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Robot-assisted arm training (RAAT) has demonstrated promising potential in 
improving rehabilitation outcomes for individuals with neurological conditions, 
particularly stroke. Despite 20 years of their use in clinical and research settings, 
there are still significant needs to be made concerning clinical indications. In the 
present perspective manuscript, we provide some hypotheses of the suitability 
of different RAAT according to the features of the available devices and clinical 
characteristics, showing their limitations and strengths. Several factors were 
considered in the optimization of RAAT intervention, including the technological 
characteristics of the devices (e.g., support and constriction), the residual upper 
limb motor function, and the clinical phase of stroke. Finally, we outline key areas 
for improvement to advance the field in the near future and provide neuroscientific 
bases for hypotheses of tailored RAAT training to improve the outcome of robotic 
rehabilitation.
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Introduction

Robot Assisted Arm Training (RAAT) has long been envisaged as a strategy to enhance 
arm motor recovery after a stroke (1). Significant efforts have been made toward identifying 
the neural mechanisms underlying RAAT and their relationship with improved motor 
recovery (2–5). The rationale behind the application of robots in stroke rehabilitation is that 
RAAT involves areas of the brain that govern movement planification and execution by early, 
standardized, repeatable and intense mobilization of the patient’s arm (6, 7). Such reiterated 
engagement of motor areas is intended to influence brain plasticity phenomena, improving 
functional outcomes (8). The role of an early mobilization after stroke is well recognized in 
literature to reduce acute phase complications and improve functional outcomes, especially to 
more severely affected people (9).

Interestingly, to be task-oriented the RAAT often embedded a system for serious-game 
technology on which a digital task runs allowing the patient to interact with it, for providing 
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to him/her the execution of task oriented movements and giving 
visual and acoustic feedback of his/her performance. Despite robots 
and serious videogames (implemented using virtual reality or on a 
screen) are two clearly distinct technologies, the common 
combination in RAAT implies some motor and cognitive links that 
contribute to enhancing hand and arm sensory-motor areas (10), as 
well as cognitive functions (11) but makes more difficult to 
discriminate the specific effect attributed to the robotic system itself, 
leading to observe cognitive effects of upper limb robotic therapy 
(12, 13).

Nowadays, evidence for a clinical benefit of RAAT is 
consolidated as per Cochrane collaboration and in several stroke 
national guidelines (14, 15). Nonetheless a recent large, randomized, 
controlled trial in people with subacute stroke reported no 
significant clinical improvement of RAAT vs. enhanced upper limb 
therapy (16).

There are different devices for the upper limb that can 
be distinguished firstly in electromechanical devices vs. robots (being 
the second adaptable to the patient’s motor behavior during the task), 
on the basis of clinical characteristics (interactive/assistive), based on 
technical characteristics (Exoskeleton/End-effector, number of active 
and/or passive degree of Freedom, Bilateral/Uilateral, distal/proximal, 
feedback, Wearability, Environment [Real, Virtual], Assistance 
modality, Recorded parameters [Range of motion, Force, Kinematics], 
Control system [Force, Range of motion, Impedance, EMG] and 
Movement dimension [1D/2D/3D]) (17–19).

The main point to be  improved regarding the RAAT, and in 
general to the translational sciences of the robots applied to 
rehabilitation, is to define the best practices related to the clinical 
characteristics of individuals that might benefit from a specific type of 
robot (i.e., exoskeleton/end effector, constrictive characteristics, 
degree of freedom, cognitive load, movement intention detection, 
and more).

Although physicians and customers have been looking for 
solutions to the robotic clinical protocol problem for decades, it is still 
challenging to find the best candidates for RAAT. Actually, assessing 
the literature by itself is insufficient to reach this conclusion because 
each RCT is biased by its design, which assesses overall efficacy rather 
than the beneficiary’s functional characteristics. According to the 
Precision Medicine Initiative, that promotes an emerging approach for 
disease treatment and prevention that considers individual variability 
(20), and to previous studies that changed the research question from 
“is robotic treatment effective?” into “who may benefit from robotic 
therapy?” (21–23), we hypothesized possible indications on the use of 
RAAT considering rehabilitation objectives, persons functional 
characteristics, and time from stroke acute event. This manuscript 
aims to provide neuroscientific bases for hypotheses of personalized 
robotic training.

Specifically, we will analyze some fundamental aspects that need 
to be  considered from researchers and clinicians for a better 
integration of robotic training in the rehabilitation project of 
individuals with stroke. We  will analyze the characteristics of the 
machine according to the patient’s motor possibilities, the cognitive-
motor interactions during the execution of robotic functional tasks 
(24), the continuum of care through the different settings, the 
importance of contrasting the phenomenon of non-use learning, the 
functional cross talk between hand and upper limb recovery and 
finally the personalization of robotic therapy.

Machine constriction vs. arm 
functionality: hypothesis for robot 
clinical use

The term “machine constriction” in the context of robotic devices 
for motor recovery in people with stroke likely refers to the physical 
and functional limitations that a machine, like a robotic rehabilitation 
device, can impose on a patient during therapy (17). These 
constrictions could involve:

 1 Physical restraints: The robotic device might physically limit 
or guide the movement of a patient’s limb to ensure it follows a 
controlled range of motion. This can prevent unsafe or 
incorrect movements but may also feel restrictive if the 
machine over constrains the motion (17).

 2 Assistance level or weight support: Some robotic devices may 
constrict the amount of assistance or resistance they provide 
during therapy. For instance, they may limit how much they aid 
or oppose the patient’s movements, depending on the patient’s 
ability to move on their own (17–19).

 3 Degree of freedom: Robotic systems may have a limited 
number of degrees of freedom (DoF), meaning they allow 
motion only in certain directions or planes. This is a form of 
“constriction” that simplifies the movement patterns for 
rehabilitation but may not fully mimic the complexity of 
human movements (17–19).

 4 Best candidate: Even if robotic devices have a wide margin of 
adaptability based on the functionality of the patient, they are 
built taking in mind a specific type of patient, which is the best 
candidate. That is, the ideal patient who, due to the specific 
phase of the event, cognitive and motor functional condition, 
can benefit from a specific robotic treatment (23).

In the context of stroke recovery:

 • Device constriction can ensure safe rehabilitation by guiding a 
patient’s movement in a specific, therapeutically beneficial way. 
It can help train specific muscles and neural pathways damaged 
by the stroke.

 • However, too much constriction can prevent the patient from 
using their muscles and motor control fully, limiting the 
effectiveness of the therapy and possibly hindering the recovery 
of motor independence.

A balance between assistance and freedom of movement is critical 
for optimizing motor recovery in people with stroke using robotic 
devices (23).

Using the “from efficacy for all to all for efficacy” approach (23, 
25, 26), in this section we report the best practice for addressing 
patients to the best RAAT-related treatment. First, to maintain an 
intensive exercise with specific and timely tasks, in more 
compromised persons it is useful to use an exoskeleton that 
guarantees better motor control. When the patient recovers or if he/
she already has some degree of muscle activity, end-effectors (that 
move the hand for moving the whole kinematic chain of the upper 
limb) can also be used (27, 28). In case of persons with mild to 
moderate impairment, sensor-based devices can be used (29). If the 
patient has a very mild disability, a conventional/ occupational 
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approach with dedicated functional exercises in an ecological 
environment (without typical constriction provided by the robots) 
is often the best solution (2). This hypothesis of robot uses according 
to persons’ functionality is in line with the principles that in the face 
of a lower possibility of voluntary movement of the patient, a greater 
possibility of the robot to control and implement the movements of 
the upper limb and hand must correspond to a greater possibility of 
the robot (23, 26). Furthermore, this theory is consistent with recent 
research showing that persons who are more severely affected are 
the ones who stand to gain the most from robotic therapy (27, 
30, 31).

It is of note that the relationship between intensity of training and 
recovery is not linear. Pila et  al. recently analyzed responders vs. 
non-responder after RAAT noting that non responders do not 
improve arm functionality even in presence of an increase of RAAT 
intensity. Authors concluded that probably it is important to match 
training dose with robot parameters to allow a better functional 
recovery mediated by robot therapy (32). It is hypothesized that, 
despite the high intensity attained even in the more severely affected 
persons, the robot’s constriction is insufficient to achieve a clinically 
significant improvement in light of these results and the fact that arm 
sensory motor recovery depends on more than just training intensity.

It is also important to underline that a correct stratification of 
patients must inevitably consider the adaptability of the device to 
administer an exercise that leads to better performance during the 
exercise (i.e., increased participation, intra-session functional 
increase). Correct patient stratification and/or better robot 
identification will be  the basis for creating evidence of greater 
robustness in the near future to avoid the mistakes made in the recent 
past. This section is well-articulated but could benefit from a more 
explicit discussion on patient stratification and device adaptability, 
particularly for future research directions.

Figure  1 presents a graphical representation of a possible 
hypothesis of treating arm paresis with a robot, allowing adequate 
intensity even for more severe persons and according to stroke phase, 
thanks to the robot characteristics. The functional status of the upper 
limb was stratified using the Fugl-Meyer Assessment scale for the 
Upper Extremity (FMA-UE), where a higher score indicates better 
functionality. The classification of stroke phases followed the ESO 
guidelines for stroke rehabilitation.

To develop our treatment hypothesis, we  stratified the arm 
severity presented in Figure  1A according the FMA-UE cut-offs 
proposed by Woytowicz et al. (33) clustering the UL functional level 
as follow:

 • Severe (0–15): no hand, wrist, or multi-joint movements and 
limited to no movement from single joint extensor and flexor 
muscle synergies.

 • Severe–Moderate (16–34): marked impairment with no 
movement out of synergy and limited movement from single 
joint extensor and flexor synergies, hand, wrist, or multi-
joint movements.

 • Moderate–Mild (35-53): moderate impairment with limited 
movements out of synergy and partial impairment of single joint 
extensor and flexor synergies, hand, wrist, and multi-
joint movements.

 • Mild (54-66): minimal impairment and able to perform 
movements out of synergy with full movement of the arm.

Figure  1B shows the classification of stroke clinical phases 
following the ESO guidelines for stroke rehabilitation (34). It should 
be considered that in the acute and early subacute phase, functional 
impairment is certainly greater and therefore in this phase the use of 
robotic devices could be important, as it is crucial for the execution of 
complex tasks, and not only because neuroplasticity processes are 
more active (14, 15).

Machine feedback vs. cognitive 
reserve: implication for functional 
motor recovery

Over the past ten years, many paradigms for upper limb robotic 
rehabilitation have been completely or partially shifted from 
Bottom-up to Top-down training (3, 35, 36). This evolution can 
be attributed to the integration of visual interfaces, both immersive and 
non-immersive, with robotic systems. These interfaces enable the 
conversion of passive movements into a diverse array of task-oriented 
exercises that offer performance feedback, thereby engaging multiple 
cognitive functions during the learning process. These real-time and 
goal-directed feedback are well known key components to guide motor 
relearning (36). Furthermore, feedback can be manipulated in different 
ways, e.g., with error-based or positive-reinforcement mechanisms, by 
augmented or multiple feedback, real-time or after-performance 
feedback (37). It is also possible to insert during therapy a biofeedback/
neurofeedback, a powerful means to modulate dependent on the 
activity of sensorimotor cortical networks (38). The cognitive trigger 
is often allowed thanks to the countless feedback provided by the 2D 
screen (non-immersive virtual reality) or even sometimes with serious 
game content that elicits executive functions (memory tasks, attention, 
working memory, task switching) and helps to make rehabilitation 
more salient and motivating, eliciting neuroplasticity (39).

Patients’ interest can be further increased by combining immersive 
VR with RAAT (40). This scenario suggests that there will be more 
natural 3D feedback to the 3D arm workspace, together with a genuine 
sense of presence in the virtual world and the corresponding 
neurophysiological reactions (as shown by physiological reactions in 
terms of heart rate, blood pressure etc.) (41). During a training 
performed in a VR scenario, the first perspective of the avatar induces 
an embodiment and hence a sense of body ownership that might 
impact the way in which persons perform an action (42). Immersive 
VR has the potential to influence motor brain networks thanks to the 
possibility of modifying the perception of reality (43).

One unique and fascinating way to manipulate attention in 
addition to visual and auditory stimuli is through dual tasking, which 
can be done during robotic therapy. Because the patient struggles to 
manage two activities at once, this approach creates more challenging 
working conditions for them, but it has been demonstrated to 
be highly helpful for functional recovery (44). However, Ranzani and 
colleagues have recently shown that an equivalent dosage of 
neurocognitive training in people with subacute stroke does not result 
in less motor skills improvement than robot-assisted therapy of hand 
function using a neurocognitive approach (i.e., combining motor 
training with somatosensory and cognitive tasks) (45).

Dual tasking training is of particular interest in persons with 
disability from neurological origins for its role in motor performances 
and for predict cognitive decline (46–49), however in people with 
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stroke and with cognitive deficits it might lead to a global improvement 
of the cognitive function, which was supported by the improved 
neural efficiency of associated brain areas (50).

Continuum of care, subacute and 
chronic individuals, from hospital to 
home setting

An early discharge from hospital wards is necessary for the 
reduction of costs per individual patient and for an optimization of 

resources in rehabilitation of neurological conditions (51). Then, there 
is a need to treat patients at home or on the territory, once discharged 
from the subacute neurorehabilitation hospital, in continuity with 
what was done in the hospital. Telerehabilitation programs, for 
example, gave the opportunity to continue at home the task oriented 
and intensive training that was undertake in hospital (52). To this aim, 
robots can help, but smaller and more economic versions are needed 
to continue reaching the goals stated during the in-hospital training 
(53). The importance of continuum of care in upper limb and hand 
recovery is even greater than for other functions such as walking and 
balance. Indeed, upper limb function and the related activities of daily 

FIGURE 1

Hypothesis for the selection of RAAT to allow an adequate intensity of training, based on the technological characteristics of the devices and the 
functional status of the upper limb (A), and on the clinical phase of stroke (B). Adapted from Morone et al. (23). RAAT, robot assisted arm therapy; FMA-
UE, Fugl Mayer assessment—upper extremities.
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living may need clinically more time to recover, and important 
improvement may be observed also in the chronic phase. This scenario 
is supported by recent evidence that even in the chronic phase, 
intensive and task-oriented robotic training can lead to an 
improvement in motor control, and in some cases even a slight 
improvement in functionality (54–57). Continuing treatment is not 
only important from an economic point of view because it saves 
economic resources and makes care more efficient, but it is important 
from an ethical point of view, since patients can further improve 
functionally and in their quality of life. For technologies and robotics 
to play an important role in the scenario of the continuum of care, it 
will be necessary to plan easy-to-use, less expensive and more usable 
devices with simpler human-robot interfaces.

Arm related learning non-use and the 
importance of the early arm training 
and of the bimanual exercises

In the 1990s, Taub thoroughly explained the phenomenon of 
learning that has since allowed us to understand various mechanisms 
of maladaptive plasticity (58). Clinically, this maladaptive plasticity 
manifests as non-use, pain, and spasticity. This phenomenon is 
significantly more noticeable in the upper limbs because many daily 
activities can be performed with just one arm, supplying affected arm/
hand reduced functionality (59, 60). Starting from these 
neuroscientific principles, robotic rehabilitation should be promoted 
as soon as possible and with adequate intensity, affected arm 
movement with goal-oriented functional exercises (61). Furthermore, 
the addition of other devices such as virtual reality, transcranial 
stimulations, should provide highly personalized rehabilitation 
exercises to counteract the phenomenon of maladaptive plasticity and 
promote the recovery of bimanual activities (62). In fact, bimanual 
activities recovery depends on the extent of corticospinal tract injury 
and initial sensory and cognitive impairments (63) and are directly 
related to the patient’s return to work and to the people community 
life. This should be promoted not only thanks to bimanual robots 
(Exoskeleton or end-effector) (5), but even implementing, for 
example, unilateral robots with appropriate Augmented Reality/
Virtual Reality bimanual training. Bimanual cooperation, in fact, plays 
a vital role in functions of the upper extremity and daily activities and 
re-training bimanual force coordination in stroke survivors could 
facilitate a higher degree of participation in daily activities (64, 65). It 
is of note that the integration of both hands in a rehabilitation task led 
to cross-education and bilateral transfer of sensory motor learning 
phenomena between less affected hand (i.e., non-affected hand) to 
more affected hand that might increase functional recovery (66, 67).

Arm recovery and hand recovery, 
proximo-distal approaches vs. 
disto-proximal approaches

The hand and the upper limb are two very distinct body structures 
with very distinct functionality (mainly grasping and reaching, 
respectively) (68). To improve distal part of the arm (hand and wrist) 
and decrease spasticity of the whole upper limb, the treatment based 
on distal-proximal approach is more effective than that of 

proximo-distal one (69, 70) and even better if the treatment is 
enriched with cognitive contents and bilateral training (71). Although 
this assumption is so true and easy to understand, it is often neglected 
to be  applied in clinical practice (72). Indeed, when using either 
conventional rehabilitation or robots, especially during subacute 
phase, we train mainly the lower limb and the proximal upper limb, 
and little space is dedicated to the hand (73).

However, hand function is complex, and manipulation is a distinct 
important feature of human beings. This is why the cortical 
representation of the hand is proportionally larger than those related 
to other body parts, as described recently following Penfield’s 
findings (74).

According to conventional rehabilitation techniques, supporting 
distal functions is essential. However, outcomes for hand recovery are 
generally poor and often not detailed in clinical trials. Recent evidence 
suggests that starting rehabilitation distally, particularly with advanced 
technologies, could immediately stimulate the cognitive and sensory-
motor networks of the hand, leading to better representation and 
potentially improved outcomes. Our hypothesis is corroborated by the 
study of Calabrò and coworkers. They demonstrated that the treatment 
of distal part of the arm with a robot, in people affected by chronic 
stroke, improves motor function by rebalancing interhemispheric 
connectivity (8).

During neuromotor rehabilitation, it will undoubtedly be essential 
to construct an increasing number of hand-specific robots and devices 
and use them either in parallel or in series. In any case, an individual 
and personalized rehabilitation project must be able to provide the 
possibility of training the distal or proximal part of the limb depending 
more on the characteristics of the patient. In fact, they should not 
be understood as antithetical but synergistic approaches.

Arm robot and rehabilitation of 
neurological conditions: shaping the 
future of persons’ functional recovery

Robots and technology aim to provide neuromotor rehabilitation 
for arm and hand recovery. They hold great potential for advancements 
and improvements in patient care (Figure 2) (14, 75, 76).

Therefore, comparing neuromotor therapy administered with 
robotic or electromechanical devices and conventional neuromotor 
therapy for the upper limb in people with stroke, current evidence 
affirms that: RAAT improves activities of daily living scores; improves 
arm function and arm muscle strength, and did not increase the risk 
of participant dropout (18).

Aspects to be investigated in the future concern the possibility of 
achieving the objectives earlier, which is important for the 
improvement of the cost-effectiveness parameters of healthcare and of 
the whole Health technology Assessment, HTA process. Clinicians as 
well as bioengineers should shape the future of this field before that 
trade decides products and markets. To reduce the machine constraint, 
which in some subgroups of persons represent a limitation, the use of 
wearable devices with semi-rigid or soft fabrics could broaden the 
range of patients who could benefit from RAAT. To date, the soft-
robots and exosuit are not meeting the needs of their users (77), 
requiring future advancements in this way. Moreover, many robotic 
devices can be integrated into a closed-loop system, combining the 
robot with biosignal acquisition (e.g., EEG, EMG), allowing for 
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reinforced learning by generating robotic movement when a 
functional activity is detected. Other aspects to carefully consider for 
this purpose include the integration of other technologies, particularly 
the virtual reality/augmented reality (VR/AR) and the artificial 
Intelligence (78) and the modularity of the new robot devices for the 
more patient centered adaptability.

The personalization of motor and cognitive rehabilitation therapy 
must not only be  implemented on the patient’s impairment/
functionality aspects but must also consider factors such as age (79), 
gender (80) and psychological and behavioral aspects (81) that are 
decisive for the acceptability and effectiveness of the therapy. Artificial 
intelligence can adapt exercises following the motor and behavioral 
information captured by the robot’s sensors during therapy (inertial 
sensor unit, force detection, facial expression recognition). The 
integration of robots with AR and VR technologies can enhance 
rehabilitation training improving the engagement, the motivation, and 
the interaction during training. Additionally, AR and VR can simulate 
real-life personalized scenarios (ad hoc per function to be improved, 

persons’ cognitive resources and persons’ behavioral issues), allowing 
patients to practice functional movements in a safe and supervised 
environment before discharge (82, 83). It is important to note that 
these technologies are always supervised by physiotherapists or 
occupational therapists (84) and incorporated into the individual 
rehabilitation program. RAAT will continue to evolve to provide more 
personalized and adaptive therapy. They will be  able to assess a 
patient’s abilities and adjust the rehabilitation therapy, tailoring it to 
their specific needs in terms of motor and function assistance and 
cognitive load (85). The robot or therapeutic technological device 
should inform the therapist of a rapid decrease in performance to 
allow him/her to re-modulate the type of training or to limit the 
training, suspending it, in unsuitable therapeutic conditions. The 
robots should also provide information on the patient’s state of stress 
by means of sensors for recording autonomic parameters (86, 87). This 
is particularly suitable when robots are used with populations with 
reduced communication skills and/or with children. Continuous 
monitoring and assessment: Robots equipped with sensors and 

FIGURE 2

Key features of robotic devices for upper limb rehabilitation. Choosing the device based on its characteristics is fundamental to personalizing the 
treatment (this original figure was generated using AI tools).
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wearable devices will enable continuous monitoring of patients’ 
progress and functional abilities. This real-time data can be used to 
track changes, identify potential issues, and adjust therapy plans 
accordingly. Continuous monitoring can also facilitate early 
intervention and prevent complications (5). The integration of RAAT 
in the clinical practice will continue to complement the conventional 
training rather than replace them. They will assist therapists in 
delivering therapy, providing objective data, and automating repetitive 
tasks (85, 88). This integration will allow therapists to provide more 
supervised sessions of treatments and focus on more complex and 
individualized aspects of patient care. Robot adaptability for severity 
and for setting: for less affected patients to show that they are doing 
more salient therapy and for the most severe patients to demonstrate 
a better ability to intercept movement intentions (5). Economic 
sustainability: healthcare managers and insurance must give credit to 
robot-assisted neuromotor therapy by increasing financial 
reimbursements, as it improves outcomes or reduces hospitalization 
time. At the same time, rehabilitation processes and rehabilitation 
spaces need to be adapted, as robots require large spaces and trained 
personnel. Finally, there is the urgent need of a greater accessibility in 
terms of costs of robots and an increasing of the clinicians’ knowledge 
regarding robot integration in the rehabilitation process.

Discussion

Robotic devices have been introduced into clinical practice, but 
they are not always used in accordance with the patient’s 
characteristics, resulting in reduced efficacy. Despite, the recent 
literature reported a significant general efficacy of using robots in 
rehabilitation of patients with stroke in adjunction, partial or total 
substitution of conventional therapy (14, 15, 18), some contrasting 
results is still observed (16) and it could be due to the selection of 
patients as candidates for robotic therapy. According to our mentioned 
hypotheses, we proposed that the choice of using a specific device 
should be based on the patient’s functional level, carefully taking into 
account both motor (e.g., exoskeletons for more severe patients and 
end-effectors for less severe patients) and cognitive (e.g., challenges in 
feedback) domains. In motor recovery, the different levels of weight 
support offered by various types of robots (complete, partial, counter-
resistance) or the type of device (exoskeleton, end-effector, sensor-
based) make it possible to personalize the treatment and optimize 
outcomes. The determining factors in the choice of devices are, from 
one side the objective of the robot/device assisted therapy and for 
another side the patient’s characteristics (i.e., residual motor-cognitive 
functionality, and phase of stroke, subacute or chronic). For devices, 
the characteristics to consider are the degree of constraint of the 
machine and the level of movement support, the kind and the scope 
of feedback interaction, the type of mobilization (distal-proximal or 
proximal-distal), and whether the robot is unilateral or bilateral. In 
our view, the matching of patient and device characteristics is the key 
to a personalized approach to RAAT. Looking to the future, the 
implementation of virtual reality, artificial intelligence, and wearable 
sensors, alongside the development of wearable soft-robots and 
closed-loop systems, could advance the use of RAAT with protocols 
tailored to individual needs. At the same time the merge of these 

different technologies will require specific researches to discriminate 
the combined effect of robotic devices with other systems (virtual 
reality, feedback, artificial intelligent control) vs. simple robotic 
devices. Finally, a large multicenter randomized trial with an 
appropriate stratification of people with stroke functionality for a 
given robot device to validate the proposed hypotheses is needed.
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