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Purpose: To explore the value of deep learning based on magnetic resonance 
imaging (MRI) in the classification of glioma subtypes.

Methods: This study retrospectively included 747 adult patients with surgically 
pathologically confirmed gliomas from a public database and 64 patients from 
our hospital. Patients were classified into IDH-wildtype (IDHwt) (490 cases), 
IDH-mutant/1p19q-noncodeleted (IDHmut-intact) (105 cases), and IDH-
mutant/1p19q-codeleted (IDHmut-codel) (216 cases) based on their pathological 
findings, with the public database of patients were divided into training and 
validation sets, and patients from our hospital were used as an independent 
test set. The models were developed based on five categories of preoperative 
T1-weighted, T1-weighted gadolinium contrast-enhanced, T2-weighted and 
T2-weighted fluid-attenuated inversion recovery (T1w, T1c, T2w and FLAIR) 
magnetic resonance imaging (MRI) of four sequences and mixed imaging of 
the four sequences, respectively. The receiver operating characteristic curve 
(ROC), area under the curve (AUC) of the ROC were generated in the jupyter 
notebook tool using python language to evaluate the accuracy of the models 
in classification and comparing the predictive value of different MRI sequences.

Results: IDHwt, IDHmut-intact and IDHmut-codel were the best classified in 
the model containing only FLAIR sequences, with test set AUCs of 0.790, 0.737 
and 0.820, respectively; and the worst classified in the model containing only 
T1w sequences, with test set AUCs of 0.621, 0.537 and 0.760, respectively.

Conclusion: We have developed a set of models that can effectively classify 
glioma subtypes and that work best when only the FLAIR sequence model is 
included.
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Introduction

Glioma is the most common primary brain tumor (1), and the classification and definition 
of glioma are changing as people’s understanding of glioma continues to grow. In 2016, the 
WHO first proposed the importance of IDH and 1p/19q co-deletion status in the diagnostic 
classification of glioma (2), and in 2021, the WHO further clarified the role of IDH and 1p/19q 
co-deletion status in the diagnostic classification of glioma in the new version of the 
classification criteria for central nervous system tumors (3). The current general treatment 
principle for glioma is to surgically remove the maximum extent of the tumor as far as is safe 
(4, 5), followed by individualized treatment regimens such as radiotherapy and chemotherapy 
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(6–8). However, the prediction of survival, the progression of the 
disease, the extent of surgical resection, the development of 
individualized treatment plans and the assessment of efficacy are all 
closely related to the type of glioma (9–12). Pre-operative knowledge 
of the patient’s tumor type can help patients to start a more precise and 
personalized treatment at the beginning of the disease. Currently, the 
assessment of the type of glioma is based on surgical or post-biopsy 
histopathology. However, pre-operative biopsy may be limited by the 
unavailability of tumor tissue, the fact that some of the tissue obtained 
is not representative of the whole tumor, the heterogeneity of the 
tumor and so on. Post-operative histopathology to assess the grade 
and type of glioma is also not effective in preoperative diagnosis and 
treatment planning of glioma. Therefore, a new method is needed to 
predict the grade and classification of gliomas.

Magnetic resonance imaging (MRI) is an effective method for 
diagnosing gliomas. Experienced clinicians can make a preliminary 
determination of the type of tumor by the location of the tumor, the 
peri-tumoural oedema and features such as calcification and necrosis 
within the tumor (13, 14), however, using this information to make 
predictions has limitations due to the lack of standard, quantifiable 
parameters. At the same time, certain microscopic features in MRI 
cannot be identified by the naked eye. In recent years, with the rapid 
development of computer software and hardware, deep learning has 
also been making breakthroughs, and automatic feature extraction has 
brought great improvements in terms of efficiency and performance, 
as well as good results in the medical field. Deep learning can 
automatically extract features from MRI (15) to help clinicians make 
auxiliary decisions.

Classification tasks are an important research direction for 
computer vision in deep learning, and in the clinic, accurate and 
effective classification of diseases has been a big problem for clinicians. 
With the continuous development of deep learning, deep learning is 
increasingly used in studies about disease classification. Chen et al. 
(16) used deep learning to effectively classify gliomas with and without 
the occurrence of MGMT promoter methylation. The present study 
aims to investigate the value of MRI-based deep learning for predicting 
diffuse glioma in adults, as preoperative classification of glioma has 
been a clinical challenge and there are few studies to predict the 
staging of glioma based on deep learning.

Materials and methods

Ethics statement

This retrospective study was approved by the ethics committee of 
our hospital (XYFY2022-KL476-01). Written informed consent was 
waived due to the retrospective nature of the study. As dataset 1, 2, 3 
and 4 are freely and publicly available on public databases for viewing, 
downloading and use for scientific purposes, institutional review 
board approval and written informed consent are not required for 
this study.

Patient selection

There are five datasets included in this study, dataset 1 contains 86 
patients from TCGA-LGG (17) in TCIA, dataset 2 contains 88 patients 

from TCGA-GBM (18) in TCIA, dataset 3 contains 382 patients from 
UCSF-PDGM (19) in TCIA, dataset 4 contains data from The Erasmus 
Glioma Database (20) of 191 patients, and dataset 5 contained 64 
patients from our hospital from September 2019 to October 2022. All 
data met the following inclusion criteria: (1) adult patients (age > 18) 
with pathologically confirmed primary glioma; (2) clear grade of 
glioma and IDH with 1p/19q co-deletion status; (3) inclusion of 
preoperative T1-weighted, T1-weighted gadolinium enhancement, 
T2-weighted and T2-weighted fluid-attenuated inversion recovery 
(T1w, T1c, T2w and FLAIR) MRI; (4) clear imaging. Exclusion criteria 
included: (1) history of brain tumor surgery or biopsy; (2) unclear 
WHO grade, IDH status, or 1p/19q co-deletion status for gliomas; (3) 
absence of preoperative T1w, T1c, T2w, and FLAIR; (4) poor quality 
of MRI scans, specifically images with significant artifacts that could 
not be  accurately delineated for regions of interest (ROI) after 
consensus between two physicians. Since some of the TCGA-LGG and 
TCGA-GBM data were used in Brain Tumor Segmentation 2020 
(BraTS20) (21), in this study, only that part of the data used in 
BraTS20 was selected for TCGA-LGG and TCGA-GBM.

We classified all patients into 3 categories based on the IDH 
and 1p/19q co-deletion status of each patient: IDH-wildtype 
(IDHwt), IDH-mutant/1p19q-noncodeleted (IDHmut-intact), 
and IDH-mutant/1p19q-codeleted (IDHmut-codel).

MRI parameters

The MRI of the five data sets in this experiment were taken by 
different MRI scanners and each patient contained four MRI 
sequences, T1w, T2w, FLAIR and T1c. The specific MR parameters are 
shown in the Appendix.

Pre-processing of images

In order to eliminate differences between the different images, all 
images were pre-processed in a uniform manner. The processing was 
as follows: (1) correction for bias magnetic fields was performed using 
N4ITK; (2) rigid registration was performed using the General 
Registration module in 3D Slicer, with T1C as the reference image; (3) 
skull stripping of the images was performed using the Swiss Skull 
Stripper module in 3D Slicer; and (4) the intensity normalization was 
performed using the Z-score standardization method.

ROI drawing and segmentation

After the preprocessing steps, ROIs were delineated on the 
FLAIR sequence using 3D Slicer (v5.2.1). The boundaries of the 
ROIs, including the tumor, tumor necrosis, intratumoral calcification 
and peritumoral edema, were determined through consensus 
between two physicians (a neurosurgeon with 7 years of clinical 
experience and a resident with 3 years of clinical experience). In 
cases of disagreement or uncertainty, a senior attending physician 
made the final decision. Subsequently, the resident independently 
manually delineated the ROIs on all tumor-containing images. After 
completing the delineation on the FLAIR images, the defined 
regions were transferred to T1w, T2w, and T1c images to verify the 
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accuracy of the ROI segmentation. The images were then cropped 
to exclude regions outside the ROI, and external voxel values were 
set to zero. It is noteworthy that in this study, the tumor was not 
subdivided into distinct subregions or areas. Instead, the entire 
tumor region on each image was treated as a single ROI. Prior to the 
ROI delineation and segmentation process, a third member of the 
research team removed all labels and tumor type annotations from 
the images and renumbered them with numeric identifiers to 
ensure anonymization.

In this study, data sets 1 and 2 were taken from the BraTS20 
dataset and all data were aligned and cranially stripped and some data 
were ROI plotted, while data sets 3 and 4 were also aligned and 
cranially stripped and all data were ROI plotted. Therefore, data that 
had been aligned and cranially stripped were not re-aligned and 
cranially stripped, and data that had been ROI plotted were only 
checked but not re-plotted.

After image segmentation, all images from the four pulse 
sequences underwent uniform preprocessing, which included 
manually retaining tumor-containing slices and resizing the images to 
a consistent resolution of 224 × 224 pixels. These processed images 
were then used as input for the Convolutional Neural Network (CNN).

CNN

The CNN model used for glioma classification in this study is the 
Swin Transformer, as shown in Figure 1. The training was conducted 
on the MMDetection platform, an open-source toolbox for object 
detection built on PyTorch and part of the OpenMMLab project. 
MMDetection supports a variety of object detection models and 
allows the deployment of the Swin Transformer model without 
requiring additional installation packages. Specifically, we  used 
version 2.3.0 of MMDetection, version 2.1.0 of PyTorch, and Python 
version 3.10.

In this experiment, we used the official Swin Transformer model 
without any modifications. The server’s CPU was an Intel Xeon (R) 
Platinum 8362, and the GPU was an RTX 3090 with 24GB of memory. 
The key training parameters were as follows: the AdamW optimizer 
with a weight decay of 0.05, a learning rate of 0.0001, and a total of 100 
epochs. Learning rate scheduling followed a step policy, with a linear 
warm-up over 500 steps and a warm-up ratio of 0.001.

For the dataset, we split it into two subsets: set A and set B, in a 
random 8:2 ratio. Set A served as the training set, while set B was used 
for validation within the CNN. Additionally, Dataset 5 was employed 
as an external test set to evaluate the model’s performance. To assess 
the impact of different MRI sequences on glioma classification, all 
images were categorized into five groups. For each training, validation, 
and testing phase, one category was selected for the CNN input.

To address the issue of data imbalance between glioma subtypes, 
data augmentation techniques were applied to the underrepresented 
categories. These techniques included rotation, translation, flipping, 
and scaling, which helped generate additional training samples.

Statistical analysis

Demographic data and tumor characteristics were calculated 
statistically for the training, validation and test sets using IMB SPSS 
24.0, with p < 0.05 indicating a statistically significant difference. 
Measures (non-normally distributed) were described by median and 
interquartile spacing; counts were described by frequency and 
percentage. Multiple group comparisons were made using the 
chi-square test or Kruskal-Wallis test, and post-hoc two-by-two 
comparisons were made using the Bonferroni method. The receiver 
operating characteristic curve (ROC), area under the curve (AUC) of 
the ROC, Precision, Recall and F1 Score were calculated and generated 
in the jupyter notebook tool using the python language to evaluate the 
merit of the model. It is worth noting that while ROC analysis is 

FIGURE 1

An overview of the research design, including the structure of convolutional neural networks. T1w, T1-weighted; T1c, T1-weighted gadolinium 
contrast-enhanced; T2w, t2-weighted; FLAIR, T2-weighted fluid-attenuated inversion recovery. The image size fed into the neural network was 
224 × 224, where H represents the image height, W represents the image width, and 3 represents the image as a 3-channel RGB image.
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typically used for binary classification, it can also be  applied to 
evaluate multi-class classification tasks. In this study, we employed a 
“one vs. Rest” strategy, where each class is compared against all other 
classes, and ROC curves are computed and plotted. This approach 
treats each class as the positive class, with all other classes combined 
as the negative class, and the process is repeated for each class. 
However, in multi-class problems, accuracy may not directly reflect 
model performance, as it treats all misclassified samples equally, which 
may not be an accurate representation of real-world scenarios. In 
contrast, ROC curves and AUC provide a more detailed and nuanced 
assessment of model performance.

Results

Patient characteristics

A total of 811 patients were included in this study, of which 747 
patients were from the public data set and 64 patients were from our 
hospital. There was a significant difference in the age of patients with 
different types of glioma (p < 0.001), with the IDHmut-intact type 
being younger 40.79 ± 12.88, median age 38.0 (31.0, 50.0); followed by 
IDHmut-codel 45.08 ± 12.72, median age 47.0 (37.0, 57.0). IDHwt was 
older 59.98 ± 12.91, median age 60.5 (52.0, 69.0). There was no 
statistically significant difference in gender between types (p = 0.274) 
(see Table 1).

Classification performance

The AUCs for the test sets of IDHwt, IDHmut-intact and 
IDHmut-codel in the model with all sequences included were 0.736, 
0.662 and 0.791, respectively. In the model with only T1w sequences 
included the test sets AUCs were 0.621, 0.537 and 0.760, respectively. 
In the model with only T1c sequences included the test sets AUCs 
were 0.731, 0.603 and 0.804, respectively; in the test set of the model 
containing only T2w sequences AUCs were 0.707, 0.617 and 0.790, 

respectively. In the test set of the model containing only FLAIR 
sequences AUCs were 0.790, 0.737 and 0.820, respectively. The ROCs 
corresponding to the above AUCs are shown in Figure 2. The ROC 
and AUC of IDHwt, IDHmut-intact and IDHmut-codel for the 
training and validation sets of different sequences are shown in the 
Supplementary Figures 1, 2. The Precision, Recall and F1 Score of 
IDHwt, IDHmut-intact and IDHmut-codel for the test sets of different 
sequences are shown in Table 2, the Precision, Recall and F1 Score of 
IDHwt, IDHmut-intact and IDHmut-codel for the train set and 
validation set of different sequences are shown in 
Supplementary Tables 1, 2.

Interpretation of the CNN prediction

In order to present the key regions identified by CNN for 
classification of gliomas, four sequences (T1w, T1c, T2w and FLAIR) 
of a target patient were randomly selected to draw the class activation 
maps (CAMs) in this study. The CAMs of the corresponding 
sequences are shown in Figure 3. The results show that the CNN 
focuses on identifying some regions in the process of classifying 
gliomas. These images illustrate that the CNN identifies regions that 
can classify gliomas.

Discussion

In this paper, we  present a novel model capable of effectively 
predicting the type of glioma prior to surgery. The experiment 
involved 811 patients, utilizing four public datasets for training and 
validation of the CNN, while an independent test set was comprised 
of patients from our hospital. The results demonstrate that the model 
can accurately classify glioma types across patients from different 
regions and MRIs obtained from various MRI scanners. Notably, the 
entire process—from initiating MRI processing for a single patient to 
generating the final result—takes approximately 10 min. This 
timeframe includes downloading images from the PACS to the 

TABLE 1 General characteristics of participants (N = 811).

Total data
N = 811

Data 1
N = 86

Data 2
N = 88

Data 3
N = 382

Data 4
N = 191

Data 5
N = 64

Age, year 53.26 ± 15.44 46.84 ± 14.56 58.32 ± 14.30 55.76 ± 15.59 48.71 ± 14.84 53.59 ± 13.07

Gender

Men 476 (58.7) 41 (47.7) 56 (63.6) 222 (58.1) 118 (61.8) 39 (60.9)

Female 335 (41.3) 45 (52.3) 32 (36.4) 160 (41.9) 73 (38.2) 25 (39.1)

Grade

II 196 (24.2) 38 (44.2) 0 (0.0) 44 (11.5) 95 (49.7) 19 (29.7)

III 86 (10.6) 30 (34.9) 0 (0.0) 29 (7.6) 19 (10.0) 8 (12.5)

IV 529 (65.2) 18 (20.9) 88 (100.0) 309 (80.9) 77 (40.3) 37 (57.8)

Type

IDHwt 490 (60.4) 18 (20.9) 85 (96.6) 286 (74.9) 76 (39.8) 25 (39.1)

IDHmut-intact 105 (32.7) 24 (35.3) 0 (0.0) 14 (14.6) 56 (48.7) 11 (28.2)

IDHmut-codel 216 (67.3) 44 (64.7) 3 (100.0) 82 (85.4) 59 (51.3) 28 (71.8)

IDHwt, IDH-wildtype; IDHmut-intact, IDH-mutant/1p19q-noncodeleted; IDHmut-code, IDH-mutant/1p19q-codeleted. Results shown are median (quartile) or n (%).
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workstation, reviewing the images, preprocessing, manually 
delineating the ROI, performing image segmentation, and applying 
the model. The model thus combines the benefits of both time 
efficiency and high accuracy.

The results of this study support that IDHmut-codel gliomas were 
significantly the youngest (median 38.0 years), IDHmut-intact 
(median 47.0 years) was the next youngest, while patients with IDHwt 

gliomas were generally older (median 60.5 years). Compared to 
previous studies of glioblastoma, especially before 2021, where there 
were differences in age characteristics, patients with the IDHwt 
glioma subtype in this study were younger (22). The main reason for 
this is that the WHO updated the classification criteria for gliomas as 
early as 2021 (3) and some IDHwt low-grade gliomas were included 
in glioblastoma. At the same time the WHO has clarified the 

FIGURE 2

Classification performance of magnetic resonance imaging with different sequences in convolutional neural networks (Test set). (A–C) Represent 
IDHwt (IDH-wildtype), IDHmut-intact (IDH-mutant/1p19q-noncodeleted), and IDHmut-code: IDH-mutant/1p19q-codeleted, respectively. T1w, T1-
weighted; T1c, T1-weighted gadolinium contrast-enhanced; T2w, t2-weighted; FLAIR, T2-weighted fluid-attenuated inversion recovery; ALL 
sequences, T1w + T1c + T2w + FLAIR.

TABLE 2 Classification performance of convolutional neural networks (Test set).

Sequence Type Precision Recall F1 Score Average precision

All

IDHwt 49.483 80.369 61.253 57.750

IDHmut-intact 57.447 40.785 47.703 58.872

IAHmut-code 82.632 42.432 56.071 66.055

T1w

IDHwt 45.536 73.381 56.198 47.742

IDHmut-intact 46.154 31.788 37.647 51.527

IAHmut-code 64.706 30.556 41.509 54.755

T1c

IDHwt 51.786 80.000 62.873 57.307

IDHmut-intact 51.724 38.961 44.444 52.659

IAHmut-code 77.500 38.272 51.240 62.424

T2w

IDHwt 44.017 82.400 57.382 50.625

IDHmut-intact 46.341 25.333 32.759 55.203

IAHmut-code 46.591 46.591 60.741 70.344

FLAIR

IDHwt 52.107 88.889 65.700 61.732

IDHmut-intact 70.909 44.828 54.930 69.472

IAHmut-code 82.000 43.617 56.944 69.414

T1w, T1-weighted; T1c, T1-weighted gadolinium contrast-enhanced; T2w, T2-weighted; FLAIR, T2-weighted fluid-attenuated inversion recovery; ALL, T1w + T1c + T2w + FLAIR. IDHmut-
intact, IDH-mutant/1p19q-noncodeleted; IDHwt, IDH-wildtype; IDHmut-code, IDH-mutant/1p19q-codeleted.
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importance of IDH and 1p/19q status for the classification of gliomas, 
and it is on the basis of the classification of glioma IDH and 1p/19q 
status that the present study was conducted, and it is clear that the 
demographic results of the present study are more in line with the 
present day.

Regarding the selection of MRI sequences for CNN training, 
testing and validation in this experiment, most previous studies have 
utilized only one of the sequences or a mixture of several sequences, 
and were unable to do so to explore the impact of different MRI 
sequences on deep learning results (23, 24). We  performed five 
classifications of four common MRI sequences, T1w, T2w, FLAIR and 
T1c, as well as a mixture of sequences including the four sequences. 
We found that the model with input FLAIR sequences had the best 
classification, with AUCs of 0.790, 0.737 and 0.820 for IDHwt, 
IDHmut-intact and IDHmut-codel, respectively, and the model with 
input T1w sequences had the worst classification, with AUCs of 0.621, 
0.537 and 0.760, respectively. Considering that different combinations 
of imaging modalities and the number of images used for model 
training may further impact classification accuracy, we combined 
FLAIR images with the other three imaging modalities and tested the 
mixed dataset. However, the resulting classification performance was 
still inferior to that achieved with the FLAIR-only dataset. Therefore, 
we  did not proceed with testing other possible combinations of 
imaging modalities. This is similar to the findings of Jones et al. (25), 
who showed that models trained with more images did not always 
perform better. Meanwhile Germann et al. (26). Showed that MRI 
with different magnetic field strengths did not have a significant effect 
on the model results. Therefore, after excluding the effect of the 
number of images and different magnetic field strengths on the 
classification results, we believe that the FLAIR sequence can be used 
as the first choice for deep learning for classification tasks.

In this study, the images used for CNN training, validation, and 
external testing were all manually delineated and cropped ROIs. A few 
researchers have employed deep learning techniques to address 

glioma classification tasks using images that are automatically 
segmented by CNNs (24, 27). The reason we  opted for manual 
delineation rather than developing a multi-task CNN to automatically 
identify and segment tumors prior to classification is twofold. First, 
predicting tumor classification remains a significant clinical challenge, 
while identifying the location and boundaries of tumors is not 
currently a major obstacle. Second, through the image preprocessing 
steps in this study, we found that an experienced clinician can quickly 
and accurately delineate tumor regions, and manual segmentation is 
a time-efficient process. This approach helps mitigate potential 
inaccuracies that could arise from discrepancies between automatically 
segmented images and actual tumor regions. Furthermore, manually 
segmented images were used for CNN training, testing, and validation 
to minimize interference from non-tumor elements in the images, 
which enhances the overall accuracy of the experiment. Of course, 
with the development and mature application of deep learning in 
clinical settings, automatic segmentation, with its reproducibility and 
automation, will be a promising solution.

Regarding the application of deep learning to glioma classification, 
Choi et al. (28) developed a model to effectively predict the mutational 
status of IDH in gliomas, but the model only performed binary 
classification, however, further understanding that IDH mutant 
gliomas do not undergo 1p/19q co-deletion could provide valuable 
information for the clinical management of gliomas. Yan et al. (29) 
used deep learning to effectively predict the 1p/19q co-deletion status 
of low-grade gliomas, but their study only targeted patients with 
low-grade gliomas and again only performed binary classification and 
could not capture or patient IDH status. A comprehensive 
understanding of patient IDH and 1p/19q co-deletion status would 
be more useful to clinicians in making treatment decisions.

In fact, a more precise classification of gliomas should include 
the grade of the tumor after the tumor type is defined, and some 
scholars have classified tumors according to their grade (30, 31). 
At the beginning of the experiment, we aimed to incorporate the 

FIGURE 3

Class activation maps (CAMs) corresponding to four magnetic resonance imaging sequences of a random patient. The CAMs highlighting regions that 
contribute more to the prediction of glioma type. T1w, T1-weighted; T1c, T1-weighted gadolinium contrast-enhanced; T2w, t2-weighted; FLAIR, T2-
weighted fluid-attenuated inversion recovery.
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same criteria for classification of the tumor grade. However, in 
2021, the WHO introduced updated classification criteria for 
gliomas, and IDH wild-type astrocytomas with EGFR 
amplification, chromosome 7 acquisition with chromosome 10 
deletion and TERT promoter mutations are also included in 
glioblastoma if they have any of the molecular phenotypes. For the 
current data, we were unable to classify patients by grade according 
to the 2021 WHO classification criteria, and classification 
according to the 2016 classification criteria no longer fits the 
current diagnostic criteria; therefore, we finally abandoned a more 
recent classification of gliomas by grade.

Despite the results achieved in this study, there are undeniable 
limitations of this study, firstly, IDH wild type patients accounted 
for the majority of patients in this study, secondly, four MRI 
sequences were included in this study. Future research could 
further explore the impact of other MRI sequences, such as the 
DWI sequence, which was not examined in this study, on the 
classification of glioma subtypes. This would represent an 
interesting avenue for further investigation. Regarding the ROI 
delineation, the ROIs in this study encompassed the tumor, 
necrosis and calcifications within the tumor, as well as peritumoral 
edema. Whether excluding peritumoral edema or using alternative 
delineation methods could improve classification accuracy remains 
an area for further investigation.
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