predictive methods in terms of speed but also 
demonstrates increasing accuracy in practical clinical applications (9).

For instance, a study optimized Principal Component Analysis 
(PCA) and integrated models such as Random Forest, Decision Trees, 
and K-Nearest Neighbors (KNN) to achieve a remarkable 98.6% 
accuracy rate in stroke prediction (10). Another investigation 
harnessed machine learning to develop a risk stratification model 
based on data from patients with acute ischemic stroke (AIS), which 
exhibited excellent predictive power as assessed by AUC values (11). 
Furthermore, research employing diverse machine learning algorithms 
to predict 90-day outcomes in stroke patients identified the Random 
Forest model as the ultimate predictor, with the highest AUC value.

While the performance of machine learning models is contingent 
upon the quality and completeness of the input data, and challenges 
regarding dataset representativeness and model generalizability 
persist, the prospects for their application in stroke prognosis 
assessment remain promising (12). The aim of this study is to harness 
clinical data to predict the 6-month prognosis of patients with cerebral 
infarction using machine learning algorithms and to evaluate the 
feasibility of explainable machine learning in clinical practice, thereby 
providing theoretical and practical support for its clinical application.

2 Materials and methods

2.1 Study design and participants

This retrospective observational cohort study included 
participants from two medical institutions: Xi’an Central Hospital 
(Center 1) and Tongchuan Mining Bureau Central Hospital (Center 
2). We collected data on 474 patients diagnosed with acute cerebral 

infarction who visited these hospitals between January 2023 and 
February 2024. After applying the inclusion and exclusion criteria, 56 
individuals are excluded in data loss and we ultimately retained 398 
individuals to study. The administration of intravenous tissue 
plasminogen activator (rt-PA) conformed to the early management 
guidelines for acute ischemic stroke (AIS) from 2019 and 2023 (13, 
14). Inclusion and Exclusion Criteria are as follows (Figure 1).

2.1.1 Inclusion criteria
 1 Age greater than 18 years;
 2 Diagnosis of ischemic stroke within 72 h of symptom onset, in 

accordance with World Health Organization (WHO) criteria;
 3 Received ischemic reperfusion therapy upon hospital admission.

2.1.2 Exclusion criteria
 1 Patients diagnosed with transient ischemic attack, arterial 

dissection, amyloid angiopathy, or hemorrhagic stroke, as well 
as those with venous infarction or infarction due to trauma;

 2 Patients with severe comorbidities, including advanced cancer;
 3 Patients with active infections, immune disorders, or 

genetic diseases;
 4 Patients lacking relevant laboratory test data;
 5 Patients without available follow-up data.

2.2 Data acquisition

In this study, a comprehensive assessment was conducted upon 
admission for all participants, including demographic data and 
medical histories with a focus on vascular risk factors and past 
conditions such as hypertension, hyperlipidemia, hyperuricemia, 
hypoalbuminemia, hyperhomocysteinemia, and type 2 diabetes 
mellitus. We  also documented histories of smoking, alcohol 
consumption, atrial fibrillation, coronary heart disease, and 
cerebrovascular stenosis.

Clinical evaluations included the TOAST classification, blood 
pressure, National Institutes of Health Stroke Scale (NIHSS) score, ADL 
score, and the Watanabe Drinking Test. The Watanabe Drinking Test 
(KWST), developed by Japanese scholar Watanabe Toshio, is a method 
for assessing swallowing function by observing a patient’s ability to 
drink a specified amount of water and noting any coughing or choking. 
Laboratory data encompassed a wide range of tests, including complete 
blood count, red cell distribution width (RDW), platelet distribution 
width (PDW), neutrophil (NEU), lymphocyte (LYM), monocyte 
(MON), red blood cell (RBC) count, hemoglobin (Hb), total bilirubin 
(TBIL), albumin (Alb), globulin (Glb), alanine aminotransferase (ALT), 
aspartate aminotransferase (AST), urea, creatinine (Cr), uric acid (UA), 
total cholesterol (TC), triglycerides (TG), apolipoprotein A-I (ApoAI), 
high-density lipoprotein (HDL), low-density lipoprotein (LDL), glucose 
(Glu), and homocysteine (HCY). Electrolyte levels (K, Na, Cl, Ca, P) 
and coagulation functions (PT, INR, APTT, TT, FIB, DD, FDP) were 
assessed. Cardiac function was evaluated with ejection fraction (EF) and 
heart rate (HR), and nutritional status with the Geriatric Nutritional 
Risk Index (GNRI) (15–19).

 SII lymphocytes monocytes neutrophils= α× + β× + γ ×
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These indices, derived from routine blood tests, offer clinicians a 
swift and effective tool for assessing a patient’s inflammatory status. 
When these ratios are elevated, they are frequently indicative of 
heightened inflammatory activity, which can be  instrumental in 
diagnosing and monitoring of a variety of inflammation conditions.

2.3 Prognosis assessment

Prognosis assessment was conducted by two licensed 
neurologists who were trained in the standardized mRS (modified 
Rankin Scale) scoring system and were blinded to the study’s 
objectives. They independently evaluated the patients’ outcomes 
through telephone interviews at the 3-month mark following 

discharge. In instances where there was a disagreement between the 
two neurologists, a third senior neurologist, also blinded to the 
study, was consulted to make the final determination. The prognosis 
was dichotomized into two categories: good prognosis, defined as an 
mRS score of 2 or less, and poor prognosis, indicated by an mRS 
score greater than 2.

2.4 Feature selection

In this study, we evaluated the prognostic predictive accuracy of 
various clinical indicators for stroke patients using Receiver Operating 
Characteristic (ROC) curves and Area Under the Curve (AUC) values. 
We  employed heatmaps to visually represent the correlation 
coefficients among different clinical indicators, thereby elucidating 
their interrelationships. To reduce the risk of multicollinearity, 
we initially excluded features with Spearman correlation coefficients 
greater than 0.9. Following this, we utilized the LASSO (Least Absolute 
Shrinkage and Selection Operator) regression model to further refine 
our variable selection. Cross-validation was employed to determine 
the optimal regularization parameter, Lambda, which is essential for 
balancing model complexity and predictive performance. By using the 
“lassoCV” function, we assessed the mean squared error (MSE) across 
a spectrum of Lambda values to pinpoint the value that minimizes 
MSE, thereby identifying the optimal Lambda. Our five-fold cross-
validation analysis revealed that an optimal log Lambda value of 
approximately-4 provided the best model discrimination and 
predictive accuracy. After applying LASSO and subsequent 
multivariate analysis, we  selected the variables to be  included in 
the model.

FIGURE 1

Workflow of the patient selection.
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2.5 Model development and performance 
comparison

We then proceeded to construct six distinct machine learning 
models to forecast the mRS score at the 6-month post-discharge mark 
for patients suffering from acute ischemic stroke. The models included 
logistic regression, naive Bayes, support vector machine (SVM), 
random forest, XGBoost, and AdaBoost. Each model’s performance 
was rigorously evaluated using a suite of metrics: the area under the 
receiver operating characteristic curve (AUC), sensitivity, specificity, 
predictive values, and the F1 score. To ascertain the robustness and 
generalizability of our models, a five-fold cross-validation approach 
was employed. This technique involves partitioning the data into five 
segments to ensure a comprehensive assessment.

2.6 Interpretability of machine learning 
models

The interpretability of machine learning models is pivotal for 
elucidating the predictions made by ML models and for quantifying 
the influence of individual features on these predictions. To enhance 
the interpretability of our logistic regression model, we employed a 
Nomogram. A Nomogram is an intuitive graphical tool that 
consolidates the effects of multiple predictive variables into a single 
visual representation, making it an excellent choice for improving 
model transparency and interpretability. It visually represents the 
contribution of each variable to the prediction outcome through 
scaled line segments, which significantly boosts the model’s clarity 
and interpretability. Furthermore, we utilized the SHAP (SHapley 
Additive exPlanations) method to interpret the SVM model. The 
SHAP method enables interpretation of model predictions at both 
the individual patient level and the cohort level. By computing the 
SHAP values for each feature across all patients and averaging them, 
we can gauge the significance of each feature in predicting outcomes. 
The SHAP feature importance plot unveils the global impact of 
features, where a higher average absolute SHAP value indicates a 
more substantial contribution to the model’s predictions. The SHAP 
summary plot further delineates the specific influence of each feature 
on model predictions, with each plot point representing the SHAP 
value of a particular feature for an individual patient, and the color 
gradient from red to blue indicating the magnitude of the feature 
values. Additionally, SHAP dependency plots provide insights into 
how changes in specific feature values affect model predictions. These 
analyses were conducted using SHAP version 0.46.0 within a 
Python environment.

2.7 Statistical analysis

Statistical analyses in this study were conducted using Python 
3.12.1 and R 4.4.1. Data normality was assessed with the Kolmogorov–
Smirnov test. For normally distributed continuous variables, we used 
independent samples t-tests; for non-normally distributed data, 
Mann–Whitney U tests were applied. Categorical variables were 
analyzed with chi-square tests or Fisher’s exact tests when appropriate. 
Machine learning models were also constructed for prediction. 
We considered p < 0.05 (two-tailed) as statistically significant.

3 Results

3.1 Baseline data

Center 1 (n = 238) served as the training set for model 
development, while Center 2 (n = 160) functioned as the internal 
validation set. In the training set, univariate analysis identified 
significant differences in several key variables between the good and 
poor prognosis groups: hypertension (p < 0.001), diabetes (p < 0.001), 
smoking history (p < 0.001), alcohol consumption history (p = 0.043), 
platelet distribution width (PDW) (p < 0.001), hyperhomocysteinemia 
(p = 0.002), apolipoprotein A1 (ApoAI) (p = 0.014), activated partial 
thromboplastin time (APTT) (p = 0.006), D-dimer (DD) (p = 0.03), 
Barthel Index (BI) (p < 0.001), and the National Institutes of Health 
Stroke Scale (NIHSS) (p < 0.001). These variables could be linked to 
disease occurrence, progression, or prognosis. Variables such as age, 
gender, hyperlipidemia, hyperuricemia, hypoalbuminemia, white 
blood cell count, red blood cell count, hemoglobin, hematocrit, 
platelet count, albumin, globulin, etc., did not show significant 
differences (p ≥ 0.05), suggesting they may not be the primary drivers 
of prognosis (Table 1).

3.2 Univariate ROC and AUC analysis

In our study, we  assessed the prognostic accuracy of various 
clinical indicators for stroke patients using Receiver Operating 
Characteristic (ROC) curves (Supplementary Figure S1A) and Area 
Under the Curve (AUC) values (Supplementary Figure S1B). The 
analysis revealed several key indicators with high sensitivity, including 
hypertension, diabetes, smoking history, aortic stenosis, blood 
viscosity, neutrophil proportion, platelet distribution width (PDW), 
aspartate aminotransferase, activated partial thromboplastin time 
(APTT), D-dimer, systemic immune-inflammation index (SII), 
platelet-to-lymphocyte ratio (PLR), Barthel Index (BI), and National 
Institutes of Health Stroke Scale (NIHSS).Notably, BI and NIHSS 
exhibited exceptionally high sensitivity values, with AUCs of 0.98 and 
1.00, respectively, highlighting their critical role in assessing post-
stroke functional prognosis. APTT, D-dimer, and SII also showed high 
sensitivity with AUC values of 0.98, 1.00, and 0.75, respectively, likely 
due to their importance in monitoring coagulation and inflammation 
in stroke patients. The AUC for NIHSS was 0.84, indicating strong 
discriminative power. Other indicators such as smoking history, PDW, 
blood viscosity, hyperhomocysteinemia, and diabetes demonstrated 
significant discriminative power with AUC values ranging from 0.68 
to 0.76. In contrast, traditional cardiovascular risk factors and 
demographic indicators like age, gender, and heart rate had lower 
AUC values, suggesting their limited predictive utility in stroke 
prognosis. In conclusion, our AUC analysis identified a set of clinical 
indicators with robust discriminative power for stroke prognosis, 
particularly NIHSS, smoking history, and PDW, which can serve as 
valuable tools in evaluating stroke outcomes.

3.3 Correlation analysis using heatmaps

We employed heatmaps to graphically display the correlation 
coefficients among various clinical indicators, providing a clear visual 
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TABLE 1 Baseline characteristics of patients in training and validation cohorts.

Variable Training cohort
n = 238

p.overall Validation cohort
n = 160

p.overall

mRS ≤ 2
n = 75

mRS>2
n = 163

mRS ≤ 2
n = 53

mRS>2
n = 107

Age 68.6 (11.7) 66.6 (11.4) 0.219 67.7 (12.9) 68.3 (11.7) 0.762

Gender 0.79 (0.41) 0.77 (0.42) 0.814 0.70 (0.46) 0.75 (0.44) 0.518

Hypertension 0.53 (0.50) 0.78 (0.42) <0.001 0.53 (0.50) 0.76 (0.43) 0.004

Hyperlipemia 0.23 (0.42) 0.34 (0.48) 0.058 0.25 (0.43) 0.34 (0.47) 0.228

Hyperuricemia 0.08 (0.27) 0.15 (0.36) 0.112 0.17 (0.38) 0.19 (0.39) 0.791

Hypoproteinemia 0.13 (0.34) 0.12 (0.32) 0.721 0.21 (0.41) 0.12 (0.33) 0.186

Hyperhomocysteinemia 0.43 (0.50) 0.64 (0.48) 0.002 0.55 (0.50) 0.65 (0.48) 0.201

Diabetes 0.21 (0.41) 0.58 (0.49) <0.001 0.30 (0.46) 0.60 (0.49) <0.001

SmokingHistory 0.11 (0.31) 0.65 (0.48) <0.001 0.23 (0.42) 0.63 (0.49) <0.001

DrinkingHistory 0.05 (0.23) 0.13 (0.34) 0.043 0.06 (0.23) 0.14 (0.35) 0.074

Stroke 0.29 (0.46) 0.45 (0.62) 0.027 0.34 (0.48) 0.42 (0.51) 0.328

AF 0.13 (0.34) 0.06 (0.23) 0.075 0.06 (0.23) 0.07 (0.26) 0.658

AS 0.51 (0.50) 0.73 (0.45) 0.001 0.34 (0.48) 0.76 (0.43) <0.001

Hemadostenosis 0.51 (0.50) 0.58 (0.49) 0.277 0.25 (0.43) 0.56 (0.50) <0.001

WBC 7.11 [5.49;8.66] 6.86 [5.68;9.23] 0.659 7.14 [6.05;9.43] 6.71 [5.30;8.09] 0.076

RDW 13.2 [11.5;15.5] 13.5 [12.3;15.6] 0.152 12.9 [11.6;15.5] 14.4 [12.8;16.4] 0.108

PDW 16.9 [16.2;19.3] 19.4 [16.5;22.1] <0.001 18.3 [16.4;19.5] 19.7 [16.6;22.7] 0.006

NEU 5.89 [3.66;6.86] 4.99 [3.69;6.70] 0.494 5.22 [4.25;7.57] 4.74 [3.44;6.12] 0.048

MON 0.47 [0.37;0.64] 0.46 [0.35;0.61] 0.616 0.44 [0.36;0.56] 0.44 [0.35;0.63] 0.9

RBC 4.57 [4.28;4.88] 4.52 [4.22;5.04] 0.6 4.65 [4.31;4.93] 4.55 [4.22;4.85] 0.294

Hb 144 [136;153] 144 [131;154] 0.598 143 [134;153] 143 [130;152] 0.433

HCT 0.44 [0.41;0.47] 0.44 [0.40;2.38] 0.119 0.44 [0.40;0.48] 0.44 [0.40;1.31] 0.808

PLT 184 [140;220] 176 [142;222] 0.935 180 [156;216] 182 [141;213] 0.477

TBIL 18.5 [14.8;23.7] 15.7 [12.4;21.5] 0.039 17.2 [14.0;23.7] 17.4 [13.1;23.0] 0.526

Alb 38.8 [36.2;41.9] 39.1 [36.7;41.8] 0.626 39.6 [35.7;42.7] 39.9 [37.0;42.2] 0.646

Glb 21.5 [19.7;24.4] 22.8 [20.0;27.1] 0.104 22.6 [19.3;27.8] 22.5 [20.1;27.0] 0.793

ALT 17.0 [12.0;21.5] 18.0 [12.0;24.0] 0.613 17.0 [12.0;22.0] 16.0 [11.0;21.5] 0.986

AST 20.0 [17.0;23.5] 19.0 [16.0;25.0] 0.493 18.0 [16.0;23.0] 18.0 [16.0;23.0] 0.863

AST.ALT 1.89 [1.00;2.50] 1.56 [1.09;2.38] 0.601 1.80 [1.06;2.38] 1.69 [1.08;2.16] 0.663

Urea 5.87 [4.52;6.83] 5.27 [4.61;6.62] 0.177 5.31 [5.06;5.85] 5.34 [4.36;6.10] 0.66

Cr 65.0 [56.2;74.9] 66.0 [56.6;76.0] 0.363 68.5 [57.4;78.0] 65.8 [56.3;76.1] 0.41

UA 301 [244;361] 318 [263;384] 0.119 321 [272;393] 315 [270;374] 0.666

TC 3.89 [3.39;4.66] 4.03 [3.50;4.88] 0.267 4.41 (1.14) 4.43 (1.29) 0.908

TG 1.26 [0.90;1.71] 1.36 [0.96;1.90] 0.209 1.15 [0.76;1.50] 1.33 [0.99;1.94] 0.022

ApoAI 1.21 [1.07;1.46] 1.32 [1.12;1.88] 0.014 1.32 [1.10;1.94] 1.32 [1.15;1.67] 0.997

HDL 1.10 [0.97;1.21] 1.04 [0.91;1.27] 0.671 1.16 [0.99;1.32] 1.09 [0.94;1.31] 0.469

LYM 1.56 [1.12;1.89] 1.67 [1.27;2.05] 0.376 1.54 [1.05;2.19] 1.63 [1.25;2.20] 0.351

LDL 2.14 [1.75;2.78] 2.34 [1.82;2.92] 0.152 2.56 [1.85;3.06] 2.42 [1.70;3.20] 0.649

Glu 6.08 [5.16;7.29] 5.71 [5.04;8.09] 0.563 6.74 [5.33;7.86] 5.87 [5.18;7.44] 0.154

HCY 19.5 [14.1;29.5] 18.8 [14.0;25.4] 0.39 20.0 [14.2;31.8] 18.3 [13.2;29.3] 0.463

K 4.08 [3.80;4.30] 4.07 [3.80;4.34] 0.805 3.90 [3.62;4.30] 4.09 [3.80;4.30] 0.305

Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “” 1.
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TABLE 2 Logistic regression analysis results.

Variable OR 95% CI 
lower

95% CI 
upper

Estimate Std. 
Error

z-Value p-Value Significance

Hypertension 2.675 1.104 6.76 0.984 0.459 2.145 0.032 *

Diabetes 3.612 1.475 9.353 1.284 0.468 2.744 0.006 **

SmokingHistory 12.98 4.881 39.738 2.563 0.53 4.84 <0.001 ***

Atherosclerosis 2.461 0.974 6.431 0.901 0.478 1.884 0.06 .

Platelet distribution width 1.262 1.057 1.544 0.232 0.096 2.424 0.015 *

Apolipoprotein AI 1.004 0.999 1.009 0.004 0.002 1.737 0.082 .

KWST 0.411 0.178 0.812 −0.889 0.379 −2.344 0.019 *

Barthel index 0.953 0.917 0.988 −0.048 0.019 −2.533 0.011 *

NIHSS 1.345 1.05 1.76 0.297 0.13 2.289 0.022 *

Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “” 1.

representation of their relationships. Notable findings include an 
exact correlation coefficient of 1 between Smoking History and 
Drinking History, signifying an extremely significant positive 
correlation. A strong negative correlation was identified between 
APTT and DD, with a correlation coefficient of −0.62, indicating that 
as one increases, the other tends to decrease significantly. Conversely, 
a strong positive correlation was observed between FDP and DD, 
with a coefficient of 0.98, suggesting a high degree of direct 
relationship. The correlation coefficient of −0.64 between BI and 
NIHSS underscores the relationship between post-stroke functional 
prognosis and stroke severity. Hyperhomocysteinemia, TBIL, and SII 
exhibited moderate correlations with several variables, with 
correlation coefficients of −0.2, −0.2, and −0.4, respectively, 
indicating a moderate inverse relationship (Supplementary Figure S2).

3.4 Feature selection process

In our study, the feature selection process initially excluded 
features with Spearman correlation coefficients exceeding 0.9 to 
mitigate the risk of multicollinearity. Subsequently, we employed 
the LASSO regression model (Figure  2) to further refine our 

variable selection, and based on this analysis, we  selected nine 
variables of significant importance for predicting the prognosis of 
stroke patients: National Institutes of Health Stroke Scale (NIHSS), 
Barthel Index (BI), Watanabe Drinking Test (KWST), 
Apolipoprotein A1 (ApoAI), Platelet Distribution Width (PDW), 
Aortic Stenosis (AS), Smoking History, Diabetes, and 
Hypertension. Following subsequent multivariate analysis, 
(Table  2) we  further identified several significant factors that 
influence stroke prognosis, including hypertension, diabetes, 
smoking history, Platelet Distribution Width (PDW), Watanabe 
Drinking Test (KWST) score, Barthel Index (BI), and National 
Institutes of Health Stroke Scale (NIHSS). These variables were 
then integrated into a nomogram model, serving as a predictive 
tool for poor prognosis in stroke patients.

3.5 Model development and performance 
comparison

After comparative analysis, we  have compiled a performance 
comparison of six machine learning models (Table 3). This clearly 
presents the performance of each model across various evaluation 

FIGURE 2

The LASSO model, employing a tuning parameter (λ) and utilizing fivefold cross-validation with both minimum and 1se criteria (B), was used to select 
radiomics features during the feature selection process (A).
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metrics, providing a straightforward basis for assessing their strengths 
and weaknesses. These data are valuable for understanding the 
performance of different models in medical prediction tasks and for 
guiding future research and clinical practice.

3.6 Explanation of the nomogram model

The nomogram model is an intuitive tool for evaluating the 
prognostic risk of individual stroke patients, assigning points to 
various factors based on their impact on the likelihood of a poor 
outcome. Key predictors such as hypertension, diabetes, and 
particularly smoking history, are identified as having significant 
influence, with smoking history being the most impactful. An 
increased platelet distribution width (PDW) is associated with a 
higher risk of poor prognosis, and continuous variables like the 
Watanabe Drinking Test (KWST) score, Barthel Index (BI), and 
National Institutes of Health Stroke Scale (NIHSS) also contribute 
positively to the risk assessment, with higher scores indicating a 
greater risk. The total score on the nomogram, ranging from 260 to 
480 points, reflects the overall risk, with higher scores suggesting a 
higher probability of a poor prognosis. For instance, a score of 380 
points might correspond to an approximately 0.8 probability of a poor 
prognosis, as read from the “Pr (+)” line on the nomogram, where Pr 
=1 represents a poor prognosis and Pr =0 a good one (Figure 3).

3.6.1 ROC analysis
In our study, we performed a thorough ROC analysis to assess the 

prognostic accuracy for stroke patients. The training set’s ROC analysis 
yielded an AUC of 0.929, showcasing the model’s superior ability to 
differentiate between patients with favorable and unfavorable outcomes 
(Figure  4A). An AUC approaching 1 indicates exceptional model 
accuracy, which is crucial for informed clinical decision-making. The 
validation set’s AUC was 0.893, slightly lower than the training set, yet 
still indicative of the model’s robust discrimination ability (Figure 4B). 
This suggests that the model retains high predictive accuracy on new, 
unseen data, highlighting its strong generalization potential.

3.6.2 Calibration curve analysis
In our study, we rigorously evaluated the predictive accuracy of 

our model by comparing the predicted probabilities against actual 
outcomes using calibration curve analysis. The calibration curve for 
the training set closely aligned with the diagonal line, signifying a high 
level of concordance between the model’s predictions and the actual 
survival probabilities (Figure 5A). This alignment, coupled with a 
mean absolute error (MAE) of 0.013, underscored the model’s 
exceptional predictive precision. To bolster the model’s reliability, 
we subjected it to 1,000 bootstrap repetitions for refinement, thereby 
further enhancing the stability and accuracy of its predictions. For the 
validation set, the calibration curve closely adhered to the diagonal 
line, indicating that the model preserved predictive consistency when 
applied to new data. The mean absolute error (MAE) for the validation 
set was 0.024, which, while slightly higher than that of the training set, 
remained within an acceptable range (Figure 5B). This suggests that 
the model retains high predictive accuracy on unseen data, a crucial 
measure of its generalization capability. To address any potential bias, 
multiple bootstrap repetitions were employed, further solidifying the 
robustness of the model’s predictive performance. Synthesizing the T
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analysis from both the training and validation sets, our model 
exhibited commendable predictive accuracy and stability across both, 
reinforcing its reliability in practical application.

3.6.3 Decision curve analysis
In this study, we employed Decision Curve Analysis (DCA) to 

evaluate the clinical utility of our machine learning model in predicting 

cerebral infarction. DCA is a method used to assess the clinical benefit 
of predictive models by comparing the net benefit between model 
predictions and actual clinical decisions, thereby helping to determine 
the clinical value of the model at different risk thresholds. The net 
benefit reflects the relative advantage of using the model for decision-
making compared to not using it at a specific risk threshold. In the 
training set, the decision curve analysis revealed that the net benefit of 

FIGURE 3

A nomogram based on logistic regression for clinical decision-making.

FIGURE 4

Receiver Operating Characteristic (ROC) curves for logistic regression in the training set (A) and validation set (B).
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using the model surpassed that of not using it at a risk threshold of 
approximately 0.2, with further increases in net benefit as the threshold 
rose. This indicates that the model provides greater benefits for clinical 
decision-making at higher risk thresholds. Non-parametric statistical 
validation using the Mann–Whitney U test confirmed that the 
decision curve for the training set was significantly different from the 
“no model” approach at risk thresholds above 0.2 (p < 0.05), further 
substantiating the model’s clinical superiority at these thresholds.

In the validation set, the decision curve mirrored the results of the 
training set, demonstrating the model’s robust generalization ability 
and significant deviation from the “no model” strategy at risk 
thresholds above 0.2 (p < 0.05). This consistency indicates that the 
model can provide reliable clinical benefits on independent datasets. 
Combining the analyses of both the training and validation sets, DCA 
further confirmed the model’s clinical utility across various risk 
thresholds, with the net benefit of the model significantly exceeding 

that of the “no model” strategy at thresholds above 0.2 (p < 0.05). These 
results suggest that our machine learning model not only achieves high 
accuracy in predicting cerebral infarction but also provides valuable 
decision support for clinicians in real-world applications, thereby 
improving patient outcomes. In conclusion, the DCA findings 
emphasize the significant clinical value of our machine learning model 
in predicting cerebral infarction. The model’s superior net benefit 
above a specific risk threshold indicates its important potential for 
application in clinical decision-making processes (Figure 6).

3.7 Explanation of SHAP condensed 
waterfall plot

SHAP condensed waterfall plots visually depict feature 
contributions to machine learning predictions. Arrows represent 

FIGURE 5

Calibration curves for logistic regression: training set (A) and validation set (B).

FIGURE 6

The clinical decision curve (DCA) of the logistic regression model for the training set and the validation set.
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each feature’s effect, with longer arrows indicating greater influence. 
Red arrows signify positive impacts on predictions, while blue ones 
denote negative impacts. Starting from the average predicted value, 
arrows illustrate feature-induced changes to the initial forecast. The 
final prediction is the aggregate of these changes. In our SVM 
model analysis, SHAP plots highlighted NIHSS, PDW, and BI as the 
most influential predictors for stroke prognosis, with higher SHAP 
values than other variables. Despite being less impactful, factors 
like hypertension, KWST, diabetes, and smoking history also 
played a role. This emphasizes the significance of monitoring 
NIHSS, PDW, and BI for accurate stroke prognosis assessments 
(Figure 7A).

3.7.1 Interpreting the SHAP scatter plot
The SHAP scatter plot uses arrows to show the effect of each 

feature on model predictions. Longer arrows indicate a greater impact, 
with red arrows pointing to an increase and blue arrows to a decrease 
in predicted probabilities. The plot starts from the average prediction, 
and the arrows show how each feature modifies this baseline. The 
SHAP scatter plot for our SVM model highlights that NIHSS, PDW, 
and BI are the most influential features in predicting stroke prognosis, 
with higher SHAP values than other variables. Despite being less 
impactful, factors like hypertension, KWST, diabetes, and smoking 
history also play a role. This emphasizes the significance of monitoring 
NIHSS, PDW, and BI for accurate stroke prognosis (Figure 7B).

SHAP analysis highlights the key clinical factors influencing 
stroke risk. Diabetes and smoking history show significant SHAP 
value changes, indicating their crucial roles. PDW and KWST also 
have notable impacts. BI’s interaction with smoking history suggests 
a complex link between smoking and functional impairment. These 
insights can inform clinical prevention strategies for stroke 
(Supplementary Figure S3).

3.7.2 Interpreting the SHAP force plots for two 
patients

By juxtaposing the SHAP condensed waterfall plots of these two 
patients, we can visually discern the disparate impacts of various features 
on their respective stroke predictions. This visual comparison elucidates 
how the model incorporates different features to make predictions and 
identifies which features are pivotal in determining the risk of stroke. 
Patient NO.45 has a 51% probability of poor prognosis (Figure 8).

4 Discussion

In model selection, we  prioritized AUC values and model 
interpretability. The SVM and LR models were selected for their high 
AUC stability and generalizability across datasets. These models also 
provided clearer interpretability, vital for deciphering prediction logic 
and aiding clinical decisions. Our LR model, with a nomogram and 
SHAP, offered a visual prognostic tool for acute cerebral infarction, 
achieving AUCs of 0.934 and 0.903 in training and validation sets, 
respectively. The SVM model excelled with AUCs of 0.935 and 0.916, 
underscoring its predictive strength in stroke prognosis. These 
outcomes affirm the models’ practicality in medical prognosis and set 
a basis for further analysis.

4.1 Logistic regression in medical 
applications

Logistic regression is a foundational classification algorithm in the 
machine learning repertoire, renowned for its capacity to map a linear 
combination of input features to a probability space via the Sigmoid 
function, which is instrumental in binary classification predictions 
(20). This model harnesses maximum likelihood estimation and 
gradient descent algorithms to optimize its parameters, effectively 
minimizing the log loss function. In the medical field, logistic 
regression plays a pivotal role in disease diagnosis, risk assessment, 
and prognosis judgment (21). It excels in the domain of disease 
prognosis by screening feature variables related to prognosis, 
constructing predictive models, and translating these models into 
nomograms—a visual tool that intuitively conveys the impact of 
different prognostic factors on outcomes, thereby providing statistical 
support for clinical decision-making.

Logistic regression, as a linear model, performs well in handling 
simple relationships but has significant limitations when dealing with 
complex nonlinear relationships. For example, it assumes a linear 
relationship between features and the target variable, which may 
prevent it from capturing complex interactions among features in 
clinical data (22). Additionally, logistic regression requires high linear 
independence among features; when multicollinearity is present, the 
stability and interpretability of the model can be compromised (23). 
In medical predictive modeling, these limitations of logistic regression 

FIGURE 7

SVM model SHAP value summary plot (A), and SVM model SHAP value scatter plot (B).
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may lead to insufficient predictive performance, especially in high-
dimensional data environments.

Our model, echoing the robustness of other studies, demonstrates 
significant performance. It aligns with Zou’s research, where a logistic 
regression model predicted the prognosis of children post-transthoracic 
balloon pulmonary valvuloplasty with AUC values ranging from 0.723 
to 0.870, indicating a reasonable predictive efficacy (24). In Wang’s 
study, a nomogram constructed using LASSO regression and logistic 
regression algorithms showcased high discriminative ability with AUC 
values up to 0.919 across multiple independent cohorts, demonstrating 
good calibration and clinical utility in predicting patients’ long-term 
postoperative recovery outcomes (25). Zhu’s prospective cohort study 
identified serum secretoneurin levels as an independent predictor of 
poor prognosis after intracerebral hemorrhage, with the developed 
multivariate logistic regression model and nomogram showing high 
accuracy in predicting poor outcomes for ICH patients after 90 days, 
with AUC values of 0.930 and 0.913, respectively (26).

The logistic regression model confirms its significant application 
in predicting cerebral infarction, paralleling the efficacy of models that 
achieved AUC values of 0.778 in training and 0.733 in validation for 
early ischemic neurological deterioration (27). In the challenging 
diagnosis and treatment of moyamoya disease, our model, akin to 
those in Sun’s study, excelled with AUC values as high as 0.891, 0.849, 
and 0.911 across different datasets, showcasing good calibration (28). 
Another study analyzed data from 243 moyamoya disease patients 
who underwent superficial temporal artery to middle cerebral artery 
(STA-MCA) bypass surgery, generating a nomogram through 
multivariate logistic regression analysis to predict good postoperative 
collateral circulation formation (PCF) after STA-MCA bypass surgery, 
with a concordance index (C index) of 0.88, exhibiting excellent 
calibration curves and good clinical application value (29).

Our model’s performance is commendable, offering insights and 
predictions that are on par with these precedents, further solidifying 
the utility of logistic regression in medical prognostication and 
decision support.

4.2 SVM in medical applications

Support Vector Machine (SVM) is a premier algorithm in the 
realm of supervised learning, celebrated for its prowess in identifying 
the most discriminative hyperplane that separates classes within high-
dimensional spaces (30). Its strength in binary classification has 
positioned SVM as a go-to tool in medical applications, where it excels 
in image recognition, disease prediction, and bioinformatics due to its 
precision and robust generalization (31).

In the medical imaging domain, SVM has demonstrated its mettle 
by achieving a 67% accuracy rate in analyzing resting-state functional 
MRI data of patients with Tourette’s syndrome, with particular acumen 
in identifying key neural network traits (32). Its diagnostic utility extends 

to distinguishing Tourette’s Disorder patients from healthy controls 
based on brain functional connectivity and in assessing the impact of 
therapeutic interventions (33). In predictive analytics, SVM has been 
effectively leveraged to forecast the risk of mild cognitive impairment 
progressing to Alzheimer’s disease and to predict the recurrence of 
breast cancer post-treatment. Within bioinformatics, SVM has shown 
high accuracy and specificity in identifying NLRP3 inhibitors, 
underscoring its potential in drug discovery (34). In cerebrovascular 
disease research, SVM has been instrumental in identifying immune-
related genes associated with ischemic stroke, marking a significant 
advancement in early diagnosis and treatment strategies (35).

Our implementation of the SVM model in predicting stroke 
patient outcomes has been nothing short of exemplary. The model 
achieved an impressive 89.5% accuracy on the training set, with an 
AUC of 0.9453, reflecting its strong predictive capabilities. On the test 
set, despite a modest dip to 79.4% accuracy, the AUC remained high 
at 0.9213, indicating the model’s ability to generalize well to new data. 
SHAP value analysis further validated the significance of hypertension 
and smoking history as pivotal risk factors, providing actionable 
insights that can inform clinical decision-making processes.

Of course, there are some limitations of the SVM, SVM is a powerful 
classification model, particularly effective in handling high-dimensional 
data, but its “black-box” nature limits model interpretability, which is a 
critical issue in medical applications. SVM has high requirements for 
data preprocessing, especially with low tolerance for outliers, which can 
compromise model robustness (36). Moreover, the training process of 
SVM is computationally intensive, especially with large-scale datasets, 
limiting its application in real-time prediction scenarios (37). In medical 
prediction, these limitations may affect the clinical applicability of the 
model, especially in scenarios requiring rapid decision-making.

4.3 Stroke risk factors and prognostic 
indicators

Diabetes is a significant independent risk factor for stroke, 
increasing the risk by 2–4 times and adversely affecting patient 
prognosis (38, 39). Proper diabetes management is crucial for 
reducing stroke incidence and improving outcomes. Our study 
supports the importance of active diabetes management in preventing 
ischemic stroke and enhancing patient prognosis.

Hypertension is a critical risk factor for stroke, with higher blood 
pressure levels increasing stroke risk and negatively impacting patient 
prognosis (40, 41). Antihypertensive treatment, especially when 
systolic pressure is over 140 mmHg, is effective in reducing stroke risk, 
likely due to its role in preventing vascular remodeling and 
atherosclerosis (42). Our study confirms that hypertensive stroke 
patients with poorly controlled blood pressure have worse outcomes, 
underscoring the need for active blood pressure management to 
decrease stroke risk.

FIGURE 8

SHAP force plot showing feature contributions.
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Smoking is a significant independent risk factor for stroke, 
increasing the relative risk by 1.88 times compared to non-smokers, 
with risk escalating with smoking quantity (43). Quitting or reducing 
smoking significantly lowers stroke risk, and our study underscores 
the importance of smoking cessation for better stroke prognosis.

Platelet Distribution Width (PDW), a measure of the variability in 
platelet size within the bloodstream, has been implicated in the prognosis 
of cerebral infarction. Studies suggest a potential link between elevated 
PDW levels and adverse outcomes in patients with cerebral infarction. 
Shen’s research indicated that higher PDW levels correlate with poorer 
patient prognoses (44), possibly because increased PDW signifies 
heightened platelet metabolic activity, which could impede vascular 
recanalization and exacerbate post-stroke prognosis. A systematic review 
and meta-analysis further supports the predictive value of PDW and 
Mean Platelet Volume (MPV) in determining clinical outcomes for 
patients with acute ischemic stroke (2). These insights propose that PDW 
could be a valuable biomarker for the prognosis of cerebral infarction. 
Our study aligns with this notion, revealing that increased PDW levels 
are associated with severe stroke outcomes. In conclusion, PDW, as an 
indicator of platelet activity, may be correlated with the prognosis of 
cerebral infarction, although further research is needed to elucidate its 
precise mechanisms and clinical utility.

The National Institutes of Health Stroke Scale (NIHSS) score, 
Barthel Index (BI), and Watanabe Drinking Test (KWST) are essential 
tools for assessing stroke patients’ neurological function, daily living 
capabilities, and swallowing function, respectively. The NIHSS score is 
a key indicator of stroke severity, with higher scores reflecting greater 
neurological deficits and potentially poorer prognoses (45). The BI 
evaluates a patient’s capacity for activities of daily living, with lower 
scores indicating a poorer prognosis, higher mortality risk, and 
increased dependency in stroke patients (46). The KWST predicts 
stroke prognosis, closely with the severity of post-stroke dysphagia and 
well-correlated with both daily living activities and neurological deficits 
(47). Our study finds that patients with higher NIHSS scores, lower BI 
scores, and higher KWST scores are more likely to have worse outcomes. 
These assessments enable physicians to gain a comprehensive 
understanding of the conditions and prognoses of patients with 
cerebral infarction.

5 Limitation

Our study, while providing significant findings, has several 
limitations that warrant acknowledgment. First, the modest sample size 
and incomplete data for certain critical variables, such as C-reactive 
protein (C-RP) and B-type natriuretic peptide (BNP), may affect the 
robustness of our results. Second, despite an adequate model fit, the 
potential for multicollinearity among variables poses a risk of overfitting. 
Third, the study’s concentration on an Asian population restricts the 
generalizability of our findings to other ethnic groups. Additionally, the 
lack of multicenter external validation is a notable limitation, which 
we intend to address by broadening our participant base and integrating 
prospective data collection. Although the LR model demonstrated strong 
performance, the dip in accuracy and recall rate on the test set indicates 
a need for further enhancement in model generalization to new datasets. 
The reduced sensitivity on the test set may also suggest difficulties in 
identifying certain cases in practical applications. Future work will focus 
on refining the model and conducting more extensive studies to address 

these limitations and to strengthen the model’s predictive accuracy and 
clinical applicability.

6 Conclusion

We leveraged SHAP to elucidate the SVM model’s predictions 
and harnessed a nomogram to render the LR model’s outcomes 
more comprehensible. These machine learning methodologies, 
both interpretable and visually accessible, excelled in forecasting 
the prognostic risk factors for patients afflicted with acute cerebral 
infarction. Moreover, they offered substantial clinical utility by 
reinforcing medical decision-making and facilitating the 
communication of prognoses to patients, thereby bridging the gap 
between complex analytics and practical application in healthcare. 
We  will refine these models for easier clinical application and 
validate their generalizability through extensive multicenter 
studies. We  also aim to incorporate more interpretable ML 
techniques to improve model transparency and clinical relevance, 
offering tailored treatment strategies for stroke patients.
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