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Background and purpose: Intracerebral hemorrhage remains a significant 
cause of death and disability worldwide, highlighting the urgent need for 
accurate prognostic assessments to optimize patient management. This study 
aimed to develop a practical nomogram for risk prediction of poor prognosis 
after 90 days in patients with intracerebral hemorrhage.

Methods: A retrospective study was conducted on 638 patients with 
intracerebral hemorrhage in the Second Hospital of Fujian Medical University, 
China, who were divided into a training set (n = 446) and a test set (n = 192) 
by random splitting. Then the data on demographics, clinical symptoms, 
imaging characteristics, and laboratory findings were collected. In this study, 
adverse outcomes were defined as a Modified Rankin Scale (mRS) score of 3–6 
at 90 days post-ICH onset, as assessed during follow-up. Later, least absolute 
shrinkage and selection operator (LASSO) regression and multifactorial logistic 
regression were used to screen the variables and construct a nomogram. Next, 
the evaluation was performed using the Receiver Operating Characteristic 
(ROC) curve, calibration curve, and decision curve analysis. Finally, the external 
validation was completed using the data of 496 patients with intracerebral 
hemorrhage from the Jinjiang Hospital of Traditional Chinese Medicine.

Results: In the training and test sets of intracerebral hemorrhage, the incidence of 
poor prognosis was 60.53 and 61.46%, respectively. Through variable screening, 
this study identified age, Glasgow Coma Scale (GCS), blood glucose, uric 
acid, hemoglobin, and hematoma location as independent predictors of poor 
prognosis in intracerebral hemorrhage. The developed dynamic nomogram 
was easy to use and demonstrated strong predictive performance (training set 
AUC: 0.87; test set AUC: 0.839; external validation set AUC: 0.774), excellent 
calibration, and clinical applicability.

Conclusion: The dynamic nomogram we  developed using five independent 
risk factors serves as a practical tool for real-time risk assessment and can help 
facilitate early intervention and personalized patient management, thereby 
improving clinical outcomes in high-risk patients.
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Introduction

Primary Intracerebral Hemorrhage (ICH) is a subtype of stroke 
involving non-traumatic bleeding within the brain parenchyma and 
accounts for nearly one-third of all stroke incidences in China, 
following ischemic stroke (1, 2). ICH is not only a leading cause of 
death and long-term disability worldwide but also imposes substantial 
economic and social burdens (3). A nationwide stroke survey reveals 
that the burden of stroke in China has continuously risen over recent 
decades. The prognosis for ICH is particularly poor, with a mortality 
rate of about 40% within 1 month after onset, which may increase to 
54% within 1 year, and only a 24% survival rate at 3–5 years. For those 
who survive the initial event, only 12–39% regain functional 
independence for basic daily activities (4). Despite advancements in 
surgical interventions such as craniotomy for hematoma evacuation, 
stereotactic surgery, particularly endoscopic techniques, and 
specialized stroke unit care showing treatment efficacy, the rate of 
poor outcomes remains high (5–7). Over recent decades, researchers 
have increasingly focused on identifying prognostic biomarkers to 
accurately identify individuals at high risk of poor outcomes (8–10). 
By prioritizing these individuals for admission to intensive care units 
and implementing early personalized management, the prognosis of 
ICH patients can be significantly improved.

Previous studies have shown that the prognosis of ICH is 
influenced by a variety of factors, including demographic 
characteristics, hematoma volume, hemorrhage site, and inflammatory 
response (11). Despite the proliferation of predictive models for the 
prognosis of intracerebral hemorrhage, these models often exhibit 
significant limitations. For instance, while models utilizing 
radiological features from NCCT imaging of hematoma and 
perihematomal tissue demonstrate good predictive accuracy, their 
complexity restricts practical clinical application (12). Furthermore, 
many models based on readily available clinical indicators frequently 
lack external validation, which limits their generalizability and broad 
applicability (13–15). Additionally, some studies have developed 
predictive models but have not integrated them into practical 
platforms, thereby impacting their clinical utility (16, 17).

In light of this, our study aimed to integrate various clinical 
characteristics to accurately predict ICH patients’ short-term 
prognosis and successfully developed a streamlined and efficient 
predictive platform. This platform not only enhances the usability of 
the predictive model but also, through external validation, has 
demonstrated its effectiveness and reliability across diverse clinical 
settings, significantly enhancing its clinical utility.

Materials and methods

Study population

This study is a retrospective analysis of one center of patients 
with intracerebral hemorrhage treated in the Department of 
Neurosurgery at the Second Affiliated Hospital of Fujian Medical 

University from January 2015 to April 2022. The study defined 
training and validation cohorts using specific inclusion and exclusion 
criteria. The inclusion criteria included: (1) age over 18 years; (2) 
hemorrhagic stroke confirmed by computed tomography (CT); (3) 
admission within 72 h after symptom onset; (4) first acute ICH. The 
exclusion criteria included: (1) traumatic intracerebral hemorrhage; 
(2) Secondary cerebral hemorrhage (e.g., post-infarction cerebral 
hemorrhage, vascular malformation, aneurysm, tumor stroke); (3) 
significant systemic diseases (such as cardiac, liver, renal 
insufficiency, or hematological diseases); (4) incomplete clinical or 
imaging data. To validate these findings, an external validation 
cohort at the Jinjiang Hospital of Traditional Chinese Medicine was 
established using the same exclusion criteria, covering patients with 
intracerebral hemorrhage from January 2015 to July 2021. Figure 1 
shows the results of the participant screening. The study was 
approved by the Second Affiliated Hospital of Fujian Medical 
University (2022–35) and the Jinjiang Hospital of Traditional 
Chinese Medicine (2022–32), and informed consent was waived in 
this study.

Data collection

Utilizing the hospital’s electronic information system, 
we gathered essential data on patients admitted with intracerebral 
hemorrhage, including demographic variables such as age and 
gender, medical history, laboratory results, radiographic data, and 
treatment details. Baseline characteristics related to medical history 
included body temperature, systolic and diastolic blood pressure, 
conditions such as hypertension, diabetes, smoking, drinking 
history, and prior anticoagulant, or antiplatelet therapy. The clinical 
neurological status of patients was assessed using the Glasgow 
Coma Scale (GCS). As for intubated and/or sedated patients, 
pre-intubation and post-resuscitation GCS scores were documented. 
Recorded imaging features of ICH included the presence of 
intraventricular hemorrhage (IVH), specific location and volume of 
the hematoma, and extent of midline shift. Hematoma locations 
were categorized into superficial (originating at the cortex-subcortex 
junction) and deep (e.g., basal ganglia, thalamus, cerebellum, or 
brainstem) (18). Hematoma volume was calculated using the Tada 
formula (19). Laboratory tests included counts of white blood cells, 
neutrophils, monocytes, lymphocytes, platelets, hemoglobin, 
albumin, uric acid, glucose, activated partial thromboplastin time 
(APTT), international normalized ratio (INR), prothrombin time 
(PT), fibrinogen, and thrombin time. Inflammatory markers were 
used to compute ratios such as platelet-to-lymphocyte ratio (PLR), 
neutrophil-to-lymphocyte ratio (NLR), and lymphocyte-to-
monocyte ratio (LMR) (20). Early hematoma growth (uHG) was 
defined as the initial ICH volume (ml) divided by the time from 
onset to baseline CT scan (hours) (21). Interventional treatments 
included surgery and tracheotomy. Previous studies suggest these 
indicators may correlate with survival outcomes in patients with 
intracerebral hemorrhage.
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Outcome evaluation

Functional outcomes were assessed in all patients by outpatient 
and telephone follow-up for modified Rankin Scale (mRS) scores 
90 days after the ICH episode. Each patient provided at least two 
contact numbers. For those unreachable, attempts were made to 
contact them once a week over 3 weeks. The follow-up team received 
specialized training to ensure the consistency of the data. The primary 
clinical outcome was assessed 90 days post-ICH onset, focusing on 
adverse outcomes defined as death or severe disability, represented by 
a Modified Rankin Scale (mRS) score of 3–6 (22, 23).

Statistical analysis

Categorical variables were expressed as percentages, while 
continuous variables were described using means and standard 
deviations (SD). Differences between groups were determined using 
the t-test, Mann–Whitney U test, chi-square test, and Fisher’s exact 
test (24). The dataset was randomly divided into a training set and a 
test set in a ratio of 7:3. In the training set, feature selection for 33 
variables was conducted using the least absolute shrinkage and 
selection operator (LASSO), and 22 features corresponding to one 
standard error of the optimal λ value were included in a multivariable 
regression analysis to identify independent prognostic factors (25). 
The Variance Inflation Factor (VIF) was used to assess 
multicollinearity. For clinical applicability, the identified independent 
risk factors were used to construct an accessible dynamic web-based 
nomogram. Then the reliability of the nomogram was evaluated using 
the Receiver Operating Characteristic (ROC) curve and its Area 
Under the Curve (AUC). Later, the model calibration was performed 

using the Hosmer-Lemeshow goodness-of-fit test and calibration plots 
from 1,000 bootstrap resamples. Furthermore, the model’s clinical 
utility was assessed using Decision Curve Analysis (DCA). ROC AUC, 
Hosmer-Lemeshow test, calibration curves, and clinical decision 
curves were applied in an internal test set and validated in an external 
validation cohort to comprehensively evaluate the nomogram’s 
performance. All statistical analyses were performed using R version 
4.3 and Python version 3.12.0.

Results

Baseline characteristics

In this study, 638 patients were included and the dataset was 
randomly divided into a training set and a test set. The training set 
comprised 446 patients for model training, while the test set included 
192 patients for model validation. The average age of the patients was 
58.50 years, with males constituting 64.58% (412 patients) and females 
35.42% (226 patients). The incidence of adverse outcomes within 
90 days was 60.81% overall, with 60.53% in the training set and 
61.46% in the test set. Table  1 shows the detailed baseline 
characteristics of patients’ GCS scores, vital signs, and laboratory 
indicators. Furthermore, this study divided the baseline characteristics 
of the poor prognosis population by sex (Supplementary Table S1). 
Among patients with poor prognosis for acute intracerebral 
hemorrhage, men typically had higher diastolic blood pressure, uric 
acid levels, hemoglobin concentration, APTT values, and higher risk 
of smoking and alcohol consumption than women. In addition, men 
have lower levels of inflammation, as evidenced by lower LMR 
and PLR.

FIGURE 1

Participant inclusion flowchart.
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TABLE 1 Table of baseline information on participants’ training and test sets.

Variable names Train Test

Favorable 
outcome 

group

Unfavorable 
outcome 

group

P Favorable 
outcome 

group

Unfavorable 
outcome 

group

P Total P

N = 176 N = 270 N = 74 N = 118

Age (years) 58.43 ± 10.39 58.29 ± 10.89 0.892 58.84 ± 10.70 58.86 ± 10.07 0.986 0.574

GCS 12.48 ± 2.27 8.75 ± 2.62 <0.001 12.55 ± 2.10 9.27 ± 2.62 <0.001 0.233

Temperature (°C) 36.701 ± 0.47 36.99 ± 0.71 <0.001 36.82 ± 0.54 36.86 ± 0.62 0.664 0.584

Systolic blood pressure (mmHg) 152.71 ± 17.33 166.20 ± 20.66 <0.001 155.37 ± 18.64 164.01 ± 20.39 0.004 0.909

Diastolic blood pressure (mmHg) 88.02 ± 12.83 92.22 ± 15.28 0.003 87.12 ± 13.03 91.26 ± 15.58 0.058 0.479

Glucose (mmol/L) 7.39 ± 2.33 8.62 ± 3.19 <0.001 7.46 ± 2.23 8.83 ± 3.93 0.007 0.528

Uric acid (μmol/L) 289.89 ± 100.37 309.46 ± 133.28 0.097 286.45 ± 114.42 321.98 ± 140.63 0.069 0.544

Albumin (g/L) 41.22 ± 3.95 41.27 ± 4.26 0.898 40.37 ± 4.24 40.72 ± 4.32 0.582 0.064

Leucocyte 8.67 ± 2.89 10.33 ± 4.18 <0.001 9.01 ± 3.52 10.72 ± 4.49 0.006 0.251

Hemoglobin (g/L) 154.06 ± 20.16 152.14 ± 24.80 0.393 147.99 ± 19.23 152.99 ± 22.04 0.110 0.345

NLR 8.54 ± 6.05 10.46 ± 8.64 0.011 8.32 ± 7.21 11.41 ± 8.67 0.011 0.448

LMR 3.41 ± 2.12 3.34 ± 3.06 0.793 3.59 ± 2.82 3.10 ± 3.30 0.295 0.730

PLR 195.57 ± 97.64 189.69 ± 117.80 0.582 178.60 ± 89.27 189.76 ± 117.60 0.485 0.488

PT 11.53 ± 1.82 11.61 ± 2.31 0.673 11.59 ± 1.12 12.31 ± 4.54 0.183 0.050

INR 1.02 ± 0.17 1.03 ± 0.22 0.575 1.02 ± 0.10 1.09 ± 0.40 0.150 0.071

APTT 24.96 ± 5.37 25.36 ± 5.25 0.435 25.59 ± 4.78 25.89 ± 6.44 0.730 0.225

D-dimer 2.01 ± 10.31 1.58 ± 3.62 0.534 2.04 ± 8.26 2.17 ± 11.87 0.931 0.051

TT 17.23 ± 2.46 16.91 ± 2.54 0.186 16.67 ± 2.69 16.71 ± 2.88 0.928 0.132

FIB 2.867 ± 0.70 2.91 ± 0.96 0.578 3.09 ± 1.34 3.03 ± 0.84 0.694 0.604

Bleeding volume (mL) 12.17 ± 11.71 34.65 ± 26.37 <0.001 11.27 ± 8.5 30.36 ± 23.91 <0.001 0.172

uHG 3.61 ± 3.73 10.94 ± 9.11 <0.001 3.17 ± 3.03 9.94 ± 8.42 <0.001 0.304

Sex (%) 111 (63.07) 182 (67.41) 0.400 38 (51.35) 81 (68.64) 0.024 0.418

Male 111 (63.07) 182 (67.41) 38 (51.35) 81 (68.64)

Female 65 (36.93) 88 (32.59) 36 (48.65) 37 (31.36)

Hypertension (%) 64 (36.36) 92 (34.07) 0.694 28 (37.84) 26 (22.03) 0.027 0.110

No 64 (36.36) 92 (34.07) 28 (37.84) 26 (22.03)

Yes 112 (63.64) 178 (65.93) 46 (62.16) 92 (77.97)

Diabetes (%) 156 (88.64) 220 (81.48) 0.058 68 (91.89) 92 (77.97) 0.020 0.850

No 156 (88.64) 220 (81.48) 68 (91.89) 92 (77.97)

Yes 20 (11.36) 50 (18.52) 6 (8.11) 26 (22.03)

Smoking (%) 160 (90.91) 235 (87.04) 0.270 69 (93.24) 104 (88.14) 0.365 0.665

No 160 (90.91) 235 (87.04) 69 (93.24) 104 (88.14)

Yes 16 (9.09) 35 (12.96) 5 (6.76) 14 (11.86)

Drinking (%) 166 (94.32) 245 (90.74) 0.233 66 (89.19) 104 (88.14) 1.000 0.188

No 166 (94.32) 245 (90.74) 66 (89.19) 104 (88.14)

Yes 10 (5.68) 25 (9.26) 8 (10.81) 14 (11.86)

History of anticoagulant use (%) 168 (95.45) 250 (92.59) 0.309 72 (97.30) 114 (96.61) 1.000 0.152

No 168 (95.45) 250 (92.59) 72 (97.30) 114 (96.61)

Yes 8 (4.55) 20 (7.41) 2 (2.70) 4 (3.39)

Tracheotomy (%) 165 (93.75) 195 (72.22) <0.001 69 (93.24) 93 (78.81) 0.013 0.324

No 165 (93.75) 195 (72.22) 69 (93.24) 93 (78.81)

(Continued)
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LASSO regression analysis combined with 
multifactor logistic regression analysis to 
screen predictor variables

This study identified outcome-related features through combining 
LASSO regression and multivariable logistic regression analysis. LASSO 
regression, which reduces model overfitting by shrinking coefficients, 
was utilized to select features, as depicted in Figures 2A,B. Based on the 
23 non-zero coefficients corresponding to lambda.min 
(Supplementary Table S2), we  identified predictors including age, 
hypertension, smoking, drinking, Glasgow Coma Scale (GCS), body 
temperature, systolic blood pressure, glucose, uric acid, albumin, white 
blood cells, hemoglobin, lymphocyte-to-monocyte ratio (LMR), 
platelet-to-lymphocyte ratio (PLR), activated partial thromboplastin 
time (APTT), thrombin time (TT), D-dimer, tracheotomy, hematoma 
location, hematoma volume, midline shift, ultra early hematoma growth 
(uHG), and surgical treatment. To minimize the impact of confounding 
variables, these 23 predictors were included in the multivariable logistic 
regression analysis. Ultimately, five key variables, such as GCS, glucose, 
uric acid, hemoglobin, and hematoma location, were statistically 
significant in poor prognosis (Table 2), and there was no considerable 
covariance among the variables (VIF < 2) (Supplementary Table S3). 
Because of this, GCS, glucose, uric acid, hemoglobin, and hematoma 
locations were included in this study for modeling.

Construction of predictive models

To visualize the prediction results, a nomogram was developed after 
performing a logistic regression analysis that predicts the individualized 
risk of an adverse outcome within 90 days after intracerebral 
hemorrhage. The user simply enters the patient information on the left 

side of the interface, and the risk of adverse prognosis within 90 days for 
that patient is displayed on the right side (Figure 3). For example, the 
first patient in the training set, a patient with a deep hematoma with a 
GCS score of 8, a glucose level of 13 mmol/L, a uric acid level of 
424 μmol/L, and a hemoglobin of 103 g/L, had a predicted probability 
of adverse prognosis of 85.2% (95% CI: 60.2, 95.6%).

Evaluation and internal testing of 
nomogram performance

The performance of the nomogram for poor prognosis following 
intracerebral hemorrhage was evaluated using ROC curves, calibration 
curves, and clinical decision curves. In the ROC curve analysis 
(Figures 4A,B), the AUC for the training set and the validation set was 
0.87 and 0.839, respectively, demonstrating the model’s good 
discriminatory ability. The calibration curve assessed the consistency 
between predicted probabilities and actual outcomes, with the gray 
solid line representing the ideal model’s perfect prediction and the 
dashed line showing the actual performance. The results (Figure 5) 
indicated that the dashed lines for both the training and validation sets 
almost perfectly matched the gray solid line. Hosmer-Lemeshow test 
results with p-values greater than 0.05 (training set p = 0.4675, 
validation set p = 0.6322) confirmed the model’s accurate calibration. 
In addition, the model’s Brier scores are all below 0.25, indicating that 
it performs well in the prediction process and has high prediction 
accuracy. In this study, the clinical validity of the model was assessed 
in the training and validation sets using DCA. The results show that the 
model has good clinical applicability in predicting the risk of poor 
prognosis in patients with cerebral hemorrhage. In particular, in the 
test set, the model was able to provide significant net clinical benefit 
over a wide and practical range of decision thresholds (Figure 6).

TABLE 1 (Continued)

Variable names Train Test

Favorable 
outcome 

group

Unfavorable 
outcome 

group

P Favorable 
outcome 

group

Unfavorable 
outcome 

group

P Total P

N = 176 N = 270 N = 74 N = 118

Yes 11 (6.25) 75 (27.78) 5 (6.76) 25 (21.19)

Lateral ventricular hemorrhage (%) 141 (80.11) 189 (70.00) 0.023 66 (89.19) 81 (68.64) 0.002 0.558

No 141 (80.11) 189 (70.00) 66 (89.19) 81 (68.64)

Yes 35 (19.89) 81 (30.00) 8 (10.81) 37 (31.36)

Location of hematoma (%) 57 (32.39) 36 (13.33) <0.001 25 (33.78) 18 (15.25) 0.005 0.740

Deep-seated hematoma 57 (32.39) 36 (13.33) 25 (33.78) 18 (15.25)

Superficial hematoma 119 (67.61) 234 (86.67) 49 (66.22) 100 (84.75)

Centerline shift (%) 172 (97.73) 182 (67.41) <0.001 72 (97.30) 82 (69.49) <0.001 0.894

No 172 (97.73) 182 (67.41) 72 (97.30) 82 (69.49)

Yes 4 (2.27) 88 (32.59) 2 (2.70) 36 (30.51)

Surgeries (%) <0.001 <0.001 0.062

No 133 (75.57) 85 (31.48) 59 (79.73) 51 (43.22)

Yes 43 (24.43) 185 (68.52) 15 (20.27) 67 (56.78)

GCS, Glasgow Coma Scale; NLR, neutrophil-to-lymphocyte ratio; LMR, lymphocyte-to-monocyte ratio; PLR, platelet-to-lymphocyte ratio; PT, prothrombin time; INR, international 
normalized ratio; APTT, activated partial thromboplastin time; TT, thrombin time; FIB, fibrinogen; uHG, ultraearly hematoma growth.
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External validation of the model

To assess the model’s generalizability, an external validation was 
conducted using the clinical data of 496 participants at another center 
(Figure 7). The results showed that the ROC curve area under the 
curve (AUC) for the post-hemorrhagic adverse outcome prediction 
model was 0.774, demonstrating good discriminative ability 
(Figure 7A). Additionally, the calibration curve for external validation 
showed high concordance between predicted and observed values, 
with a Hosmer-Lemeshow test p-value of 0.3567 (p > 0.05), indicating 
accurate model calibration (Figure 7B). The clinical decision curves 
(DCA) used for external validation indicated that the model could 
effectively predict the net benefit of adverse outcome risks across a 
decision threshold probability range of 10–75% (Figure 7C).

Discussion

In this study, a user-friendly web-based nomogram was developed 
to predict the probability of poor outcomes within 90 days for patients 
with intracranial hemorrhage in neurosurgical wards. The baseline 
demographic, radiological, and laboratory findings at admission were 
collected. Then using LASSO and multivariate logistic regression 
analyses, GCS, glucose, uric acid, hemoglobin, and hematoma location 
were identified as independent risk factors and the nomogram was 
constructed1. The nomogram demonstrated excellent discrimination, 
calibration, and clinical utility, performing robustly in both the test set 
and external validation cohorts. Utilizing this nomogram, clinicians 

1 https://stroke2024.shinyapps.io/DynNomapp/

can quickly assess patients’ risks of adverse outcomes, thereby 
facilitating targeted management decisions. Thus, this tool helps those 
at high risk for poor prognosis to benefit from more intensive 
monitoring, preventive interventions, and early treatment.

In 2019, approximately 12.2 million new cases of stroke were 
recorded globally, along with 6.55 million stroke-related deaths, and 
about 101 million people suffered from post-stroke sequelae (26). 
Stroke is primarily categorized into ischemic and hemorrhagic types. 
Due to the relatively high prevalence of ischemic stroke, ischemic 
stroke is currently being studied in greater depth than hemorrhagic 
stroke, particularly regarding prognostic factors and patient 
management (25, 26). Numerous studies have identified several 
factors associated with poor prognosis. In a retrospective study 
involving 422 patients with ischemic stroke, researchers developed a 
predictive nomogram based on age, admission NIHSS score, history 
of COPD, and white blood cell count (WBC). This model 
demonstrated high predictive accuracy across training, testing, and 
validation sets (Training set AUC: 0.958 [95% CI: 0.918–0.997]; 
Testing set AUC: 0.962 [95% CI: 0.898, 1.000]) (16). Furthermore, Jin 
et  al. (27) revealed in a large study that the LASSO regression-
developed nomogram effectively predicts in-hospital adverse 
outcomes in ischemic stroke patients (C-index: 0.809), performing 
well in measures such as Integrated Discrimination Improvement 
(IDI), Net Reclassification Index (NRI), calibration curves, and 
DCA. Research on risk factors for patients with hemorrhagic stroke 
remains relatively scarce. However, given the severe clinical 
consequences that hemorrhagic strokes can entail, such research 
cannot be overlooked. The methodology that has been successful in 
ischemic stroke studies has now spurred interest in the scientific 
community to apply similar models to study hemorrhagic stroke. In a 
2023 study involving 269 patients with intracerebral hemorrhage, 
researchers analyzed risk factors for prognosis 90 days post-
hemorrhage. The results identified the GCS, the National Institutes of 

FIGURE 2

Initial screening process of LASSO regression analysis (A) cross-validation curve: the red and blue vertical dashed lines indicate the Log(λ) 
corresponding to one standard error difference from the minimum error (lambda.min), respectively. (B) LASSO path diagram: the regression 
coefficients versus Log(λ) as the coefficient scores gradually decrease.
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Health Stroke Scale (NIHSS), and the volume of the primary 
hematoma as independent risk factors (11). Although the predictive 
model achieved an area under the curve (AUC) of 87.8% (95% CI: 

83.4, 92.2%), the study neither assessed the model’s calibration and 
clinical applicability nor developed a clinically applicable nomogram. 
Finally, the researchers acknowledged that due to the limited sample 
size, the study faced some limitations in the generalizability and 
reliability of its results.

This study identified five independent risk factors associated with 
poor prognosis in patients with intracerebral hemorrhage, including 
GCS, glucose, uric acid, hemoglobin, and hematoma location. 
Identifying these factors optimizes the assessment process and 
improves the utility and convenience of clinical applications, especially 
in creating web-based nomograms. Further, this study explored the 
possible mechanisms of association of these factors with poor 
prognosis. The present study reiterates that the GCS score is an 
independent risk factor for poor prognosis in patients with 
intracerebral hemorrhage. This is consistent with previous results (9). 
Patients with intracerebral hemorrhage with low GCS scores usually 
face more severe prognostic challenges due to increased intracranial 
pressure leading to neuronal injury, increased metabolic and 
inflammatory responses, and systemic complications. In the 
multifactorial logistic regression of this study, the OR for blood 
glucose was 1.12, indicating that the risk of poor prognosis in patients 
with primary cerebral hemorrhage increased as the blood glucose 
values increased. This hyperglycemia is part of the body’s response to 
acute stress and is prevalent in patients with intracerebral hemorrhage. 
Kongwad et  al. (28) reported that hyperglycemia was directly 
associated with the prognosis of intracerebral hemorrhage. In 
hyperglycemia, plasma kallikrein (PK) exacerbates hematoma 
expansion after intracerebral hemorrhage by enhancing collagen 
binding and inhibiting collagen-induced platelet aggregation, further 
affecting patient prognosis (29). In addition, an animal experiment 
using a proteomic approach revealed the role of hyperglycemia in 
intracerebral hemorrhage and found a significant increase in neuronal 
apoptosis around hematomas in hyperglycemic rats. This may 
be  related to the hyperglycemia-induced enhancement of oxygen 
radical synthesis and downregulation of superoxide dismutase activity, 
which promotes oxidative stress, a response that is extremely 
detrimental to neuronal survival (30). Similar to the oxidative stress 
induced by blood glucose, uric acid may also cause nerve damage 
through this mechanism. Uric acid has both antioxidant and 

TABLE 2 Multifactorial logistic regression analysis of poor prognosis in 
intracerebral hemorrhage.

Variable name OR 95% CI P-value

(Intercept) 0.00 −32.94,9.55 0.29

Hypertension 0.76 −0.86,0.31 0.36

Smoking 1.72 −0.30,1.42 0.21

Drinking 2.05 −0.33,1.81 0.19

GCS 0.68 −0.53,-0.25 0.00

Temperature 1.51 −0.13,0.97 0.14

Systolic blood pressure 1.02 0.00,0.03 0.07

Glucose 1.12 0.02,0.22 0.02

Uric acid 1.00 0.00,0.00 0.04

Albumin 0.94 −0.14,0.01 0.09

Leucocyte 1.10 0.00,0.19 0.06

Hemoglobin 0.98 −0.04,-0.01 0.01

LMR 1.06 −0.03,0.18 0.21

PLR 1.00 0.00,0.00 0.17

APTT 1.04 −0.02,0.11 0.19

TT 0.93 −0.20,0.06 0.30

Tracheotomy 1.98 −0.18,1.61 0.13

Deep-seated hematoma 3.54 0.55,2.02 0.00

Centerline shift 1.64 −0.70,1.88 0.44

Bleeding volume 1.00 −0.04,0.05 0.97

uHG 1.13 0.00,0.26 0.06

D-dimer 1.01 −0.03,0.04 0.49

Surgeries 1.15 −0.56,0.82 0.70

GCS, Glasgow Coma Scale; LMR, lymphocyte-to-monocyte ratio; PLR, platelet-to-lymphocyte 
ratio; APTT, activated partial thromboplastin time; TT, thrombin time; uHG, ultraearly 
hematoma growth. P values bolded indicate that the variable is statistically significant.

FIGURE 3

Dynamic nomogram of poor prognosis for intracerebral hemorrhage.
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FIGURE 5

Calibration curves for the training and test sets. (A) Calibration curves for the training set. (B) Calibration curve of the test set.

pro-oxidant properties. At normal levels, uric acid acts as an 
antioxidant, trapping free radicals and protecting cells from oxidative 
damage. However, in hyperuricemia, uric acid may upset the redox 
balance of the body through multiple pathways (31). Excess free 
radicals from oxidative stress can attack unsaturated fatty acids in cell 
membranes and trigger the lipid peroxidation reaction chain to 
produce more free radicals and toxic peroxidation products such as 
malondialdehyde (MDA) (32). These products can further damage 
cell membranes and affect the integrity and function of neuronal cells 

(33). Also, the inflammatory storm caused by high uric acid levels 
affects intracerebral hemorrhage prognosis. Inflammation is a 
common pathological process after ICH that can lead to increased 
brain tissue damage. Uric acid can activate immune cells, such as 
monocytes and macrophages, to release inflammatory mediators and 
promote the inflammatory process, thus affecting the prognosis of 
ICH (8, 32). A German cohort study showed that anemia appears to 
be  a significant predictor of poor functional outcome (OR: 3.0; 
p < 0.01) (34). This may be  related to decreased cerebral oxygen 

FIGURE 4

Receiver operating characteristic (ROC) curves for the training and test cohorts. (A) ROC curves for the training set. (B) ROC curves for the test set.
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delivery. Anemia decreases hemoglobin concentration, which reduces 
oxygen delivery to brain tissue. This hypoxic state increases brain cell 
damage, especially around the hemorrhagic area exacerbating hypoxic 
brain damage, which supports our study (35). The location of the 
hematoma is critical to the neurosurgeon’s treatment decisions. Deep 
hematomas located in the thalamus, basal ganglia, and brainstem can 
affect basic life functions such as respiration, heart rate regulation, and 
state of consciousness. Damage to these critical areas can severely 
impact life support systems, leading to serious clinical consequences 
(36). In addition, due to the unique location of deep hematomas 
surrounded by vital tissues, surgical intervention to remove the 
hematoma or decompress it is risky and technically demanding (37, 
38). As a result, this complexity often limits the feasibility of rapid 
surgical intervention and complicates the management of 
such hematomas.

A new prognostic prediction model for ICH was developed to 
address the limitations of existing models in terms of complexity and 
usability. First, the model simplified data input requirements by using 

only information that has been commonly used and readily available 
in the clinic. Second, the model was validated internally and 
externally with a large number of data pairs to ensure its accuracy 
and broad applicability. Finally, to improve the ease of clinical 
operation, a user-friendly web platform that allowed medical staff to 
easily enter data and obtain immediate prognostic information was 
also developed. However, this study has some shortcomings. 
Although we tried our best to collect all the variables related to the 
prognosis of intracerebral hemorrhage, certain key variables, such as 
NIHSS scores, were not evaluated in routine diagnostic practices, 
which led to a certain selection bias. In addition, this study involved 
only two centers, and in the future, we hope to further improve the 
generalization ability of the model through future studies in more 
centers. Finally, this study only included patients with cerebral 
hemorrhage in neurosurgery and did not cover patients with cerebral 
hemorrhage in other departments, which may have a selection bias. 
In the future, we  will expand the sample source to enhance the 
reliability of the study results.

FIGURE 6

Decision curve analysis (DCA) of the training and test sets. (A) DCA of the training set. (B) DCA of the test set.

FIGURE 7

Aspects of model performance in external validation. (A) ROC for external validation sets. (B) Calibration for external validation sets. (C) DCA for 
external validation sets.
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Conclusion

In summary, our study identified the independent risk factors for 
poor prognosis at 90 days in patients with intracerebral hemorrhage, 
including GCS, glucose, uric acid, hemoglobin, and hematoma 
location. Using LASSO and multivariate logistic regression algorithms, 
we successfully developed and validated a column chart that accurately 
predicts prognosis at 90 days in this patient population. Our 
nomogram showed good discrimination, calibration, and net clinical 
benefit and performed well in an external validation set, emphasizing 
its accuracy and utility in clinical practice. The model significantly 
improved patient recovery outcomes by accurately identifying 
individuals at high risk of poor prognosis after intracerebral 
hemorrhage. By prioritizing the placement of these individuals in the 
neurointensive care unit and implementing early individualized 
management strategies, including precise blood pressure control, 
aggressive complication management, and early physical 
rehabilitation, the patient’s outcomes were substantially improved. 
However, external validation and prospective studies at additional 
centers are needed to confirm the validity of this column chart.
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