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Purpose: This study aimed to evaluate the perfomance of Siemens Healthineers’ 
StrokeSegApp performance in automatically segmenting diffusion and perfusion 
lesions in patients with acute ischemic stroke and to assess its clinical utility in 
guiding mechanical thrombectomy decisions.

Methods: This retrospective study used MRI data of acute ischemic stroke patients 
from the prospective observational single-center 1000Plus study, acquired 
between September 2008 and June 2013 (clinicaltrials.org; NCT00715533) 
and manually segmented by radiologists as the ground truth. The performance 
of the StrokeSegApp was compared against this ground truth using the dice 
similarity coefficient (DSC) and Bland–Altman plots. The study also evaluated 
the application’s ability to recommend mechanical thrombectomy based on 
DEFUSE 2 and 3 trial criteria.

Results: The StrokeSegApp demonstrated a mean DSC of 0.60 (95% CI: 
0.57–0.63; n = 241) for diffusion deficit segmentation and 0.80 (95% CI: 0.76–
0.85; n = 56) for perfusion deficit segmentation. The mean volume deviation 
was 0.49 mL for diffusion lesions and −7.69 mL for perfusion lesions. Out of 
56 subjects meeting DEFUSE 2/3 criteria in the cohort, it correctly identified 
mechanical thrombectomy candidates with a sensitivity of 82.1% (95% CI: 63.1–
93.9%) and a specificity of 96.4% (95% CI: 81.7–99.9%).

Conclusion: The Siemens Healthineers’ StrokeSegApp provides accurate 
automated segmentation of ischemic stroke lesions, comparable to human 
experts as well as similar commercial software, and shows potential as a reliable 
tool in clinical decision-making for stroke treatment.
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1 Introduction

The lifetime prevalence of stroke is estimated at 25% (1). Half of 
those who survive remain chronically disabled, whereby timely and 
accurate diagnosis and efficient therapy are crucial for the patient’s 
outcome (2, 3). Consequently, magnetic resonance imaging (MRI) has 
become an integral tool in modern stroke diagnostics (4).

As an indispensable sequence, diffusion-weighted imaging (DWI) 
provides us with information about the areas of the brain likely to 
be  irreversibly damaged by the infarction. The reduction in the 
diffusivity of water molecules, present in the situation of cytotoxic 
edema, unmasks the infarct core, which shows up as a drop in the 
apparent diffusion coefficient (ADC) and an increase in the signal on 
trace DWI (TraceW) (5).

Perfusion-weighted imaging (PWI), on the other hand, reveals 
areas of hypoperfused tissue where neuronal dysfunction is potentially 
reversible. This tissue is potentially at risk of further damage if the 
insufficient blood flow is not ameliorated. Perfusion maps can 
be derived from changes in various parameters, such as the relative 
mean transit time (relMTT), the time to maximum (Tmax), or the 
cerebral blood flow (CBF) (6).

The juxtaposition of DWI and PWI illustrates the concept of the 
penumbra, which describes those areas of deficient perfusion that are 
not part of the irreversibly lost diffusion lesion and thus—despite being 
currently non-functional—represent vital tissue (7). As these penumbral 
areas can be saved through timely reperfusion, their quantification has 
found its way into current recommendations and guidelines for treating 
stroke patients within the extended or unclear time window (3, 8–10).

Automated image evaluation can support determining 
penumbra rapidly through image segmentation, whereby deep 
neural and multilayered convolutional networks in particular have 
significant potential in neuroradiology (11–14). Although many 
artificial intelligence (AI) systems already provide reliable results 
for identifying the ischemic core on MRI (15–19), there are 
significantly fewer reports on programs that allow for reliable, 
automatic perfusion segmentation validated on large cohorts (15, 
20, 21). In addition, these studies tend to use different statistical 
approaches, which makes it difficult to compare the applications 
with each other (22).

The development model of a new generation AI tool from 
Siemens Healthineers, the research application StrokeSegApp v. 1.3, 
offers the determination of both lesion types with automatic 
mismatch calculation. This study had two aims: (a) to provide 
external and independent validation of the tool’s segmentation results 
and (b) to shed light on whether the assessment of the penumbra by 
the program is adequate and would provide clinical benefit in 
decision-making for acute stroke patients qualifying for mechanical 
thrombectomy (MT).

2 Methods

2.1 Study design

This retrospective study used data from the 1000Plus study 
(clinicaltrials.org; NCT00715533) (23). The protocol received approval 
from the local Ethics Committee (EA4/026/08), and all study 

participants gave informed consent for participation in the study. 
Subjects were eligible for the 1000Plus study if they were admitted 
with the clinical signs of an acute cerebrovascular event within the last 
24 h, were able to undergo an MRI scan, and were at least 19 years old. 
The MRI protocol included diffusion-weighted imaging (DWI), as 
well as perfusion imaging (PWI), performed using dynamic 
susceptibility contrast imaging.

This study is reported following the STARD guidelines.

2.2 Participants

Patients were consecutively enrolled between 1 September 2008 
and 30 June 2013 at Charité, Campus Benjamin Franklin. In 
addition to a brain MRI, a detailed medical history was taken. For 
this study 304 out of 1,437 subjects fulfilled the following inclusion 
criteria: (a) they had a proven acute stroke, (b) brain perfusion at 
baseline showed an area of hypoperfusion judged by a radiologist 
as corresponding to the acute infarct, and (c) this area of 
hypoperfusion was >10 mL according to the measurements at that 
time. The last criterion was chosen to only include patients with 
large enough perfusion deficits to be clinically relevant and credible, 
i.e., unlikely to be noise or artifacts. As shown in Figure 1, data of 
diffusion (TraceW and ADC images) and perfusion (dynamic 
susceptibility contrast perfusion source images) were assessed 
separately, checked for data quality, and then sent to StrokeSegApp 
using the software’s implemented batch function. The diffusion data 
that were successfully evaluated by the program formed the 
diffusion cohort for the subsequent analysis of the accuracy of 
segmentations conducted by the StrokeSegApp.

To assess perfusion segmentation performance and real-life 
clinical utility of the StrokeSegApp, an additional subgroup was 
assembled with patients fulfilling the following criteria: (a) time from 
symptom onset 0–16 h, (b) NIHSS score > 5 at baseline, and (c) age 
18–90 years. All subjects had an ICA or MCA (M1, M2) occlusion on 
magnetic resonance angiography. These criteria correspond to the 
inclusion in the DEFUSE 2 and 3 studies (8, 24, 25). These subjects are 
referred to as the DEFUSE-like cohort.

2.3 Image acquisition

Our complete imaging protocol has been previously published 
(22). In short, all examinations were performed on a 3 T MR 
scanner (MAGNETOM Trio A Tim System, Siemens Healthineers, 
Forchheim, Germany). DWI was conducted using a spin-echo 
echo-planar sequence (SE-EPI) [(TE = 93 ms; TR = 7,600 ms; 
acquisition matrix = 192 × 192 (spatial resolution); slice 
thickness = 2.5 mm without an interslice gap, b = 0 s/mm2 and 
b = 1,000 s/mm2)]. Dynamic susceptibility contrast was conducted 
using a single-shot gradient-echo EPI sequence [(TE = 29 ms; 
TR = 1,390 ms; acquisition matrix = 128 × 128 (spatial resolution); 
slice thickness = 5 mm; interslice gap = 0.5 mm)] with a fixed 
dosage of 5 mL Gadovist® (Gadobutrol, 1 M, Bayer Schering 
Pharma AG, Berlin, Germany) followed by 20 mL of saline, both at 
an injection rate of 5 mL/s.
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3 Test methods

3.1 Ground truth

The ground truth was the manual image delineation, carried out 
by either of two radiologists (KV or IG), each with more than 5 years 
of experience in stroke imaging. The radiologists analyzed the images 
with information on the side and territory of the stroke, but without 
access to previous MRI images. Diffusion lesions were delineated on 
TraceW maps with knowledge of the ADC map. Perfusion deficits 
were delineated in MRIcron on relative mean transit time (relMTT) 
maps, which were created by the NUM/4 Neuro Perfusion (Siemens 
Healthineers AG, Forchheim, Germany) using standard singular value 
deconvolution (sSVD). Diffusion and perfusion lesion volumes were 
calculated. All these were once again checked for accuracy in 2024 
(IG) and, if necessary, re-delineated accordingly.

For the DEFUSE-like cohort, a radiologist with 15 years of 
experience in stroke imaging (IG) manually segmented the perfusion 
deficits on the Tmax maps generated by the StrokeSegApp using block 
circulant singular value deconvolution (oSVD).

3.2 Index test

The index test was the AI tool StrokeSegApp version 1.3 
(Standalone research package Stroke Segmentation 1.3.0) by Siemens 
Healthineers AG (Forchheim, Germany), a research application 

designed to become an integral part of the neuroradiological routine 
in the MRI-based diagnosis of ischemic strokes and 
hemorrhagic lesions.

The StrokeSegApp automatically segments acute infarcts in ADC 
and TraceW images (b-value 1,000 s/mm2) as well as the perfusion 
lesions in perfusion-based dynamic susceptibility contrast images. The 
application provides both diffusion and perfusion lesion volumes and 
automatically calculates the PWI-DWI-Mismatch ratio.

Although only the default block circulant singular value 
deconvolution with oscillation index (oSVD) was used in this study, 
the program offers three more deconvolutional methods, namely 
singular value decomposition (sSVD, the original method from 
Ostergaard (26, 27)), block circulant singular value deconvolution 
with a fixed cutoff (cSVD) (28), and a Tikhonov regularized Fourier 
deconvolution (29, 30).

The resulting segmentations can be viewed as overlays on top of 
the underlying contrast maps (e.g., TraceW and PWI). The perfusion 
maps generated can also be viewed in the application (relative cerebral 
blood flow, relative cerebral blood volume, relMTT, and Tmax).

Restricted perfusion lesions (shown as Regions of Interest, ROI) 
are delineated on Tmax maps. Tmax is calculated using a regularized 
deconvolution method, namely oSVD (28), with an automatically 
detected global Arterial Input Function (AIF). The AIF is the average 
of all AIF candidates from the slice with the most suitable AIF 
candidates. The AIF candidates are selected from prioritized 
anatomical regions in the brain, following the areas described by 
Ebinger et al. and Mouridsen et al. (31, 32).

FIGURE 1

Flowchart detailing the patient inclusion process for data analysis.
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The lesion segmentation and mirroring of the DWI and PWI 
lesion are based on deep learning models, which were trained on 
manually segmented and annotated ground truth data (12,989 for 
DWI, with a mean age of 70 years, 48% female; 770 for PWI with a 
mean age of 69 years, 47% female), followed by an internal validation 
with 1,664 (mean age of 72 years, 52% female) and 98 datasets (mean 
age of 71, 51% female). Internal testing on 1,897 subjects (mean age of 
73 years, 53% female) for detecting infarct on DWI revealed a 
sensitivity of 0.92 and a specificity of 0.95. For PWI (103 subjects, 
mean age of 72 years, 52% female), Siemens Healthineers did not 
determine test accuracy.

The data analyzed in this study were neither used for previous 
model training nor validation.

The StrokeSegApp reviewed MR images for the analysis without 
access to original referrals, radiological reports, or 
neuroradiological diagnoses.

All patient’s datasets were sent to StrokeSegApp thresholding 
Tmax to 6 s. For index testing, the program’s default setting was used. 
For two cases with considerable motion, the “PWI Excessive Motion 
Threshold” was adjusted (15 → 50 mm) to enable successful 
processing of the images.

4 Analysis

4.1 Approaches for evaluating metrics of 
diagnostic precision

4.1.1 Diffusion cohort
To evaluate the diffusion segmentation performance, we first 

compared the manually segmented lesion volumes with those 
from the StrokeSegApp. The Bland–Altman plot shows us the 
volumetric agreement between the ground truth and the index 
test. We  then calculated the Dice–Sørensen coefficient (dice 
similarity coefficient, DSC) to evaluate the overlap between the 
two binarized segmentations on the TraceW maps. The DSC is 
defined as twice the volume of the intersection between two masks 
divided by the sum of their volumes and serves to quantify their 
spatial similarity whereby 0 stands for no and 1 for a perfect 
overlap (22, 33, 34). To assess the impact of lesion size, time to 
MRI, NIHSS score, and the presence of large vessel occlusion 
(LVO) on the DSC, a linear model (OLS) was used. Lesion size and 
time to MRI were included as continuous variables, while LVO was 
a binary predictor. The NIHSS scores were included as a 
continuous variable where available, with missing values (n = 2) 
retained in the analysis. The model also included an intercept to 
account for baseline effects.

4.1.2 DEFUSE-like cohort
For the DEFUSE-like cohort, only patients with both diffusion 

and perfusion data available were included (see Figure  1). 
We compared the diffusion data for the new subgroup in the same way 
as in the diffusion cohort. The evaluation of segmentation performance 
for perfusion data was carried out by comparing the physician’s Tmax 
ROI and the StrokeSegApp’s Tmax ROI with thresholding Tmax each 
to 6 s. Here, too, we created a Bland–Altman plot and calculated the 
DSC. We also used a linear model in the same way. As all subjects had 
an LVO as an inclusion criterion, this was not analyzed further here.

Finally, to determine the clinical utility of the software, we assessed 
the decision for or against mechanical thrombectomy (MT) in line 
with the criteria of the DEFUSE 3 study, based on the manual and 
automatically segmented DWI and PWI data. In the DEFUSE 3 study, 
patients with the following mismatch criteria were eligible for MT: 
infarct volume < 70 mL, penumbra volume ≥ 15 mL, and mismatch 
ratio (reduced perfusion/core infarction) ≥1.8 (8). We then calculated 
sensitivity and specificity for the StrokeSegApp versus the ground 
truth and furthermore determined the likelihood ratio (likelihood-
ratio test, LRT).

The statistical analyses were performed with MATLAB Version 
9.1.0.441655 (R2016b),1 and statistical graphics were created in IBM 
SPSS Statistics Version 29.0.0.0 (241).2 The MRI images in the figures 
were visualized using FSLeyes Version 1.4.5.3

5 Results

5.1 Participants

We included 241 subjects for the diffusion segmentation analysis 
(diffusion cohort) and 56 patients for analyzing perfusion 
segmentation and indication for MT (DEFUSE-like cohort). Cases of 
missing sequences or data compromised by excessive patient 
movement (defined as head motion of more than 50 mm) were 
excluded. Patients were also rejected if the physician’s original 
segmentation showed technical processing errors resulting from 
incorrectly saved physician’s lesion segmentations (ROI) that were 
not congruent with the original brain map and could not 
be  coregistered. The StrokeSegApp failed to analyze 8 perfusion 
datasets as it was unable to identify an AIF in these scans (see 
Figure 1).

Figure 2 shows an example of a successful segmentation of both 
lesion types in one patient, and Table  1 summarizes the baseline 
demographic characteristics of participants for both cohorts.

5.2 Test results for the diffusion cohort

The StrokeSegApp was able to correctly identify a DWI lesion in 
212 out of 241 (88%). Of the 29 missed detections of diffusion lesions, 
all infarcts were smaller than 10 mL, and 20 (69%) were smaller 
than 0.5 mL.

The Bland–Altman plot (Figure  3) shows the volumetric 
agreement between both methods. The mean difference between the 
two methods was 0.49 mL, suggesting only a very small systematic 
difference between the measurements of the two methods. Especially 
at higher mean values, we  see that the datapoints increasingly 
approach the limits of agreement and extreme outliers occur. Even 
though a few of these show poor spatial overlap with the ground truth 
(Figure  4), the majority of cases demonstrate acceptable or good 

1 MathWorks, Natick, MA, USA, https://www.mathworks.com.

2 IBM Corp., Armonk, NY, USA, https://www.ibm.com/products/

spss-statistics.

3 FMRIB Analysis Group, University of Oxford, Oxford, UK, https://fsl.fmrib.

ox.ac.uk/fsl/fsleyes.
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segmentation performance, despite a large volume difference 
(Figure  5). For lesions <10 mL, the median percentage volume 
deviation was 22.6% (IQR 7.6–68.9%), while for lesions >10 mL, it was 
27.9% (IQR 14.7–53.3%). These findings suggest that, although 
absolute differences can occasionally be substantial—particularly for 
larger lesions, which considerably affect the limits of agreement—the 
relative differences remain consistent and fall within an 
acceptable range.

The mean of the DSC for the 212 subjects in whom the software 
recognized a diffusion lesion was 0.60 (95% CI: 0.57–0.63). The 
spatial overlap varied greatly depending on the size of the lesion. For 
infarcts ≥10 mL (n = 88), the DSC was 0.72 (95% CI: 0.67–0.76). For 
small diffusion lesions (<10 mL, n = 124), it was markedly lower at 
0.53 (95% CI: 0.49–0.57). Figure  6 shows the distribution of 
the DSC.

To better understand the factors influencing segmentation 
performance, a linear model was applied. The analysis confirmed 
that lesion size and time to MRI are significant predictors of the 
DSC. For every additional 1 mL of lesion size, the DSC increased 
by 0.003 (95% CI: 0.002–0.005, p < 0.001), and for every hour 
from stroke onset to MRI, the DSC increased by 0.014 (95% CI: 
0.009–0.019, p < 0.001). However, neither the presence of a large 
vessel occlusion (p = 0.816) nor the NIHSS score (p = 0.704) was 
found to significantly influence DSC values in this dataset.

5.3 Test results for DEFUSE-like cohort

We first looked at diffusion and perfusion results separately before 
analyzing them together as part of the decision for or against 
MT. Diffusion segmentation performance was similar to that in the 
diffusion cohort with a DSC of 0.61 (95% CI: 0.53–0.68).

In terms of perfusion, the program was able to correctly determine 
the presence of hypoperfusion corresponding to the area of the acute 
stroke in all 56 cases. Volumetric agreement on perfusion lesion 
volumes is shown in Figure 7A. With a mean deviation of −7.69 mL, 
the StrokeSegApp consistently and slightly underestimates the size of 
the perfusion lesions. As the size of the deficit grows, we can see that 
the scatter of the datapoints increases volume-wise. Nevertheless, large 
volume deviations—and even outliers—are usually accompanied by 
good segmentation performance in terms of DSC (see Figure 8). Large 
lesions are associated with better automated segmentation 
performance than small ones as seen in Figure 7B.

The mean DSC for perfusion lesions was 0.80 (95% CI 0.76–0.85). 
Focused on the lesions that have a volume of ≥10 mL (n = 46), we see 
a DSC of 0.85 (95% CI: 0.83–0.87). See Figure 6 for a summary of the 
data’s distribution. The OLS explained 20.2% of the variability in DSC 
(R2 = 0.202, p = 0.0079). Lesion size (p = 0.093), and time to MRI 
(p = 0.082) showed trends toward significance, with a DSC increase of 
0.0009 per 1 mL lesion size and 0.0077 per hour from stroke onset to 

FIGURE 2

Example of an optimal segmentation of the program compared to the ground truth. The patient had a proximal M1 occlusion on the right side and 
suffered an infarction of the basal ganglia and the frontal operculum. The diffusion segmentation is shown above on TraceW maps, perfusion can 
be viewed below on Tmax maps thresholded to 6 s. The diffusion and perfusion segmentation are not displayed in the same slice. DSC for diffusion 
was 0.87 with an overestimation of the lesion size by the program of 9.63 mL. For perfusion, the dice score was even higher at 0.94, whereby the 
StrokeSegApp underestimated the deficit slightly by 4.37 mL. Following the DEFUSE 3 criteria, the approaches came to the same conclusion that a 
mechanical thrombectomy is not indicated because the penumbra is too small. (A) Blank scan used for segmentation, (B) ground truth ROI, 
(C) StrokeSegApp ROI, and (D) both ROI superimposed, whereby orange indicates areas of overlapping mapping, yellow shows areas missed by the 
StrokeSegApp and red displays diffusion/perfusion deficits overestimated by the application.
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MRI, respectively. The NIHSS (p = 0.222) did not significantly 
influence DSC.

To evaluate the clinical utility of the StrokeSegApp, we compared 
the decision for and against MT between the physician and the 
software. Out of 28 cases where MT would have been indicated based 
on the ground truth, StrokeSegApp recommended MT for 23 subjects 
(sensitivity of 82.1%; 95% CI: 63.1–93.9%). In cases where MT would 
not be  recommended by the ground truth (n = 28), the AI 
segmentation reached the same conclusion in 27 patients (specificity 
of 96.4%; 95% CI: 81.7–99.9%); see Table 2 for cross-tabulation. In all 
five cases where the values determined by the program did not 
indicate MT, this was because the automatically calculated penumbra 

was too small. In one case, the diffusion lesion was overestimated. 
Visual inspection confirmed that the areas identified by the 
StrokeSegApp aligned well with the infarct core and the corresponding 
perfusion deficit. However, the tool’s delineation boundaries differed 
enough from those of the radiologist to result in a significant 
volumetric discrepancy. The likelihood ratios LR+ and LR− were 
22.81 and 0.19. The large positive LR (>10) implies that a positive test 
result greatly increases the probability of recommending 
MT. Conversely, an LR− of 0.19 suggests that a negative test result is 
moderately effective in ruling out the need for MT.

6 Discussion

We carried out an independent evaluation of the StrokeSegApp 
using a large retrospective real-life cohort of patients (>200 datasets) 
who underwent MRI screening for acute ischemic stroke. The 
StrokeSegApp showed very good reliability and accuracy in 
recognizing acute ischemic changes on DWI and was also able to 
segment the ischemic core with a mean difference of 0.49 mL 
compared to human radiology experts. In a fully automated fashion, 
the AI was able to produce usable perfusion maps for 97% of patients 
in the sample. Its segmentations of hypoperfusion showed a high 
degree of spatial overlap with a human rater and a mean volumetric 
difference of only 7.68 mL. The linear model results confirm that 
lesion size and time to MRI are the primary determinants of 
segmentation performance, with larger lesions and later imaging times 
associated with higher dice similarity coefficient values. For the 
diffusion cohort, these effects were pronounced, with lesion size and 
timing significantly influencing DSC. In the DEFUSE-like cohort, 
lesion size and time to MRI showed trends toward significance, but 
their impact was less marked, likely reflecting the homogeneity of 
patients with large vessel occlusion. The NIHSS did not significantly 
influence DSC in either cohort, suggesting that lesion size and time to 
MRI already account for stroke severity and occlusion-related 
variability. These findings align with expectations and emphasize the 
importance of lesion size and timing in determining segmentation 
accuracy. The lower DSC observed in smaller lesions should 
be understood in the context that segmentation errors in objects with 
a small volume are penalized more harshly. Given their clinical 
importance in early-stage stroke assessment, proven strategies to 
improve the segmentation of small lesions could include, for example, 
data enrichment with additional real or synthetic cases (35) and 
lesion-volume-based data sampling and loss functions (36).

When the StrokeSegApp is used as part of a decision matrix for 
recanalization in patients with a large vessel occlusion in the anterior 
circulation (based on the criteria of the DEFUSE 2 and DEFUSE 3 
clinical trials), it would provide 82% sensitivity and 96% specificity in 
selecting candidates for reperfusion therapy, compared to a human 
gold standard. While the sensitivity result is promising, the automated 
analysis would have ruled out thrombectomy in an additional five 
cases. Even though visual inspection confirmed that the areas 
identified by the software corresponded well to the infarct core and 
matching perfusion deficit, the delineation boundaries differed 
sufficiently from those selected by the radiologist in all cases, leading 
to rejection due to a PWI/DWI mismatch <1.8. Such strict decision 
criteria are necessary in large clinical trials such as DEFUSE, but they 
hold less significance in routine clinical practice, where information 

TABLE 1 Baseline patient characteristics.

Variable Diffusion cohort1 
(n = 241)

DEFUSE-like 
cohort1 (n = 56)

Age in years 71 (12) 72 (12)

Sex

  Female 110 (45.6%) 33 (58.9%)

  Male 131 (54.4%) 23 (47.1%)

Time window

Time from stroke to 

MRI in hours
8.11 (6.9) 5.3 (4.9)

  0–6 h 124 (51.5%) 36 (64.3%)

  6–16 h 75 (31.1%) 20 (35.7%)

  16–24 h 42 (17.4%) –

LVO distribution

Cases of LVO 134 (55.6%), hereof 56 (100%), hereof

  Only ICA (right, left 

or both)
23 (17.2%) 8 (14.3%)

  Only M1 (right, left 

or both)
36 (26.9%) 16 (28.6%)

  Only M2 (right, left 

or both)
48 (35.8%) 17 (30.4%)

  ICA and MCA (right, 

left or both)
27 (20.1%) 15 (26.8%)

NIHSS2

  0 23 (9.5%) 0 (0%)

  1–4 97 (40.2%) 0 (0%)

  5–15 97 (40.2%) 36 (64.3%)

  16–20 18 (7.5%) 16 (28.6%)

  21–42 6 (2.5%) 4 (7.1%)

Diffusion lesion size (mL):

  <0.5 41 (17.0%) 2 (3.6%)

  ≥0.5 to <10 112 (46.5%) 16 (28.6%)

  ≥10 88 (36.5%) 38 (67.8%)

Perfusion lesion size (mL):

  <10 – 10 (17.9%)

  ≥10 – 46 (82.1%)

1Mean (SD); n (%).
2NIHSS, National Institutes of Health Stroke Scale.
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FIGURE 3

Bland–Altman plot shows the agreement between radiologist and StrokeSegApp for volumes of diffusion lesions.

FIGURE 4

Insufficient diffusion segmentation by the AI on a TraceW map. The clearly hyperintense cortical infarction of the superior frontal gyrus near the 
cerebral falx was correctly recognized. The remaining faint cortical and subcortical lesions of the frontal lobe, which are hyperintense compared to the 
contralateral hemisphere on day 1 (A.1) and clearly demarcated as part of the acute stroke on follow-up imaging on day 2 (A.2), were not recognized 
by the StrokeSegApp. The dice score is poor (0.11), the program only delineates 2.13 mL of the 31.73 mL lesion. (A.1) blank scan used for segmentation, 
(A.2) follow-up imaging on day 2, (B) ground truth ROI, (C) StrokeSegApp ROI, (D) both ROI superimposed, whereby orange indicates areas of 
overlapping mapping, yellow shows areas missed by the StrokeSegApp and red displays diffusion deficits overestimated by the application.
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is interpreted more holistically without adhering rigidly to specific 
thresholds. Additionally, some degree of interrater variability is 
expected, both in human and software analyses, which underscores 
the challenges of achieving perfect alignment.

A direct comparison of Siemens Healthineers’ software with other 
programs that are commercially available cannot be  made, as 
publications on segmentation performance in ischemic strokes rarely 
include a comparison of spatial overlap and volumetric congruence 
between the software providing automated segmentation and a 
ground truth. In contrast, the number of publications on the 

performance of non-commercial applications for segmenting diffusion 
lesions is quite high—mostly with the provision of dice scores. In a 
study also using data from the 1000Plus study (but not using the same 
cohort as here), the algorithm developed by the research group 
achieved a DSC of 0.43 compared to manual segmentations (37). The 
ISLES challenges—an open competition to foster the development and 
innovation of advanced tools for ischemic stroke analysis—reflect the 
development in ischemic stroke lesion segmentation of non-profit 
participants as a steady improvement. While the top  2018 model 
reached a dice score of 0.51, recent advancements have pushed this to 

FIGURE 5

Example of a regionally correct segmentation in DWI with a high dice score (0.87), but a large deviation in lesion volumes. For such large lesions, even 
slight discrepancies in the thresholds used for delineation by the radiologist and segmentation software, respectively, can lead to large absolute 
differences in volume. In this case, the StrokeSegApp overestimated the DWI volume by 64.35 mL. However, at that end of the range, such 
thresholding differences would not typically have clinical relevance; therefore, pure volumetric comparisons are not necessarily the most suitable 
metric for quantifying a program’s performance. (A) Blank scan used for segmentation, (B) ground truth ROI, (C) StrokeSegApp ROI, and (D) both ROI 
superimposed, whereby orange indicates areas of overlapping mapping, yellow shows areas missed by the StrokeSegApp and red displays diffusion 
deficits overestimated by the application.

FIGURE 6

Box plots of dice coefficient (DSC) for the diffusion segmentation (A) and the perfusion segmentation (B).
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0.69, and the 2022 challenge has seen scores as high as 0.78, 
demonstrating progress in segmentation accuracy across different 
imaging modalities (38).

The StrokeSegApp can compete with those results and performs 
comparably to commercial software solutions on which data are 
available. In one publication (n = 131), RapidAI showed a mean 
deviation of diffusion lesion volumes of −1.95 mL (StrokeSegApp: 
0.49 mL) with limits of agreement of −12.89 mL to 9 mL 
(StrokeSegApp: −19.51 mL to 20.91 mL) (39). The e-Stroke software 
distributed by Brainomix showed a mean volume deviation of 4 mL 
in the segmentation of CT perfusion for determining the infarct core 

(n = 551) (40). OleaSphere from Olea Medical achieved a dice score 
of 0.52 (StrokeSegApp: 0.60) compared to a ground truth segmented 
by physicians using DWI (n = 75) (41).

Regarding perfusion, a study using RapidAI reported a mean 
deviation of 7.60 mL (StrokeSegApp: −7.69 mL) from a reference 
determined by radiologists (n = 18) (25). In using more than just a 
mere volumetric comparison, our voxel-based approach to the 
validation of perfusion segmentation against a ground truth adds an 
additional level of rigor in terms of validation of automated 
segmentation software as compared to the current literature. This 
underlines the need for a standardized guideline for evaluation 

FIGURE 7

(A) Bland–Altman plot shows the agreement between radiologist and StrokeSegApp for volumes of perfusion lesions. (B) Scatter plot shows the 
relationship between manual ROI volume and dice coefficient for the automated segmentation. The line represents smoothed conditional means.

FIGURE 8

Regionally accurate segmentation in PWI on Tmax maps thresholded to 6 s, achieving a DSC of 0.71. However, it also displays a significant discrepancy 
in lesion volumes. The StrokeSegApp underestimates the extensive deficit, which measures 199.83 mL, by 77.65 mL. This case is representative of the 
fact that a comparison of volumes can only be used to a limited extent to assess segmentation performance. (A) Blank scan used for segmentation, 
(B) ground truth ROI, (C) StrokeSegApp ROI, and (D) both ROI superimposed, whereby orange indicates areas of overlapping mapping, yellow shows 
areas missed by the StrokeSegApp, and red displays perfusion deficits overestimated by the application.
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metrics, as proposed by Müller et al. (22), which helps manufacturers 
align their evaluations and enables a robust comparison of the relative 
strengths and weaknesses of different AI applications. With a dice 
score of 0.8 (or 0.85 for lesions ≥10 mL), the StrokeSegApp shows very 
good overlap with human raters and sets standards for current and 
future applications.

In a real-time clinical context, the StrokeSegApp could 
be  integrated either directly at the scanner or at a connected 
processing node, where the calculation is automatically triggered 
upon the arrival of new data. With both approaches the resulting 
DICOM image and report data could be delivered to the PACS 
reading station. Current calculation times for the entire stroke 
segmentation pipeline range from approximately 1–2 min on 
standard computer hardware making the use of the software feasible 
in an actual clinical workflow. The processing time can increase 
considerably in cases with substantial artifacts, such as excessive 
patient movement. Beyond delays, poor contrast and strong noise 
can also adversely affect the analysis. This occurs in two main ways. 
First, poor contrast in the original perfusion-weighted images, 
particularly when the contrast bolus dip is reduced, can degrade the 
quality of pre-fusion map generation. Second, segmentation 
performance may decline, as it is closely tied to the accuracy of the 
perfusion maps. To address these challenges, Siemens has 
implemented a method in the current software version that 
automatically rejects processing if minimal quality requirements are 
not met. The rejection criteria include: (a) insufficient contrast 
bolus drop in the PWI data relative to baseline noise, (b) excessive 
motion artifacts between timepoints, and (c) an arterial input 
function that is too weak to produce accurate perfusion maps. The 
output includes, in addition to the endpoint results (mismatch 
volumes and ratio) visualizations of segmented lesions in the 
context of the original data, details about the arterial input function 
used in the calculation, and brain extraction masks. This additional 
information aids radiologists in decision-making, builds trust in the 
derived values, and helps identify errors in cases where the 
automatic calculation fails. Incorporating mechanisms for users to 
provide feedback about the application to the manufacturer would 
further enhance its usability and reliability.

The integration of AI into neuroimaging, particularly in the 
context of segmenting stroke lesions, demonstrates the transformative 
potential for diagnostic and therapeutic advancements but also raises 
significant ethical concerns. A core challenge lies in the dependency 
of AI models on the quality and consistency of input data, spanning 
training, validation, and clinical application phases. Errors stemming 
from algorithmic biases in segmentation (42) can directly affect 
clinical decisions and patient outcomes. Moreover, ensuring a diverse 
and representative dataset for training and validation is critical to 
addressing disparities in healthcare (43), especially for marginalized 
groups, who risk underrepresentation in neuroimaging repositories 
(44). The necessity for transparency in training strategies, algorithmic 
decisions, and the management of sensitive patient data is paramount 
(44). This transparency ensures ethical AI deployment, builds trust, 
and enhances clinical applicability. Collaborative interdisciplinary 
approaches that merge clinical, technical, and ethical expertise are 
essential to mitigate biases and promote equitable AI applications 
across diverse populations.

Our results should be  viewed in the context of the study’s 
limitations. This is a single-center retrospective analysis of data 
acquired between 2009 and 2013; therefore, we cannot rule out that 
the StrokeSegApp may perform differently on data acquired using 
contemporary scanning protocols. The ground truth comes from 
manual segmentation, which is prone to subjective variability.

7 Conclusion

The Siemens Healthineers StrokeSegApp provides automated 
segmentation of diffusion and dynamic susceptibility contrast 
perfusion on MR images in acute ischemic stroke patients, achieving 
a high degree of accuracy compared to a human expert. Therefore, it 
is comparable to other existing and already commercially 
available solutions.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors without undue reservation.

Ethics statement

The studies involving humans were approved by Ethikkommission 
der Charité  – Universitätsmedizin Berlin EA4/026/08. This 
retrospective study used data from the 1000Plus study (clinicaltrials.
org; NCT00715533). All study participants gave informed consent for 
participation in the study.

Author contributions

L-ST: Conceptualization, Data curation, Formal analysis, 
Funding acquisition, Investigation, Methodology, Project 
administration, Software, Visualization, Writing  – original draft, 
Writing – review & editing, Validation. AK: Data curation, Formal 
analysis, Investigation, Methodology, Validation, Writing – review & 

TABLE 2 Cross-tabulation of decisions for or against MT based on data 
from the radiologist (ground truth) and the StrokeSegApp.

Ground 
truth: MT 
indicated

Ground 
truth: MT 

not indicated

Total

StrokeSegApp: MT 

indicated
23 1 24

StrokeSegApp: MT 

not indicated
5 27 32

Total 28 28 56

Sensitivity Specificity Likelihood Ratio 
(LR)

LR+ LR−
82.1% 96.4% 22.81 0.19

95% CI: 63.1–93.9% 95% CI: 81.7–99.9%
95% CI: 

5.13–631

95% CI: 

0.06–0.45

https://doi.org/10.3389/fneur.2025.1518477
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://clinicaltrials.org
http://clinicaltrials.org


Teichmann et al. 10.3389/fneur.2025.1518477

Frontiers in Neurology 11 frontiersin.org

editing. KV: Data curation, Resources, Writing – review & editing. 
JF: Supervision, Writing – review & editing. SH: Software, Writing – 
review & editing. EG: Software, Writing  – review & editing. IG: 
Conceptualization, Data curation, Funding acquisition, 
Investigation, Methodology, Project administration, Resources, 
Supervision, Validation, Writing – original draft, Writing – review 
& editing.

Funding

The author(s) declare that financial support was received for the 
research, authorship, and/or publication of this article. Funding for 
part of the publication costs of this article is provided by the Charité 
Open Access Publication Fund.

Acknowledgments

The authors gratefully acknowledge Uchralt Temuulen and Ralf 
Mekle for their consulting and technical support.

Conflict of interest

Outside the submitted work JF reports consulting and advisory 
board fees from AbbVie, AC Immune, Alnylam Pharmaceuticals, 
Alzheon, Artemida, BioClinica/Clario, Biogen, Bristol Myers Squibb, 
Brainomix, Cerevast, C2N Diagnostics, Daiichi-Sankyo, EISAI, Eli 

Lilly, F. Hoffmann-LaRoche AG, GlaxoSmithKline, Guerbet, Ionis 
Pharmaceuticals, IQVIA, Janssen, Julius Clinical, jung diagnostics, 
Lantheus Medical Imaging, Lumosa Therapeutics, Merck, Novo 
Nordisk, Octapharma AG, Premier Research, ProPharma Group, 
Prothena Biosciences, Regeneron Pharmaceuticals, Roche, Syneos, 
Tau Rx, Vertex Pharmaceuticals, and Worldwide Clinical Trials.

SH and EG were employed by company Siemens Healthineers AG 
and developed and provided the StrokeSegApp.

The remaining authors declare that the research was conducted in 
the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

The author(s) declared that they were an editorial board member 
of Frontiers, at the time of submission. This had no impact on the peer 
review process and the final decision.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
 1. Campbell BCV, Khatri P. Stroke. Lancet. (2020) 396:129–42. doi: 10.1016/

S0140-6736(20)31179-X

 2. Donkor ES. Stroke in the 21(st) century: a snapshot of the burden, epidemiology, 
and quality of life. Stroke Res Treat. (2018) 2018:3238165. doi: 10.1155/2018/3238165

 3. Lin MP, Tsivgoulis G, Alexandrov AV, Chang JJ. Factors affecting clinical outcome 
in large-vessel occlusive ischemic strokes. Int J Stroke. (2015) 10:479–84. doi: 10.1111/
ijs.12406

 4. Czap AL, Sheth SA. Overview of imaging modalities in stroke. Neurology. (2021) 
97:S42–s51. doi: 10.1212/WNL.0000000000012794

 5. Go KG. The normal and pathological physiology of brain water. Adv Tech Stand 
Neurosurg. (1997) 23:47–142. doi: 10.1007/978-3-7091-6549-2_2

 6. Tong E, Sugrue L, Wintermark M. Understanding the neurophysiology and 
quantification of brain perfusion. Top Magn Reson Imaging. (2017) 26:57–65. doi: 
10.1097/RMR.0000000000000128

 7. Yi Y, Liu Z, Wang M, Sun M, Jiang X, Ma C, et al. Penumbra in acute ischemic stroke. 
Curr Neurovasc Res. (2021) 18:572–85. doi: 10.2174/1567202619666211231094046

 8. Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, et al. 
Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl 
J Med. (2018) 378:708–18. doi: 10.1056/NEJMoa1713973

 9. Deutsche Gesellschaft für Neurologie (DGN). Acute therapy of ischemic stroke. 5th 
edition. Berlin: DGN. (2023). Available from: https://dgn.org/leitlinie/akuttherapie-des-
ischamischen-schlaganfalls (Accessed April 14, 2024).

 10. Berge E, Whiteley W, Audebert H, De Marchis GM, Fonseca AC, Padiglioni C, 
et al. European stroke organisation (ESO) guidelines on intravenous thrombolysis 
for acute ischaemic stroke. Eur Stroke J. (2021) 6:I–lxii. doi: 
10.1177/2396987321989865

 11. Krizhevsky A, Sutskever I, Hinton GE. Image net classification with deep 
convolutional neural networks. Commun ACM. (2017) 60:84–90. doi: 
10.1145/3065386

 12. Lui YW, Chang PD, Zaharchuk G, Barboriak DP, Flanders AE, Wintermark M, 
et al. Artificial intelligence in neuroradiology: current status and future directions. AJNR 
Am J Neuroradiol. (2020) 41:E52–9. doi: 10.3174/ajnr.A6681

 13. Olthof AW, van Ooijen PMA, Rezazade Mehrizi MH. Promises of artificial 
intelligence in neuroradiology: a systematic technographic review. Neuroradiology. 
(2020) 62:1265–78. doi: 10.1007/s00234-020-02424-w

 14. Yedavalli VS, Tong E, Martin D, Yeom KW, Forkert ND. Artificial intelligence in 
stroke imaging: current and future perspectives. Clin Imaging. (2021) 69:246–54. doi: 
10.1016/j.clinimag.2020.09.005

 15. Ben Alaya I, Limam H, Kraiem T. Applications of artificial intelligence for DWI 
and PWI data processing in acute ischemic stroke: current practices and future 
directions. Clin Imaging. (2022) 81:79–86. doi: 10.1016/j.clinimag.2021.09.015

 16. Bridge CP, Bizzo BC, Hillis JM, Chin JK, Comeau DS, Gauriau R, et al. 
Development and clinical application of a deep learning model to identify acute infarct 
on magnetic resonance imaging. Sci Rep. (2022) 12:2154. doi: 10.1038/
s41598-022-06021-0

 17. Krag CH, Müller FC, Gandrup KL, Raaschou H, Andersen MB, Brejnebøl MW, 
et al. Diagnostic test accuracy study of a commercially available deep learning algorithm 
for ischemic lesion detection on brain MRIs in suspected stroke patients from a non-
comprehensive stroke center. Eur J Radiol. (2023) 168:111126. doi: 10.1016/j.
ejrad.2023.111126

 18. Nael K, Gibson E, Yang C, Ceccaldi P, Yoo Y, Das J, et al. Automated detection of 
critical findings in multi-parametric brain MRI using a system of 3D neural networks. 
Sci Rep. (2021) 11:6876. doi: 10.1038/s41598-021-86022-7

 19. Subudhi A, Dash P, Mohapatra M, Tan RS, Acharya UR, Sabut S. Application of 
machine learning techniques for characterization of ischemic stroke with MRI images: 
a review. Diagnostics (Basel). (2022) 12:2535. doi: 10.3390/diagnostics12102535

 20. Deutschmann H, Hinteregger N, Wießpeiner U, Kneihsl M, Fandler-Höfler S, 
Michenthaler M, et al. Automated MRI perfusion-diffusion mismatch estimation may 
be significantly different in individual patients when using different software packages. 
Eur Radiol. (2021) 31:658–65. doi: 10.1007/s00330-020-07150-8

https://doi.org/10.3389/fneur.2025.1518477
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://doi.org/10.1016/S0140-6736(20)31179-X
https://doi.org/10.1016/S0140-6736(20)31179-X
https://doi.org/10.1155/2018/3238165
https://doi.org/10.1111/ijs.12406
https://doi.org/10.1111/ijs.12406
https://doi.org/10.1212/WNL.0000000000012794
https://doi.org/10.1007/978-3-7091-6549-2_2
https://doi.org/10.1097/RMR.0000000000000128
https://doi.org/10.2174/1567202619666211231094046
https://doi.org/10.1056/NEJMoa1713973
https://dgn.org/leitlinie/akuttherapie-des-ischamischen-schlaganfalls
https://dgn.org/leitlinie/akuttherapie-des-ischamischen-schlaganfalls
https://doi.org/10.1177/2396987321989865
https://doi.org/10.1145/3065386
https://doi.org/10.3174/ajnr.A6681
https://doi.org/10.1007/s00234-020-02424-w
https://doi.org/10.1016/j.clinimag.2020.09.005
https://doi.org/10.1016/j.clinimag.2021.09.015
https://doi.org/10.1038/s41598-022-06021-0
https://doi.org/10.1038/s41598-022-06021-0
https://doi.org/10.1016/j.ejrad.2023.111126
https://doi.org/10.1016/j.ejrad.2023.111126
https://doi.org/10.1038/s41598-021-86022-7
https://doi.org/10.3390/diagnostics12102535
https://doi.org/10.1007/s00330-020-07150-8


Teichmann et al. 10.3389/fneur.2025.1518477

Frontiers in Neurology 12 frontiersin.org

 21. Wardlaw JM, Mair G, von Kummer R, Williams MC, Li W, Storkey AJ, et al. 
Accuracy of automated computer-aided diagnosis for stroke imaging: a critical 
evaluation of current evidence. Stroke. (2022) 53:2393–403. doi: 10.1161/
STROKEAHA.121.036204

 22. Müller D, Soto-Rey I, Kramer F. Towards a guideline for evaluation metrics in medical 
image segmentation. BMC Res Notes. (2022) 15:210. doi: 10.1186/s13104-022-06096-y

 23. Hotter B, Pittl S, Ebinger M, Oepen G, Jegzentis K, Kudo K, et al. Prospective study 
on the mismatch concept in acute stroke patients within the first 24 h after symptom 
onset -1000Plus study. BMC Neurol. (2009) 9:60. doi: 10.1186/1471-2377-9-60

 24. Ducroux C, Khoury N, Lecler A, Blanc R, Chetrit A, Redjem H, et al. Application 
of the DAWN clinical imaging mismatch and DEFUSE 3 selection criteria: benefit seems 
similar but restrictive volume cut-offs might omit potential responders. Eur J Neurol. 
(2018) 25:1093–9. doi: 10.1111/ene.13660

 25. Lansberg MG, Straka M, Kemp S, Mlynash M, Wechsler LR, Jovin TG, et al. MRI 
profile and response to endovascular reperfusion after stroke (DEFUSE 2): a prospective 
cohort study. Lancet Neurol. (2012) 11:860–7. doi: 10.1016/S1474-4422(12)70203-X

 26. Ostergaard L, Sorensen AG, Kwong KK, Weisskoff RM, Gyldensted C, Rosen BR. 
High resolution measurement of cerebral blood flow using intravascular tracer bolus 
passages. Part II: experimental comparison and preliminary results. Magn Reson Med. 
(1996) 36:726–36. doi: 10.1002/mrm.1910360511

 27. Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. High 
resolution measurement of cerebral blood flow using intravascular tracer bolus passages. 
Part I: mathematical approach and statistical analysis. Magn Reson Med. (1996) 
36:715–25. doi: 10.1002/mrm.1910360510

 28. Wu O, Østergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG. Tracer 
arrival timing-insensitive technique for estimating flow in MR perfusion-weighted 
imaging using singular value decomposition with a block-circulant deconvolution 
matrix. Magn Reson Med. (2003) 50:164–74. doi: 10.1002/mrm.10522

 29. Calamante F, Gadian DG, Connelly A. Quantification of bolus-tracking MRI: 
improved characterization of the tissue residue function using Tikhonov regularization. 
Magn Reson Med. (2003) 50:1237–47. doi: 10.1002/mrm.10643

 30. Gall P, Emerich P, Kjølby BF, Kellner E, Mader I, Kiselev VG. On the design of 
filters for Fourier and oSVD-based deconvolution in bolus tracking perfusion MRI. 
MAGMA. (2010) 23:187–95. doi: 10.1007/s10334-010-0217-8

 31. Ebinger M, Brunecker P, Jungehülsing GJ, Malzahn U, Kunze C, Endres M, et al. Reliable 
perfusion maps in stroke MRI using arterial input functions derived from distal middle cerebral 
artery branches. Stroke. (2010) 41:95–101. doi: 10.1161/STROKEAHA.109.559807

 32. Mouridsen K, Christensen S, Gyldensted L, Ostergaard L. Automatic selection of 
arterial input function using cluster analysis. Magn Reson Med. (2006) 55:524–31. doi: 
10.1002/mrm.20759

 33. Bertels J, Eelbode T, Berman M, Vandermeulen D, Maes F, Bisschops R, et al. 
Optimizing the dice score and Jaccard index for medical image segmentation. Theory 
Pract. (2019). doi: 10.1007/978-3-030-32245-8_11

 34. Taha AA, Hanbury A. Metrics for evaluating 3D medical image segmentation: analysis, 
selection, and tool. BMC Med Imaging. (2015) 15:29. doi: 10.1186/s12880-015-0068-x

 35. Zhao G, Yoo Y, Re TJ, Das J, Hesheng W, Kim MM, et al. 3D-2D GAN based brain 
metastasis synthesis with configurable parameters for fully 3D data augmentation. In: 
Colliot O, Isgum I, editors. Medical Imaging 2023: Image Processing. SPIE. (2023) p. 
124640J. doi: 10.1117/12.2654281

 36. Yoo Y, Gibson E, Zhao G, Re TJ, Parmar H, Das J, et al. Extended nn U-net for 
brain metastasis detection and segmentation in contrast-enhanced magnetic resonance 
imaging with a large multi-institutional data set. Int J Radiat Oncol Biol Phys. (2025) 
121:241–9. doi: 10.1016/j.ijrobp.2024.07.2318

 37. Gosch V, Villringer K, Galinovic I, Ganeshan R, Piper SK, Fiebach JB, et al. 
Automated acute ischemic stroke lesion delineation based on apparent diffusion 
coefficient thresholds. Front Neurol. (2023) 14:1203241. doi: 10.3389/fneur.2023.1203241

 38. Wagner DT, Tilmans L, Peng K, Niedermeier M, Rohl M, Ryan S, et al. Artificial 
intelligence in neuroradiology: a review of current topics and competition challenges. 
Diagnostics (Basel). (2023) 13:2670. doi: 10.3390/diagnostics13162670

 39. Kim YC, Lee JE, Yu I, Song HN, Baek IY, Seong JK, et al. Evaluation of diffusion lesion 
volume measurements in acute ischemic stroke using encoder-decoder convolutional 
network. Stroke. (2019) 50:1444–51. doi: 10.1161/STROKEAHA.118.024261

 40. Mallon D, Fallon M, Blana E, McNamara C, Menon A, Ip CL, et al. Real-world 
evaluation of Brainomix e-stroke software. Stroke Vasc Neurol. (2023) 9:497–504. doi: 
10.1136/svn-2023-002859

 41. Woo I, Lee A, Jung SC, Lee H, Kim N, Cho SJ, et al. Fully automatic segmentation 
of acute ischemic lesions on diffusion-weighted imaging using convolutional neural 
networks: comparison with conventional algorithms. Korean J Radiol. (2019) 
20:1275–84. doi: 10.3348/kjr.2018.0615

 42. Lock C, Tan NSM, Long IJ, Keong NC. Neuroimaging data repositories and AI-driven 
healthcare-global aspirations vs. ethical considerations in machine learning models of 
neurological disease. Front Artif Intell. (2023) 6:1286266. doi: 10.3389/frai.2023.1286266

 43. Borchert RJ, Azevedo T, Badhwar A, Bernal J, Betts M, Bruffaerts R, et al. Artificial 
intelligence for diagnostic and prognostic neuroimaging in dementia: a systematic 
review. Alzheimers Dement. (2023) 19:5885–904. doi: 10.1002/alz.13412

 44. Boyle AJ, Gaudet VC, Black SE, Vasdev N, Rosa-Neto P, Zukotynski KA. Artificial 
intelligence for molecular neuroimaging. Ann Transl Med. (2021) 9:822. doi: 10.21037/
atm-20-6220

https://doi.org/10.3389/fneur.2025.1518477
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://doi.org/10.1161/STROKEAHA.121.036204
https://doi.org/10.1161/STROKEAHA.121.036204
https://doi.org/10.1186/s13104-022-06096-y
https://doi.org/10.1186/1471-2377-9-60
https://doi.org/10.1111/ene.13660
https://doi.org/10.1016/S1474-4422(12)70203-X
https://doi.org/10.1002/mrm.1910360511
https://doi.org/10.1002/mrm.1910360510
https://doi.org/10.1002/mrm.10522
https://doi.org/10.1002/mrm.10643
https://doi.org/10.1007/s10334-010-0217-8
https://doi.org/10.1161/STROKEAHA.109.559807
https://doi.org/10.1002/mrm.20759
https://doi.org/10.1007/978-3-030-32245-8_11
https://doi.org/10.1186/s12880-015-0068-x
https://doi.org/10.1117/12.2654281
https://doi.org/10.1016/j.ijrobp.2024.07.2318
https://doi.org/10.3389/fneur.2023.1203241
https://doi.org/10.3390/diagnostics13162670
https://doi.org/10.1161/STROKEAHA.118.024261
https://doi.org/10.1136/svn-2023-002859
https://doi.org/10.3348/kjr.2018.0615
https://doi.org/10.3389/frai.2023.1286266
https://doi.org/10.1002/alz.13412
https://doi.org/10.21037/atm-20-6220
https://doi.org/10.21037/atm-20-6220

	Evaluation of Siemens Healthineers’ StrokeSegApp for automated diffusion and perfusion lesion segmentation in patients with ischemic stroke
	1 Introduction
	2 Methods
	2.1 Study design
	2.2 Participants
	2.3 Image acquisition

	3 Test methods
	3.1 Ground truth
	3.2 Index test

	4 Analysis
	4.1 Approaches for evaluating metrics of diagnostic precision
	4.1.1 Diffusion cohort
	4.1.2 DEFUSE-like cohort

	5 Results
	5.1 Participants
	5.2 Test results for the diffusion cohort
	5.3 Test results for DEFUSE-like cohort

	6 Discussion
	7 Conclusion

	References

