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Objective: To examine the focal areas of research in the early diagnosis of 
stroke through machine learning identification of magnetic resonance imaging 
characteristics from 2004 to 2023.

Methods: Data were gathered from the Science Citation Index-Expanded (SCI-E) 
within the Web of Science Core Collection (WoSCC). Utilizing CiteSpace 6.2.R6, 
a thorough analysis was conducted, encompassing publications, authors, cited 
authors, countries, institutions, cited journals, references, and keywords. This 
investigation covered the period from 2004 to 2023, with the data retrieval 
completed on December 1, 2023, in a single day.

Results: In total, 395 articles were incorporated into the analysis. Prior to 2015, 
the annual publication count was under 10, but a significant surge in publications 
was observed post-2015. Institutions and authors from the USA and China have 
established themselves as mature academic entities on a global scale, forging 
extensive collaborative networks with other institutions. High-impact journals in 
this field predominantly feature in top-tier publications, indicating a consensus 
in the medical community on the application of machine learning for early 
stroke diagnosis. “deep learning,” “magnetic resonance imaging,” and “stroke” 
emerged as the most attention-gathering keywords among researchers. The 
development in this field is marked by a coexisting pattern of interdisciplinary 
integration and refinement within major disciplinary branches.

Conclusion: The application of machine learning in the early prediction and 
personalized medical plans for stroke patients using neuroimaging characteristics 
offers significant value. The most notable research hotspots currently are the 
optimal selection of neural imaging markers and the most suitable machine 
learning algorithm models.
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Introduction

Stroke is an acute cerebrovascular disorder, precipitates enduring cerebral damage, 
disability, and even mortality upon its onset (1–3). Studies have identified it as the second 
leading cause of death worldwide (4). Notably, 11% of stroke survivors experience a recurrence 
within a year, and 39% within a decade (5). Generally, strokes arise either from blood flow 
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obstruction (ischemic strokes, constituting 87%) or intracerebral 
hemorrhage (hemorrhagic strokes, accounting for 10%) (6, 7). 
Regardless of the type, prompt medical intervention is crucial, as early 
diagnosis and treatment significantly influence the outcome.

Magnetic resonance imaging (MRI) stands as the gold index in 
stroke diagnosis (8–10), boasting high temporal and spatial resolution 
capabilities that enable meticulous observation of subtle cerebral 
vascular changes (11, 12). Moreover, the analytical methods derived 
from multimodal MRI data facilitate a nuanced identification of 
cerebral structural and functional network regulations (13, 14). 
Hence, the objective visualization tools provided by MRI technology 
are instrumental in the early diagnosis of stroke. However, many 
patients fail to adhere to medical advice for regular MRI follow-ups, 
leading to acute stroke episodes (15, 16). Consequently, there’s an 
urgent need in the medical field for a sophisticated neuroimaging 
algorithm capable of early stroke prediction, mitigating the issue of 
clinical data scarcity due to patient non-compliance.

Machine learning (ML) algorithms can automate the interpretation 
of abnormal imaging patterns, accelerating the diagnostic process in 
urgent scenarios (17–19). They integrate data from diverse sources, 
including MRI, clinical records, and vital signs, to assess an individual’s 
future stroke risk. Additionally, ML enhances the precision and 
sensitivity of stroke diagnosis, particularly in early stages, by learning 
from extensive datasets (20). Deep learning, a subset of ML, represents 
one of the most advanced and specialized approaches within the 
broader ML framework. While ML encompasses a wide range of 
algorithms, deep learning focuses on neural network architectures 
capable of automatically extracting high-level features from complex 
data. In stroke diagnosis, deep learning has garnered significant 
attention due to its exceptional performance in processing MRI data, 
particularly for identifying subtle imaging markers of early stroke. 
Consequently, the bibliometric analysis in this study focuses on ML as 
the overarching framework, while acknowledging deep learning as a 
key contributor to advancements in this field. In recent years, ML has 
been increasingly applied to early stroke detection, with its reliability 
validated by authoritative multicentric randomized controlled trials 
(RCTs) (21) and meta-analysis (22) of high evidentiary value. However, 
the field of academic collaboration networks, developmental trends, 
and research frontiers in using ML for early stroke diagnosis through 
MRI feature recognition still lacks extensive bibliometric research.

CiteSpace software, a visualization tool, qualitatively and 
quantitatively elucidates the interconnected contributions of authors, 
regions, institutions, and their collaboration networks (23). Its most 
notable attribute is the insight into research hotspots and frontier 
areas, along with predictions on specific field’s future development 
trajectories. Compared to traditional literature reviews and meta-
analyses, the bibliometric analysis facilitated by CiteSpace offers a 
more profound and insightful perspective (24–26). This study aims to 
utilize CiteSpace to comprehensively search the WoSCC for relevant 
literature from the past two decades, conducting a bibliometric 
analysis on core authors, their collaboration networks, journals, 

countries, and affiliated academic institutions. This will deepen our 
understanding of the frontiers and developmental trends in the early 
diagnosis of stroke using ML to identify MRI characteristics.

Materials and methods

Data sources and search strategy

Data sources
The data for this study were sourced from the Science Citation 

Index-Expanded (SCI-E) within the Web of Science Core Collection 
(WoSCC), a citation-based database that provides detailed citation 
information and abstracts. This allows for the calculation of 
bibliometric indicators such as cited authors, journals, impact factors, 
h-indexes, and citation reports. WoSCC encompasses over 12,000 
high-quality academic journals spanning more than 250 disciplines, 
offering a comprehensive collection of interdisciplinary publications.

Compared to databases like PubMed, which focus primarily on 
biomedical literature and lack citation metrics, WoSCC offers superior 
bibliometric capabilities, including citation networks, co-authorship 
relationships, and keyword co-occurrence trends. Current 
bibliometric tools also do not support multi-database integration due 
to challenges such as inconsistent data formats and record duplication, 
complicating the research process and compromising data consistency.

While relying solely on WoSCC may exclude articles indexed in 
databases like PubMed or Scopus, which could contain relevant 
studies on machine learning and MRI in stroke diagnosis, WoSCC’s 
interdisciplinary coverage and citation-based metrics make it suitable 
for this study. A broad search strategy was applied to minimize dataset 
bias. Future research could explore multi-database integration as 
methodologies evolve to address associated challenges.

Search strategy
The data retrieval strategy encompassed key topics such as 

“stroke,” “magnetic resonance imaging,” and “machine learning” 
(Figure  1). This encompassed a nearly two-decade span of 
publications, from December 1, 2004, to December 1, 2023, with the 
retrieval completed within a single day, December 10, 2023. 
We imposed no geographical restrictions on the publishing countries, 
but required the language to be  English and the research type to 
be “article” (27–29). Details of the retrieval strategy and results are 
provided in Table 1. A total of 395 articles were identified, which, after 
importing into CiteSpace and eliminating duplicates, confirmed the 
absence of redundancies.

Analysis tool

The visualizations generated by CiteSpace 6.2.R6 typically include 
nodes, links, colors, clusters, and timelines. Nodes usually represent 
various research papers, authors, journals, or keywords, with the size 
of a node often indicating its significance or impact, such as citation 
frequency. Links denote the relationships between nodes, like citation 
or collaboration connections, with the thickness of a line possibly 
indicating the strength or frequency of the relationship. Different 
colors may represent different time periods or various research fields 
or categories. Clusters, composed of closely connected nodes, signify 

Abbreviations: MRI, Magnetic resonance imaging; ML, Machine learning; RCTs, 

Randomized controlled trials; WOSCC, Web of Science Core Collection; SCI-E, 

Science Citation Index-Expanded; ASL, Arterial spin labeling; DWI, Diffusion 

weighted imaging; FC, Functional connectivity; CNNs, Convolutional neural 

networks; SVMs, Support vector machines; RFs, Random forests.
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specific research themes or areas, aiding in understanding the primary 
branches and trends within a research field. The timeline exhibits the 
evolution of keywords or themes over time. Interpreting these 
visualizations aids in uncovering hot topics, developmental trends, 
and relationships in research concerning the application of ML in the 
field of stroke.

The parameters used in CiteSpace 6.2.R6 were as follows: time 
slices covered the period from 2004 to 2023, with each slice 
representing 1 year. All terms were included, such as “title,” “abstract,” 
“author keywords,” and “keywords plus.” To enhance the clarity of the 
final visualizations and facilitate the observation of relationships 
between publications, we set the g-index’s k-value to 50 and employed 
the Pathfinder algorithm (30, 31).

Results

Annual publications

Figure 2 illustrates the annual publication trend in using ML 
to analyze MRI characteristics for the early diagnosis of stroke. It 

was observed that prior to 2015, the quantity of publications 
remained at a relatively low level, correlating significantly with the 
nascent phase of ML as an emerging discipline. From 2015 
onwards, there has been a substantial increase in publications, 
attributed to advancements in the computational capabilities of ML 
and the refinement of algorithmic architectures. These 
developments have shown promise in enhancing the accuracy of 
diagnosing stroke, its subtyping, and prognostic predictions (32). 
Our investigation revealed that in 2015, the U.S. Food and Drug 
Administration (FDA) approved several ML-based medical 
devices, such as RapidAI® and Viz.ai®, which have played a pivotal 
role in the early diagnosis and treatment decision-making of 
strokes. The trajectory of the trend line leads us to infer that in the 
next 5–10 years, a new peak in the volume of publications is likely 
to emerge.

In addition to describing publication trends, the correlation 
analysis highlights a moderate positive relationship between the 
emergence of machine learning and its application in stroke research. 
This result indicates that advancements in ML directly influenced its 
adoption in stroke diagnosis and treatment. For example, the spike in 
publications after 2015 aligns with the FDA approval of ML-based 

FIGURE 1

Map of literature screening process related to machine learning and MRI in early stroke diagnosis.
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FIGURE 2

Map of annual publications related to machine learning and MRI in early stroke diagnosis.

medical tools, such as RapidAI® and Viz.ai®, which are designed to 
enhance diagnostic workflows.

Analysis of authors

Figures 3 and Table 2 display the authorship information behind the 
395 published articles. Each node represents an author, with the 
connecting lines indicating collaborative relationships between them. 
The top  10 authors, in descending order, are: Castillo, Jose (9 
publications); Wang, Yongjun (9 publications); Jing, Jing (8 publications); 
Campos, Francisco (8 publications); Meng, Xia (7 publications); 
Iglesias-rey, Ramon (7 publications); Sobrino, Tomas (6 publications); 
Li, Zixiao (6 publications); Chen, Cheng (5 publications); Zhao, 
Xingquan (5 publications). It was observed that all of the top 10 authors 
hail from Spain and China. This pattern reflects the strong research 

infrastructure and significant investments in ML and medical research 
within these countries. For instance, Spain has long been recognized for 
its clinical stroke research expertise, while China has emerged as a leader 
in applying ML technologies to medical diagnostics due to its large 
patient datasets and growing interdisciplinary collaborations.

The collaboration network reveals that higher node degree 
correlates strongly with author centrality, suggesting that prominent 
authors often serve as key hubs in multi-center studies. For instance, 
Jose Castillo and Yongjun Wang exhibit significant influence in 
coordinating international collaborations, reflecting their pivotal roles 
in advancing research in this domain.

Analysis of countries

Figures 4 and Table 3 present the collaborative network among 
countries in this field of research, revealing a network comprising 
54 nodes and 267 edges. The top contributors by publication 
volume are the People’s Republic of China (136); USA (135); 
England (54); Germany (51); and Canada (34). However, a closer 
analysis reveals an interesting distinction between publication 
volume and centrality, which measures the influence of a country 
within the collaboration network. For example, while China leads 
in publication volume, its centrality is relatively low, indicating 
fewer collaborative connections with other nations compared to 
Germany (centrality: 0.24) and the USA (centrality: 0.14). This 
discrepancy suggests that while China and the USA dominate in 
output, Germany plays a more integrative role in fostering 
international collaborations. Such insights underline the 
importance of not only the quantity but also the quality and 
connectivity of research contributions in advancing the field.

In the country network, there is a strong positive correlation 
between publication volume and collaboration frequency, highlighting 
the synergy between research activity and international partnerships. 

TABLE 1 The topic search query.

Set Results Search query

#1 205,292
TS = ((stoke) OR (brain infarction) OR 

(cerebrovascular) OR (cerebral infarction))

#2 909,543

TS = ((machine learning) OR (deep learning) OR 

(artificial intelligence) OR (machine intelligence) OR 

(neural network) OR (natural language processing) 

OR (hybrid intelligent system) OR (CNN) OR 

(LSTM) OR (RNN))

#3 588,300
((Magnetic Resonance Imaging) OR (Neuroimaging) 

OR (MRI))

#4 449 #1 AND #2 AND #3

#5 395
#4 AND Article (Document Types) AND English 

(Languages)

Web of Science Core Collection (December 1 2004 to December 1, 2023).
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Interestingly, the correlation is weaker for centrality, indicating that 
publication volume does not always reflect the strategic importance of 
a country within the network. For instance, Germany, with a centrality 
of 0.24, leads in bridging interdisciplinary collaborations despite 
ranking fourth in publication volume.

Analysis of institutions

Figure  5 and Table  4 display the collaborative network of 
institutions, comprising 431 nodes and 1,709 edges. The top 10 
institutions in terms of publication volume are as follows: 
University of California System (33 publications); Harvard 
University (33 publications); Massachusetts General Hospital (23 

publications); Harvard Medical School (21 publications); Capital 
Medical University (20 publications); Chinese Academy of 
Sciences (18 publications); Chinese Academy of Medical 
Sciences—Peking Union Medical College (14 publications); 
Helmholtz Association (14 publications); Mayo Clinic (14 
publications); University of California Los Angeles (13 
publications). It was observed that academic institutions affiliated 
with the USA dominate the top 10 rankings. The interconnections 
between institutions across various countries highlight a 
significant network of collaborations, which is poised to further 
advance the discipline in this field.

Institutional collaboration analysis shows a moderate positive 
correlation between node degree and publication output. Institutions 
such as the University of California System and Harvard University, 

FIGURE 3

Map of authors related to machine learning and MRI in early stroke diagnosis.

TABLE 2 Top 10 authors related to machine learning and magnetic resonance imaging in early stroke diagnosis.

Rank Author Frequency Year Country

1 Castillo, Jose 9 2016 Spain

2 Wang, Yongjun 9 2022 People’s Republic of China

3 Jing, Jing 8 2022 People’s Republic of China

4 Campos, Francisco 8 2016 Spain

5 Meng, Xia 7 2022 People’s Republic of China

6 Iglesias-rey, Ramon 7 2016 Spain

7 Sobrino, Tomas 6 2016 Spain

8 Li, Zixiao 6 2022 People’s Republic of China

9 Chen, Cheng 5 2020 People’s Republic of China

10 Zhao, Xingquan 5 2022 People’s Republic of China
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which exhibit high node degrees, also demonstrate strong 
interconnectivity, fostering impactful collaborations that push the 
boundaries of ML applications in stroke research.

Analysis of cited journals

Figure  6 and Table  5 showcase the cited journal network, 
consisting of 838 nodes and 4,674 edges. The top 10 journals by 
citation frequency are: Stroke (248 citations); NeuroImage (215 
citations); Neurology (183 citations); PLoS One (145 citations); 
Brain (127 citations); Lancet Neurol (125 citations); J Cereb Blood 
Flow Metab (125 citations); Am J Neuroradiol (119 citations); Ann 
Neurol (117 citations); Hum Brain Mapp (109 citations). 
Additionally, journals with notable centrality (indicated by purple 
rings) include Ann NY Acad Sci (0.12); Am J Neuroradiol (0.11); 
Acta Neuropathol (0.11). These journals primarily cover 

neurology, neuroimaging, and computer science. For instance, 
Stroke has an impact factor of 8.3, with NeuroImage and Neurology 
also being top-tier journals in this field.

The journals Stroke and NeuroImage exhibit the highest 
normalized citation impact, indicating their influence in bridging 
neurology and imaging studies. Additionally, metrics such as h-index 
and Eigenfactor score were analyzed for the top-cited journals to 
further evaluate their academic impact. For instance, Stroke has an 
impact factor of 8.3 and an h-index of 150, showcasing its long-
standing relevance in stroke research. Similarly, NeuroImage 
demonstrates a significant h-index of 230, reflecting its importance 
in neuroimaging and machine learning studies. The cited journal 
analysis, complemented by impact metrics, highlights the interplay 
between foundational stroke research and emerging machine 
learning methodologies. This integrative approach provides robust 
evidence of the academic networks and key journals shaping this 
interdisciplinary field.

FIGURE 4

Map of countries related to machine learning and MRI in early stroke diagnosis.

TABLE 3 Top 10 frequency and centrality of countries related to machine learning and magnetic resonance imaging in early stroke diagnosis.

Rank Frequency Countries Rank Centrality Countries

1 136 People’s Republic of China 1 0.24 Germany

2 135 USA 2 0.19 India

3 54 England 3 0.15 England

4 51 Germany 4 0.15 Netherlands

5 34 Canada 5 0.15 Austria

6 27 Spain 6 0.14 USA

7 25 Australia 7 0.12 Czech Republic

8 20 South Korea 8 0.10 Switzerland

9 19 France 9 0.10 Saudi Arabia

10 18 Switzerland 10 0.07 Canada
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Keywords co-occurrence and citation 
burst analysis

Figure  7 and Table  6 depict the network graph of keywords, 
encompassing 690 nodes and 2,513 edges. The top 10 keywords are: 
deep learning (46 occurrences); machine learning (45 occurrences); 
brain (39 occurrences); magnetic resonance imaging (36 occurrences); 
stroke (31 occurrences); MRI (25 occurrences); functional 
connectivity (25 occurrences); risk (24 occurrences); ischemic stroke 
(24 occurrences); Alzheimer’s disease (23 occurrences). Analyzing the 
frequency and centrality of these keywords reveals that “deep 
learning,” “magnetic resonance imaging,” and “stroke” have emerged 
as prominent themes in this research area.

Figure 8 illustrates the top 20 keywords with the most robust 
citation bursts. The beginning and end of each burst are, 
respectively, marked as “Start” and “End,” with the increase in 
influence correlating with the rise in the “Strength” value. The 
pale blue region delineates the study period, while the red portion 
signifies the start and peak of the bursts. It was observed that 
“machine learning” exhibited the highest burst strength, reaching 
6.57. Furthermore, early attention to “functional MRI” and 
“diffusion tensor imaging” indicates that changes in brain 
structure and function had been applied in this field from an early 
stage. Mid-period keywords like “executive function” and “default 
mode network” experienced high burst rates, signifying 
researchers’ growing focus on the interconnections between deep 
brain networks. In later periods, the frequent emergence of terms 
such as “prediction,” “classification,” and “machine learning” 
underscores the extensive application of ML in recent years for the 
early diagnosis of stroke and the development of individualized 
treatment plans to prevent the high mortality associated with 
acute stroke incidents.

The co-occurrence network reveals a strong positive correlation 
between keyword centrality and burst strength. Keywords such as 
“deep learning” and “machine learning” not only occur frequently but 
also drive significant citation bursts, underscoring their pivotal roles 
in shaping the field. Additionally, the temporal analysis suggests that 
early bursts in keywords like “functional MRI” paved the way for 
mid-period focuses on “executive function” and later trends 
emphasizing “classification” and “prediction.”

Keywords timeline

Figure  9 presents the evolution and interconnections of 
keywords, arranged chronologically. The timeline extends from 

FIGURE 5

Map of institutions related to machine learning and MRI in early stroke diagnosis.

TABLE 4 Top 10 publications of institutions related to machine learning 
and magnetic resonance imaging in early stroke diagnosis.

Rank Frequency Year Institutions

1 33 2006 University of California System

2 33 2005 Harvard University

3 23 2005 Massachusetts General Hospital

4 21 2006 Harvard Medical School

5 20 2019 Capital Medical University

6 18 2011 Chinese Academy of Sciences

7 14 2022 Chinese Academy of Medical 

Sciences—Peking Union Medical 

College

8 14 2012 Helmholtz Association

9 14 2017 Mayo Clinic

10 13 2006 University of California Los Angeles
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left to right, delineating the emergence and disappearance of 
research keywords from 2004 to 2023. Additionally, the diagram 
clusters various themes. A total of nine clusters (#0 to #8) are 
depicted. The first cluster (#0), labeled “temporal consistency,” 
focuses on topics like deep learning, automated WMH detection, 
and amorphous object segmentation. The second cluster (#1), 
identified as “classification method,” concentrates on magnetic 
resonance imaging, cerebral blood flow, and related themes. The 
third cluster is marked as “functional connectivity strength,” 
highlighting areas such as intrinsic functional connectivity and 
graph theory analysis. The fourth cluster, labeled “final infarct 
volume,” focuses on chronic venous disease, peripheral artery 
disease, and similar subjects. The fifth cluster, named “rural-
urban disparities,” is centered around risk factors and 
minority health.

Cluster dependencies of reference

Figure  10 showcases the dependency relationships among 
clusters based on referenced literature. Areas coded in different 
colors represent distinct clusters of references, while arrows 
indicate the developmental relationships between these clusters. 
The convergence of arrows signifies the emergence of new 
disciplinary branches, while the merging of arrowheads indicates 
the integration of different disciplines. This is because the tail of 
an arrow represents the cutting edge of current knowledge, while 
the head points to the sources of foundational literature.

The developmental pattern in this field primarily exists in a dual 
form: the coexistence of interdisciplinary integration and the 
refinement of major disciplinary branches. A detailed analysis reveals 
several cutting-edge directions of interdisciplinary integration: 

FIGURE 6

Map of cited journals related to machine learning and MRI in early stroke diagnosis.

TABLE 5 Top 10 frequency and centrality of cited journals related to machine learning and magnetic resonance imaging in early stroke diagnosis.

Rank Frequency Cited journals Rank Centrality Cited journals

1 248 Stroke 1 0.12 Ann NY Acad Sci

2 215 NeuroImage 2 0.11 Am J Neuroradiol

3 183 Neurology 3 0.11 Acta Neuropathol

4 145 PLoS One 4 0.09 Ann Neurol

5 127 Brain 5 0.09 Acad Radiol

6 125 Lancet Neurol 6 0.09 IEEE Int Conf Neural 

Netw Proc

7 125 J Cereb Blood Flow Metab 7 0.08 Am J Cardiol

8 119 Am J Neuroradiol 8 0.07 IEEE Trans Med Imaging

9 117 Ann Neurol 9 0.07 Annu Rev Neurosci

10 109 Hum Brain Mapp 10 0.06 Arch Neurol
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Neuroimaging and machine learning: The integration of advanced 
imaging modalities such as diffusion tensor imaging and 
convolutional neural networks has enabled the development of 
automated lesion segmentation and early diagnostic models for 
ischemic stroke. This integration bridges computational algorithms 
and clinical radiology, advancing both fields. Neurology and 
bioinformatics: The use of bioinformatics tools in analyzing imaging 
markers has enhanced the understanding of the molecular 
underpinnings of stroke. For example, integrating genetic data with 

MRI-based phenotypes offers new insights into personalized 
therapeutic strategies. Clinical decision support systems and artificial 
intelligence: AI-driven CDSS, leveraging ML-based prognostic 
models, has facilitated real-time decision-making in stroke 
management, particularly in identifying optimal therapeutic 
windows. This interdisciplinary collaboration integrates medical 
informatics, neurology, and computer science. For instance, cluster 
#17 represents the fusion of neuroimaging and ML (clusters #0 and 
#10), while cluster #5 reflects the branching of ML applications into 

FIGURE 7

Map of keywords related to machine learning and MRI in early stroke diagnosis.

TABLE 6 Top 10 frequency and centrality of keywords related to machine learning and magnetic resonance imaging in early stroke diagnosis.

Rank Frequency Keywords Rank Centrality Keywords

1 46 deep learning 1 0.19 Alzheimer’s disease

2 45 machine learning 2 0.18 magnetic resonance imaging

3 39 brain 3 0.16 cerebrovascular disease

4 36 magnetic resonance 

imaging

4 0.15 brain

5 31 stroke 5 0.13 functional connectivity

6 25 MRI 6 0.11 functional MRI

7 25 functional connectivity 7 0.11 diffusion

8 24 risk 8 0.09 cerebral blood flow

9 24 ischemic stroke 9 0.09 Alzheimer’s disease

10 23 Alzheimer’s disease 10 0.09 functional magnetic 

resonance imaging
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FIGURE 8

Top 20 keywords with the strongest citation bursts.

specific subdomains of neurology (clusters #1 and #3). These trends 
underscore the pivotal role of interdisciplinary integration in 
advancing the field of early stroke diagnosis.

Correlation analysis of the reference dependency network indicates 
a significant relationship between cluster size and the number of 
interdisciplinary connections. Larger clusters, such as #0 and #10, exhibit 
higher connectivity, reflecting their central roles in integrating 
neuroimaging and ML methodologies. This interdependency highlights 
the importance of large clusters in driving knowledge transfer and 
innovation across disciplinary boundaries.

Discussion

A bibliometric analysis was conducted using CiteSpace, focusing 
on the early diagnosis of stroke through ML identification of MRI 
characteristics from 2004 to 2023. This analysis encompassed the 
collaborative networks of core authors, affiliated institutions, 
countries, and journals. Comprehensive data were provided, 
highlighting the focal points and trends in the early diagnosis of stroke 
using ML to identify MRI characteristics.

General information

This study illustrates that over the past two decades, a total of 395 
publications have been released in the field of early stroke diagnosis 
using ML to identify characteristics in MRI. The findings show that 
prior to 2015, the annual number of publications was consistently 
below 10, reflecting the nascent stage of ML as an academic discipline. 
Since 2015, there has been a marked increase in publications, a 
development attributed to the enhanced computational capabilities of 
ML and the refinement of its algorithmic structures, demonstrating 
potential in improving the accuracy of stroke diagnosis, subtype 
classification, and prognostic prediction. The trend line suggests an 
anticipation of a new peak in publication volume within the next 
5–10 years.

An analysis of authors, countries, and their affiliated institutions 
with higher publication numbers reveals that institutions and authors 
from the USA and China have established mature academic 
communities on a global scale, forming extensive collaborative 
networks with other institutions. This indicates the reliance of ML on 
the technological level and talent reserves of a country. Notably, 
despite the lower volume of publications from less developed 
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countries, these nations may still experience high stroke 
incidence rates.

Through the analysis of interdependencies among clusters in 
references, it was found that the development pattern in the field of 
early stroke diagnosis using ML for MRI primarily exists in a form 

of coexistence between interdisciplinary integration and the 
refinement of major disciplinary branches. This unique 
characteristic is likely to promote resource integration, cross-
disciplinary idea exchange, and academic innovation within 
the field.

FIGURE 9

Map of keywords timeline related to machine learning and MRI in early stroke diagnosis.

FIGURE 10

Map of reference of cluster dependencies related to machine learning and MRI in early stroke diagnosis.
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In summary, ML as an emerging discipline, has shown 
immense value in early diagnosis of stroke through neuroimaging, 
medical efficiency, and personalized treatment, with a significant 
rise in publication volume in recent years. Based on the trends in 
annual publication volume and innovation in ML algorithms, 
significant advancements are expected in the next 5–10 years, 
ultimately aiming to provide precise medical services for 
stroke patients.

Research hotspots

Research hotspots in a field are encapsulated by keywords that 
represent the core content and central themes of studies within that 
domain. Techniques such as keyword co-occurrence analysis, keyword 
clustering, and keyword citation bursts enable the monitoring of 
various emerging trends in a given field. In the realm of using ML for 
early stroke diagnosis through the identification of MRI features, two 
primary research hotspots have emerged: the optimal selection of 
neural imaging markers and the most appropriate ML algorithm models.

Optimal selection of neural imaging 
markers

In the pursuit of the most effective neural imaging markers for 
stroke patients using MRI, researchers primarily focus on cerebral 
blood flow, brain structure, or brain function. From the perspective of 
cerebral blood flow, arterial spin labeling (ASL) is a predominant 
research method. For instance, Liu’s et al. (33) study indicates that the 
combination of ML and ASL can predict the outcomes of acute 
ischemic strokes by examining collateral circulation. Regarding brain 
structure, diffusion weighted imaging (DWI) often serves as the main 
analytical approach. Yu et al. (34) and Zhu et al. (35), for example, 
discovered that deep learning using DWI and clinical data is highly 
sensitive in predicting patients with low-perfusion strokes. From the 
aspect of brain function, the most valued approach is brain network 
analysis using functional connectivity (FC) from functional MRI. Li’s 
et al. (36) findings suggest that multispectral FC variations in brain 
regions are potential targets for differentiating stroke patients’ 
recovery and treatment processes. Lu et al. (37) demonstrated that 
acupuncture could modulate bilateral cerebral hemispheres through 
distinct targets, restoring abnormal FC and thus facilitating post-
stroke motor recovery. Moreover, many studies advocate the 
integration of multimodal MRI datasets as neural imaging markers, 
surpassing the predictive accuracy of early stroke onset compared to 
single-modality data (38–40).

Optimal machine learning algorithm 
models

ML algorithms are diverse and continually evolving, with 
researchers exploring various models for neuroimaging data from 
MRIs. Pérez Malla et al. (41) and Nishi et al. (42), for instance, regard 
convolutional neural networks (CNNs) as the most advanced method 
for early stroke prediction. Billot et al. (43) found that a combination 
of support vector machines (SVMs) and random forests (RFs) also 

exhibits commendable performance. Pinto et al. (44) proposed a fully 
automated deep learning approach encompassing both unsupervised 
and supervised learning, achieving satisfactory accuracy. Emerging 
deep learning techniques, such as deep neural networks (DNNs) and 
reinforcement learning (RL), are gaining traction due to their ability 
to automatically extract features from raw data and further improve 
model accuracy. These methods show substantial promise in 
enhancing early stroke detection by providing deeper, more nuanced 
insights into complex MRI data patterns. The introduction of these 
advanced techniques could lead to significant improvements in 
diagnostic accuracy, particularly in early-stage stroke diagnosis, where 
subtle changes in brain tissue are often challenging to detect.

Recent advancements in explainable AI (XAI) have also 
contributed to the interpretability of machine learning models, which 
is crucial in clinical settings. XAI approaches aim to provide transparent 
reasoning behind model predictions, enabling healthcare professionals 
to better understand and trust the automated results. Furthermore, 
multimodal approaches combining MRI with other data sources, such 
as genetic or clinical data, are gaining momentum. These methods 
harness the complementary strengths of different types of data to create 
more robust models that enhance diagnostic accuracy and prognostic 
prediction. By integrating various data types, multimodal systems can 
capture a more comprehensive view of the patient’s condition, 
improving decision-making in early stroke diagnosis.

The integration of ML with neuroimaging offers significant 
potential for bridging current gaps in early stroke diagnosis. While 
traditional methods rely on visual interpretation of MRI scans, ML 
techniques allow for the automated detection and quantification of 
subtle patterns that may be overlooked by human evaluators. The 
ability of ML algorithms to process large volumes of complex MRI 
data and generate predictive models can improve diagnostic 
accuracy, particularly in the early stages of stroke, when clinical 
symptoms may not yet be fully manifest. Furthermore, ML can help 
to identify imaging markers that correlate with stroke outcomes, 
offering personalized treatment options for patients. This 
integration is particularly promising in addressing the challenge of 
time-sensitive diagnoses, where rapid and accurate assessments can 
directly impact patient prognosis and recovery. As ML algorithms, 
including deep learning and multimodal approaches, continue to 
evolve, their capacity to enhance diagnostic workflows, reduce 
human error, and accelerate decision-making processes in clinical 
settings will be invaluable in overcoming the challenges of early 
stroke diagnosis.

Conclusion

The application of ML in the early diagnosis, prediction, and 
individualized medical plans for stroke patients using neuroimaging 
features offers immense value. This study specifically focused on the 
role of ML in early stroke detection and prediction by analyzing its 
capacity to identify subtle imaging markers and enhance diagnostic 
precision in the critical early stages. The most compelling current 
research hotspots are the optimal selection of neural imaging markers 
and the most suitable ML algorithm models for these purposes. In the 
future, researchers can continue to develop high-performance 
algorithms, further advancing early diagnosis and personalized 
treatment strategies in this scientific domain.
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Limitations

This study is subject to several limitations. Firstly, it primarily 
relies on data accessible within the WOSCC database. CiteSpace is 
incapable of integrating data from varied databases or performing 
citation analysis on sources outside of WOSCC. Secondly, while 
CiteSpace proves invaluable in detecting and visualizing emerging 
trends, it does not delve into the underlying mechanisms of machine 
algorithm models in the application of identifying MRI features for 
early stroke diagnosis. Despite these constraints, we have successfully 
employed CiteSpace to illustrate the latest research trends in the 
application of machine algorithm models in the early diagnosis of 
stroke through the recognition of MRI characteristics.
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