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Introduction:Cognitive symptoms are reported in the vastmajority of individuals

with long-COVID and there is growing support to suggest neurovascular

mechanisms may play a role. Older adults are at increased risk for developing

complications associatedwith COVID-19, including heightened risk for cognitive

decline. Cerebrovascular Reactivity (CVR), a marker of neurovascular health, has

been linked to age related cognitive decline and may play a role in long-COVID,

however, this has not yet been explored.

Methods: The present study examined group di�erences in CVR in 31

older adults with long-COVID compared to 31 cognitively unimpaired older

adults without long-COVID symptoms. Follow up analyses were conducted to

examine how CVR was associated with both subjective cognitive symptoms

and neuropsychological (NP) test performance. A subject-specific approach,

Distribution-Corrected Z-scores (DisCo-Z), was used.

Results: Analyses revealed the long-COVID group demonstrated significantly

greater incidence of extreme CVR clusters within the brain (>100 voxels) and

within functional networks thought to drive attention and executive function.

Extreme positive CVR clusters were positively associated with greater number of

subjective cognitive symptoms and negatively correlated with NP performance.

Discussion: These findings are among the first to provide a link between

cognitive functioning in long-COVID and neurovascular changes relevant for

aging and mechanistic studies of long-COVID.

KEYWORDS

long-COVID, neurovascular, cerebrovascular reactivity, functional MRI, aging, brain

network, individual, cognition

1 Introduction

Despite significant advances in the prevention and management of acute COVID-19,

a subset of individuals will continue to experience persistent symptoms after resolution of

acute infection, a condition known as “long-COVID” (1–6). Long-COVID is a multi-organ

disease that can affect individuals irrespective of hospitalization status, with symptoms

lasting months or even years (7). Prevalence estimates vary, but the World Health

Organization estimated 10–20% of individuals with acute infections will develop mild to

moderate long-COVID symptoms, with prevalence estimates reaching up to 45% when

different diagnostic criteria is applied (5, 8).While the clinical presentation of long-COVID
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is heterogenous (9), neurological symptoms are particularly

prevalent among individuals that experienced mild acute infections

(9–11), and are associated with declines in daily functioning

and quality of life (2, 12). Approximately 80% of individuals

with long-COVID report cognitive symptoms (2, 9, 10), often

involving aspects of attention, memory, and word finding (13).

Notably, these subjective cognitive concerns, again, do not appear

to correlate with severity of acute infection (13–16). Given that

subjective cognitive decline is a known risk factor for subsequent

objective cognitive decline in older adults, this population may

be especially vulnerable to cognitive impairment in the context

of long-COVID. Older adults are more susceptible to both

acute COVID-19 complications and the long-term effects of the

virus, including cognitive decline (17–19). One study found that

worsened perceived cognition (based on informant report) in

older adults 6 months following acute infection, relative to an

older adult control group (17). Further, increased incidence of

neurodegenerative disease diagnosis has been observed in the year

following COVID-19 infection (19). Cognitive decline in older

adults with long-COVID could potentially reflect an unmasking

of a preexisting neurodegenerative process or an exacerbation of

cognitive decline observed in “normal” aging (18).

While the mechanisms driving long-COVID are complex, the

presence of persistent endothelial cell dysfunction is of interest (20–

23). It has been observed independent of comorbid vascular health

conditions, acute infection severity, and examined demographic

factors (age, sex) (20). Further, it plays a role in inflammatory

and neuroimmune processes also associated with neurological

symptoms in long-COVID (20–24). Cerebrovascular reactivity

(CVR) is a measure of the vasculature system’s responsiveness

to vasoactive stimuli that is dependent upon cerebral endothelial

function (25) making it of interest for long-COVID. Further,

CVR may be particularly sensitive to cognitive symptoms in older

adults with long-COVID because (1) CVR declines are observed

in older adulthood (26–28), (2) reduced CVR has been associated

with cognitive decline in normal aging, and (3) reduced CVR

is observed in neurodegenerative conditions (27, 29). Further,

advances in CVR methods have enabled CVR to be assessed safely

using task fMRI (i.e., the breath holding task (30, 31)). Given the

diffuse nature of long-COVID (32, 33), one might not necessarily

expect a consistent focal change to manifest uniformly across

individuals. For this reason, a subject-specific abnormalities (SSA)

framework was employed. SSA was developed to address variability

observed traumatic brain injury (TBI) and multiple sclerosis (MS),

where the location of brain changes is expected to vary between

patients (34–38). More specifically, we used distribution-corrected

z-scores (DisCo-Z), which has been applied to a number of

different neuroimaging methods (e.g., Diffusion Tensor Imaging,

resting state functional connectivity) and enables one to examine

clusters of extreme values within participants data across regions of

the brain.

The present study examined the relationship between long-

COVID, neurovascular health, and aspects of cognition in older

adults. A subject-specific abnormalities (SSA) approach was used.

Group differences in extreme CVR clusters in a sample of older

adults with cognitive concerns in the context of long-COVID were

examined relative to a group of cognitively unimpaired older adults.

The clinical significance of group differences in CVR was then

examined using objective and subjective cognitive assessments.

2 Methods

2.1 Participants

Participants (50 years of age and older) were recruited as

part of two, larger neuroimaging studies of long-COVID. The

long-COVID group was recruited from a multispecialty long-

COVID clinic within a local hospital via clinician referral or

through retrospective chart review. Given the notable heterogeneity

in clinical presentation in long-COVID, our sample focused

specifically on older adults that: (1) sought care in a multispecialty

long-COVID clinic, (2) presented with persistent subjective changes

in cognition that the individual attributed to prior COVID-

19 infection (i.e., symptoms emerged following infection and

remained at time of study enrollment), (3) had a previous

diagnosis of COVID-19 verified within the medical record

(i.e., positive COVID-19 test), and (4) had no exclusionary

concomitant neurologic diagnosis, such as stroke, epilepsy, severe

head injury. All participants studied had experienced mild

acute infection (i.e., no hospitalization, supplemental oxygen).

A matched control group was recruited from the community

and comprised of older adults that: (1) expressed no subjective

cognitive concerns, (2) were deemed cognitively normal based on

neuropsychological exam, (3) reported no long-COVID symptoms,

and (4) had no prior diagnosis indicative of cognitive decline.

Given the widespread prevalence of COVID-19 infection, as

well as the potential for asymptomatic infection, we could

not objectively confirm absence of COVID-19 infection in the

control group. Participants in the long-COVID cohort tested

positive for COVID-19 between July 2020 and March 2023. Study

participants were recruited and scanned between August 2021 and

November 2023.

2.2 Cognitive assessment and symptom
measures

Individuals within the matched control group underwent

a brief standard neuropsychological testing battery comprised

of test measures typically administered as part of a larger

neuropsychological evaluation in the long-COVID clinic. Present

analyses were limited to memory [delayed free recall from Rey

Auditory Verbal Learning Test (RAVLT) or California Verbal

Learning Test (CVLT) (39, 40)], letter fluency [total words across

three letter fluency trials from FAS or Delis–Kaplan Executive

Functioning System (D-KEDFS) (41, 42)], Category Fluency (total

words for semantic fluency from COWAT or DKEFS) (41,

42), speeded visual attention (Trails A or Number Sequencing

Trial from DKEFS) (42, 43), and speeded mental flexibility

(Trails B or Number-Letter Sequencing Trial from DKEFS)

(42, 43). Data for the similar measures described above were

collapsed into a single variable and transformed to the same scale
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(e.g., scaled scores from DKEFS were transformed to Standard

Score measurement).

Individuals within the long-COVID group completed a brief

study questionnaire documenting cognitive concerns and impact

on quality of life (N = 29). The severity, count, time-course, and

onset time of all long-COVID symptoms were documented. Data

obtained as part of the work up within the long-COVID clinic

were collected as well. A subset of the long-COVID participants

also underwent a clinical neuropsychological evaluation as part of

standard clinical care. Data from neuropsychological evaluations

was included in analyses when possible.

2.3 MRI acquisition

All scans were performed using the Nova Medical 32-Channel

coil on one of two GE Healthcare Premier 3.0T MRI scanners. T1-

weighted anatomical images were collected. Breath holding task

fMRI was then acquired using a multiband, multi-echo (MBME)

echo planar imaging (EPI) sequence with MB acceleration factor=

4 and three echoes. Additional parameters were as follows: TR/TE

= 1,000/112,948ms, 44 total slices, FOV=24 cm, 3 × 3 × 3mm

voxel size, partial Fourier factor = 0.85, and in-plane acceleration

factor= 2. MNI resolution was 2× 2× 2 mm.

2.4 Cerebrovascular reactivity (CVR)

2.4.1 Breath-holding task
CVR was examined using a previously established breath

holding task performed by participants while in the MRI scanner

(30). Holding one’s breath increases the end tidal pressure carbon

dioxide (a surrogate for arterial partial pressure of carbon dioxide)

temporarily by reducing the respiratory elimination of carbon

dioxide. When the task is performed during fMRI scan, CVR can

be calculated as the ratio of cerebral blood flow (CBF) change to

vasoactive stimuli. Briefly, the participant is instructed to modify

his or her breathing over the course of the task. Instructions are

presented on the screen to aid the participant throughout the task.

Initially, the participant is instructed to perform paced breathing

(66 s), followed by four cycles of paced breathing (24 s), breath

holding on expiration (16 s of breath holding), and a brief period of

self-paced recovery breathing (16 s). Scans ended with 30 s of paced

breathing. Participants practiced the task first to demonstrate an

understanding of task instructions and to ensure the task can be

performed. The duration of the breath holding task was ∼6min.

Furthermore, a respiratory trace was acquired to verify the subject

performed the task. The reader is referred to Cohen and Wang

(2019) for a more comprehensive description of the task.

2.4.2 fMRI data preprocessing
First, the anatomical images were coregistered to MNI space

using flirt (44, 45) for linear registration followed by fnirt (46) for

non-linear registration. For the functional datasets, the first eight

volumes were discarded to allow the signal to reach equilibrium,

and then the first-echo dataset was volume registered to the first

volume using mcflirt in FSL. Echoes 2 and 3 were registered using

the transformation matrices from the first echo. Then, multiecho

independent component analysis (MEICA) was run using tedana

v0.0.12 which optimally combines the three echoes, determines

non-bold components and regresses those components to denoise

the data (47–50). The denoised data was registered to MNI space

and the data was smoothed using a 6mm FWHMGaussian kernel.

Data from two separate studies were combined for the present

analyses. Because participants were scanned on one of two 3.0T

MRIs, ComBat harmonization was used to address scanner-specific

effects (51–53).

2.4.3 CVR analyses
The CVR response during the breath-holding task was

quantified by computing the percentage signal change during the

breath-holding task in gray matter within cortical and subcortical

regions. Voxel-wise analyses were performed and an independent

t-test was used to determine the difference between the COVID-19

and healthy control groups. Group results were thresholded at p <

0.05 and cluster-size corrected using 3dClustSim (54) in AFNI with

α < 0.05. Minimum cluster size at p < 0.05 was 1,066 for α < 0.05.

CVR totals within the whole brain and within each of the

seven Yeo resting-state networks (55), were examined between

groups. Prior research has shown that resting-state can be

reliably parcellated into seven function networks based on

correlated patterns of correlated brain activity during resting

state. The nomenclature used to label each of the networks

[including visual, somatomotor, dorsal attention, ventral attention,

limbic, frontoparietal, and default mode networks (DMN)]

reflects functions typically associated with brain regions within

that network.

Briefly, the DMN traditionally has been conceptualized as

a task-negative network (and is comprised of the specific

brain regions that are activated on fMRI when a participant

is not performing a cognitive task), while the remaining six

functional networks were named based on activation during a

corresponding tasks (e.g., dorsal and ventral attention networks

reflecting differential networks that are functionally active during

attention tasks). Each of the seven Yeo resting-state networks, also

characterized as Region of Interest (ROI) analyses, as the analysis is

limited to the specific regions of that resting state network.

Distribution Corrected Z-scores (DisCo-Z) were calculated

from CVR maps. Briefly, DisCo-Z enables one to examine

whether extreme values are present within individual participant’s

neuroimaging data (i.e., subject-specific data points), followed by

an analysis of the frequency of extreme values differs between

cohorts (34). The control group was used as the reference group.

Mean and standard deviation maps were computed for the control

subjects. Individual z-scores maps were created for all subjects

subtracting the mean CVR from individual CVR and dividing by

the standard deviation.

CVRind − CVRmean

CVRσ

Z-score thresholds were adjusted for control and COVID

groups separately based on Ref. 34 to reduce bias resulting in
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thresholds of 1.87 and 2.02 for control and COVID groups,

respectively for alpha equal to 0.028.

The presence and size of extreme clusters of increased

or decreased CVR (minimum size of 100 voxels) within the

whole brain and within the seven Yeo resting-state networks

was generated.

2.5 Statistical analysis

Group differences on demographic measures were examined

using t-tests and chi-square. Group differences in incidence and

size of extreme CVR clusters were examined using non-parametric

statistics. More specifically, Mann-Whitney Tests were used to

examine group differences in total number of extreme positive

clusters and total number of extreme negative clusters within the

whole brain, as well as number of ROIs with positive clusters and

number of ROIs with negative clusters. Mean cluster size was then

examined within the whole brain and within each ROI (7 Yeo

networks). P-values were corrected for multiple comparisons using

a Benjamini-Hochberg correction. Finally, the relationship between

clinical variables and extreme CVR metrics was examined using

Spearman’s Rank Correlation. To support the utility of the DisCo-

Z approach, group differences in voxel-wise CVR were examined

as well.

3 Results

3.1 Sample characteristics

Thirty-one older adults with long-COVID (7males, 24 females)

and 31 cognitively unimpaired healthy older adults (8 males, 23

females) for whom CVR data were available were included in

aforementioned analyses (see Table 1). As the long-COVID sample,

was heavily weighted toward female (∼1male to 3 females) controls

were matched by sex. The groups did not differ significantly on sex

(p = 0.478) or years of education (p = 0.120). However, group

differences in age were significant (p = 0.031), with the long-

COVID group (mean age of 60.81 years)∼5 years younger than the

healthy control cohort (mean age of 65.52 years). The sample was

predominantly comprised of non-Hispanic, White participants,

and there was no significant difference between groups on race

or ethnicity. Regarding long-COVID symptoms, participants all

endorsed cognitive decline following long-COVID. Participants

within the long-COVID cohort were asked to rate which specific

cognitive domains were impacted on a questionnaire.

3.1.1 Group di�erences in cognitive measures
Neuropsychological data was available for 21 of the 31

participants in the long-COVID group and all the control

participants. All neuropsychological test scores were standardized

using matched normative reference groups consistent with

standard clinical procedures and test manuals to control for the

effect of demographic variables (i.e., age, sex, education). The long-

COVID group scored significantly lower on memory relative to the

control group (p= 0.036), however, group differences on remaining

TABLE 1 Sample characteristicsa.

Sample characteristics CU LC p-valueb Nc

Mean age in years 65.52 60.81 0.028 62

(S.D.) (8.57) (8.24)

Sex (N)

Male 8 7 0.478 62

Female 23 24

Race (N)

American Indian/Alaska Native 0 1 62

Asian 0 0

Black/African American 0 0

Hispanic/Latino 0 1

Middle Eastern/North African 0 0

Native Hawaiian/Pacific Islander 0 0

White 31 29

Education in years 16.9 15.6 0.120 45

(S.D.) (1.8) (2.8)

Concerns endorsed by domain (%) - 28

Memory 90.3

Attention/concentration or 80.6

“brain fog”

Speech, language, or word 80.6

finding

Multitasking/problem solving 80.6

Endorsed impact on functioning

(%)

58.1

aStudy sample characteristics are presented for participants in both groups. As mentioned,

data was combined from two studies, the latter of which collected additional data on

sample characteristics. CU, cognitively unimpaired; LC, long-COVID; N, sample size; S.D.,

standard deviation.
bThe significance of group comparisons on demographic variables is provided.
cSample size represented for each variable.

tasks were not significantly different. Please see Table 2 for p-values

and group means across measures.

3.1.2 Group di�erences in voxel-wise CVR
Voxel-wise CVR analyses revealed no significant differences

between groups following cluster-wise correction for multiple

comparison (p < 0.05, α < 0.05).

3.2 CVR and age within the full sample

Follow up analyses were conducted to examine the relationship

between age and whole brain CVR measures given that the

groups differed on age. Spearman Correlations between age and

extreme positive CVR values were not statistically significant.

Of note, age showed a significant negative correlation with

extreme negative CVR values. However, the vast majority of
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analyses presented focused on extreme positive CVR values. See

Supplemental material for correlations and p-values.

3.3 Group di�erences in extreme CVR
clusters: whole brain analysis

Group differences in extreme CVR clusters within the whole

brain were examined first. When positive CVR was examined, the

long-COVID group demonstrated a significantly higher number

of extreme clusters, greater volume of extreme clusters, and

higher number of involved networks compared to the control

group (corrected p = 0.003–0.008). Corrected and uncorrected p-

values for aforementioned comparisons are presented in Table 3.

See Figures 1–4 for graphical representation of CVR and group

differences in positive CVR.When negative CVRwas examined, the

long-COVID group demonstrated a significantly fewer number of

extreme clusters and smaller total volume involved (corrected p =

0.0036). The long-COVID group had, on average, a greater number

of networks that contained extreme positive clusters compared to

the control group (corrected p = 0.0036). Individual ROIs were

examined next.

TABLE 2 Neuropsychological performancea.

Neuropsychological
variable

CU
(N = 30)

LC
(N = 21)

p-valueb

Delayed recall 114.07

(13.70)

105.62

(13.78)

0.036

Trails A 114.1

(13.88)

109.14

(11.74)

0.188

Trails B 112.23

(13.71)

105.05

(12.75)

0.064

Letter fluency 108.03

(14.76)

102.57

(17.39)

0.233

Category fluency 103.57

(18.81)

100.14

(14.62)

0.488

aScores are standardized to age and education and presented as Standard Scores with

mean of 100 and standard deviation of 15. Values within the table reflect each group’s

mean Standard Score with the standard deviation in parentheses. S.d., standard deviation;

CU, cognitively unimpaired; LC, long-COVID; N, sample size. P-Values reflect the group

differences generated using t-tests.
bThe significance of group comparisons on neuropsychological variables.

3.4 Group di�erences in extreme CVR
clusters: ROI analysis

There were significantly more participants in the long-COVID

group that had extreme positive CVR clusters compared to controls

for Yeo 2 (Somatomotor), Yeo 4 (Ventral Attention), and Yeo

7 (DMN; p = 0.031, p = 0.011, and p = 0.043, respectively).

Mean cluster size was significantly larger for the long-COVID

group compared to the control group in Yeo 1 (Visual), Yeo 2

(Somatomotor), and Yeo 3 (Dorsal Attention; p = 0.045, p =

0.021, p < 0.001). Only the dorsal attention network remained

significant when corrected for multiple comparisons. See Table 4

for p-values.

3.5 Clinical correlates of extreme CVR
clusters

3.5.1 Self-reported cognitive concerns and
extreme CVR clusters

Next, self-reported cognitive symptoms were examined in

relation to DisCo-Z values. Within the full sample (N = 26), higher

total number of self-reported cognitive concerns was positively

correlated with DisCo-Z values within 3 of the 7 ROIs [Yeo 2

(Somatomotor): p = 0.041, Yeo 4 (Ventral Attention): p = 0.001,

and Yeo 7 (DMN): p =0.016]. When controls were removed from

the sample, the total number of self-reported cognitive symptoms

was positively correlated with DisCo-Z values for Yeo 4 (Ventral

Attention) Network (p = 0.034). See Table 5 for p-values and

correlation coefficients.

3.5.2 Objective cognitive performance and
extreme CVR clusters

Within the full sample, objective memory performance was

negatively correlated with total number of positive networks with

extreme values (Spearman’s Rho −0.321; p = 0.022) and whole

brain total extreme volume (Spearman’s Rho −0.315; p = 0.029).

Trails B was negatively correlated with DisCo-Z values for Yeo

3 (Dorsal Attention); and semantic fluency correlated negatively

with Yeo 2 (Somatomotor) values. See Table 6 for p-values and

correlation coefficients.

TABLE 3 Extent and spread of positive and negative extreme CVR clusters >100 Voxelsa.

Extreme positive CVR Extreme negative CVR

CU LC p-valueb CU LC p-valueb

Number of clusters 8.45 (6.50) 14.8

(7.57)

0.002 (0.0036) 0.97

(1.6)

0.13 (0.34) 0.001

(0.0036)

Number of networks 4.45 (2.42) 5.97

(1.91)

0.003 (0.0036) 0.61

(1.05)

0.13 (0.43) 0.008

(0.008)

Total volume 5277.90 (9290.8) 9709.29 (8696.08) 0.002 (0.0036) 194.16

(397.16)

27.9 (76.04) 0.003

(0.0036)

aThe mean number extreme clusters, the mean number of networks with extreme clusters, and total volume of extreme clusters is presented for each group. CU, cognitively unimpaired; LC,

long-COVID; N, sample size; S.D., standard deviation.
bp-values are presented within the table corresponding to each of the four Mann-Whitney Tests performed. Both the uncorrected p-value and corrected p-value (in parentheses) is provided for

each comparison.

Frontiers inNeurology 05 frontiersin.org

https://doi.org/10.3389/fneur.2025.1504573
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Pommy et al. 10.3389/fneur.2025.1504573

FIGURE 1

Total incidence of extreme positive CVR clusters is presented by group. The Long-COVID group is presented in blue and the cognitively unimpaired

control group is depicted in green. The whiskers mark the 5th and 95th percentile, the top and bottom of the box represent the 25th and 75th

percentile, respectively. The center line within each plot corresponds to the median value (50th percentile) and the “X” indicates the mean value per

group. Total number of clusters is on the vertical axis.

4 Discussion

While the mechanisms driving cognitive symptoms in long-

COVID are still being explored, older adults, in particular, may

be at heightened risk for cognitive decline following COVID-19

infection. Prior studies have highlighted the role of neurovascular

health (particularly via changes in endovascular function) as a

possible mechanism in long-COVID. Cerebrovascular reactivity,

a measure of neurovascular function and endothelial function,

has been associated with cognitive changes in older adults. Thus,

it reflects a mechanism of particular interest for understanding

cognitive changes in an older adult sample with long-COVID. Our

study was the first to examine a keymarker of neurovascular health,

cerebrovascular reactivity, in older adults with long-COVID. We

will discuss the key findings of our study, potential clinical

implications, and next steps for research, as well as the limitations

of our study.

4.1 Increased incidence and size of extreme
CVR clusters in long-COVID

Our study demonstrated a statistically significant increase in

presence of extreme CVR clusters in the long-COVID group.

Extreme CVR clusters occurred at a greater frequency within the

long-COVID group when the whole brain was examined and

within each of the seven resting-state networks. Similarly, the

mean size of extreme CVR clusters was significantly larger within

the long-COVID group when whole brain was examined and

within resting-networks. CVR has previously been conceptualized

as a “brain stress test.” Potentially, the increase in size and

incidence of extreme CVR clusters could be conceptualized as a

proxy for the overall responsiveness of the cerebrovascular system.

Extreme positive or negative CVR values could suggest a more

dysregulated neurovascular response. While there is relatively less

literature, in general, on the clinical significance of increased

CVR, one hypothesis that has been discussed in the literature to

explain increased CVR is the steal phenomena, whereby lower

extreme values suggest less responsiveness in a given region.

While the purpose of this investigation was not to assess the

steal phenomenon, future studies might examine this as a possible

factor. Potentially, these findings reflect the neuroinflammatory

and vascular changes previously observed as a driving mechanism

of long-COVID in other studies (56). Alternatively, these findings

could reflect a premorbid group difference that places individuals

at heightened risk for developing long-COVID. Additional studies

are needed to better disentangle the directionality of these findings.

4.2 Higher number of subjective cognitive
symptoms in long-COVID associated with
extreme CVR clusters in ventral attention
network

Within the long-COVID sample, the total number of subjective

cognitive symptoms reported was significantly positively correlated

with presence of CVR extreme values within the ventral attention

network. Prior studies in long-COVID have differentiated the

subjective cognitive symptoms from objective cognitive changes

on neuropsychological measures suggesting different possible

mechanisms and time course. Our findings suggest that the

experience of subjective cognitive changes in long-COVID may be

linked to neurovascular function in attentional networks. While

further research is needed to disentangle these findings, potentially,

individuals the experience of subjective cognitive changes could

reflect less efficient attentional networks. Given prior work that has

highlighted changes in functional attentional networks with age,

additional research examining longitudinal changes in attentional

networks in the context of long-COVID would be of interest.

Age-related physiological changes in neurovascular function in

older adults have been hypothesized to place older adults at greater

risk for development of long-COVID. In particular, endothelial

dysfunction, which has been characterized as a hallmark of age-

related vascular decline (57) has been identified as a mechanism

of interest in long-COVID (58, 59) as well. Briefly, endothelial

cells form the lining of blood vessels and serve a variety of

different functions necessary for maintaining vascular health and

play a key role in oxidative stress, neuroinflammation, and innate

immunity. Research has suggested endothelial cells are particularly
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FIGURE 2

The size and frequency of extreme positive CVR clusters is presented here. Panel A depicts total number of clusters identified across the whole brain.

Panel B reflects total size (i.e., volume) of extreme positive CVR clusters across the whole brain. Each participant is represented as a circle on the

graph. Green circles correspond to participants in the cognitively unimpaired group and blue circles correspond to participants in the Long-COVID

group. Circle size corresponds to total number of clusters (Panel A) or total volume of clusters (Panel B) within the whole brain per participant.

DisCo-z values are represented along the vertical axis.

vulnerable to COVID-19 and disruption of endothelial function

(e.g., via increased oxidative stress, reduction in the bioavailability

of nitric oxide, etc.), may drive the continued symptoms in long-

COVID (60).

4.3 Greater incidence and size of positive
extreme CVR clusters associated with
worse objective memory performance in
older adults

Prior studies have linked declines in CVR to worse objective

memory performance in older adult sample. Notably, those studies

were examining a clinical decline or change in objective memory

scores (e.g., in context of mild cognitive impairment or when

comparing young adults to older adults). The participants within

this study demonstrated average or better memory scores based

on normative samples. Within our study, global measures of CVR

burden were associated with worse verbal memory performance.

Our study is the first to highlight the relationship between extreme

CVR clusters and objective memory performance. Potentially, one

could hypothesize that subtle neurovascular changes precede more

overt declines in CVR that have previously been linked associated

to memory decline. Finally, our findings raise the possibility that

subtle neurovascular changes (evinced by more extreme CVR

clusters) could reflect a pathway by which COVID-19 theoretically

could accelerate age-related declines in memory.
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FIGURE 3

Extreme positive CVR cluster size is presented here for each of the seven Yeo resting-state functional networks. Each participant is represented as a

circle on the graph. Green circles correspond to participants in the cognitively unimpaired control group and blue circles correspond to participants

in the long-COVID group. Circle size corresponds to cluster size (i.e., total volume). DisCo-Z values are represented along the vertical axis.

FIGURE 4

Maps showing the reference CVR mean and reference CVR standard deviation. A DiscoZ map from a representative COVID participant is also shown

highlighting extreme positive clusters. Finally, a map showing the number of COVID subjects with extreme positive clusters in each voxel is displayed.

This map is thresholded at four subjects (i.e., only voxels with four or more subjects with extreme positive clusters are shown).
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TABLE 4 Incidence and size of extreme positive CVR clusters (>100

voxels)a.

Extreme
positive
CVR

incidenceb

Extreme
positive
CVR sizec

Region CU LC p-

valued
CU LC p-

valuee

Yeo 1 20/31 27/31 0.073 1327.45 2009.40 0.045

(0.105)

Yeo 2 20/31 28/31 0.031 1301.90 1552.92 0.024

(0.084)

Yeo 3 24/31 27/31 0.508 773.79 1526.25 0.0003

(0.002)

Yeo 4 17/31 27/31 0.011 954.23 1111.51 0.132

(0.154)

Yeo 5 15/31 20/31 0.306 819.20 893.35 0.268

(0.268)

Yeo 6 20/31 27/31 0.073 1165.35 1468.70 0.089

(0.125)

Yeo 7 22/31 29/31 0.043 1755.36 2552.82 0.085

(0.085)

aIncidence and size of extreme positive CVR clusters within the long-COVID and cognitively

unimpaired samples. CU, cognitively unimpaired; LC, long-COVID; N, sample size; S.D.,

standard deviation.
bIncidence of extreme positive CVR clusters by resting-state network within the long-COVID

and cognitively unimpaired samples.
cMean size of extreme positive CVR cluster by resting-state network within the long-COVID

and cognitively unimpaired samples.
dp-values for each Fisher’s exact test.
ep-values for each Mann-Whitney U test.

4.4 Further support for utility of
distribution-corrected z-score approach

Prior studies have demonstrated the utility of a subject-

specific approach for examining neuroimaging changes in clinically

heterogenous disease states, such as Multiple Sclerosis and

Traumatic Brain Injury (34–38). Our study is the first to adopt

this approach in a long-COVID sample. Further, while SSA

including DisCo-Z have been used when examining functional

connectivity and DTI, our study is the first to demonstrate the

utility of this approach in the study of cerebrovascular reactivity.

Overall, these findings provide further support for this statistical

approach broadly, and highlight its value in furthering the field’s

understanding of both long-COVID and CVR.

4.5 Limitations

There a several limitations to consider when interpreting the

findings of the present study. We recruited older adults already

receiving care for long-COVID, which may reflect a more severe

sample relative to the general population. Further, we recruited

individuals who specifically were endorsing subjective cognitive

symptoms associated with COVID-19 infection. Perceived

cognitive changes is a construct studied in other neurological

conditions (e.g., mild Traumatic Brain Injury, Mild Cognitive

TABLE 5 Association between total reported subjective cognitive

concerns and Disco-Z metricsa.

Region ρ
b Significancec Nd

Yeo 1 0.208 0.307 26

Yeo 2 0.403 0.041 26

Yeo 3 0.384 0.053 26

Yeo 4 0.606 0.001 25

Yeo 5 0.316 0.142 23

Yeo 6 0.249 0.219 26

Yeo 7 0.468 0.016 26

Whole Brain 0.467 0.016 26

aThe association between subjective cognitive symptoms reported (total number of domains

affected) and Disco-Z values for each resting-state network and whole brain.
bSpearman rank correlation coefficients.
cThe p-value for each correlation is presented within the significance column. The

corresponding sample sizes are presenting in the far right column for each analysis.
dSample size represented for each variable.

Impairment). Potentially, a systemic bias may be introduced when

targeting this cohort that could be addressed in future studies with

inclusion of additional comparison groups (e.g., individuals with

subjective cognitive concerns without a history of COVID-19,

individuals with long-COVID that are reporting only physical

symptoms). Given the heterogeneity in COVID-19 variants with

different exposure to vaccine (as some participants were acutely

infected with COVID-19 prior to development of vaccines), future

studies with larger sample sizes could examine the role of variants

and additional covariates could be examined and controlled

for statistically [e.g., medications, comorbid vascular health

conditions (including hypertension, diabetes, hyperlipidemia),

total number of infections, timing of cognitive symptoms in

relation to vaccination]. Similarly, as our study was conducted at

a single time point (after development of long-COVID) we cannot

determine whether the group differences reflect a preexisting

condition that increases risk for long-COVID. Data was combined

from two separate studies and neuropsychological test scores were

only obtained from a subset of individuals for whom a clinical

neuropsychological evaluation had been completed as part of

standard of care. Consequently, there was some variability in

the specific tests used relative to the control group (all of whom

received a standard battery) and who completed the cognitive

symptom questionnaire. Additionally, there are limitations to

self-report measures of cognition. Future studies would benefit

from additional sources of data to establish presence of observed

cognitive change (e.g., collateral report) as well as use of normed

behavioral questionnaires around subjective cognitive change.

Regarding demographic make-up, the present sample was a

predominantly non-Hispanic, White sample which limits the

extent to which findings can be generalized to the general

population. Additionally, the long-COVID sample was younger

than the control sample, though we would hypothesize this group

difference would be more likely to minimize the group difference

rather than explain the difference. To better assess this however

we examined the correlation between the variables of interest

(extreme CVR clusters) and age and did not find a statistically
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TABLE 6 Association between total reported objective cognitive performance and Disco-Z metricsa.

Region Delayed Recall Trails A Trails B Category fluency Letter fluency Nd

ρ
b p-

valuec
ρ p-

value
ρ p-

value
ρ p-

value
ρ p-

value

Yeo 1 −0.152 (0.342) −0.166 (0.299) −0.108 (0.503) −0.211 (0.185) −0.144 (0.370) 41

Yeo 2 −0.305 (0.047) −0.243 (0.116) −0.269 (0.082) −0.433 (0.004) −0.176 (0.258) 43

Yeo 3 −0.379 (0.009) −0.135 (0.365) −0.288 (0.050) −0.232 (0.117) −0.140 (0.348) 47

Yeo 4 −0.100 (0.529) −0.300 (0.054) −0.300 (0.054) −0.183 (0.245) 0.041 (0.796) 42

Yeo 5 −0.230 (0.170) 0.036 (0.832) −0.182 (0.280) −0.117 (0.489) −0.123 (0.470) 37

Yeo 6 −0.191 (0.198) −0.009 (0.952) −0.103 (0.489) −0.205 (0.167) −0.209 (0.158) 47

Yeo 7 −0.236 (0.111) −0.224 (0.130) −0.221 (0.136) −0.190 (0.202) −0.168 (0.260) 47

aThe association between neuropsychological performance and Disco-Z values for each resting-state network.
bSpearman rank correlation coefficients.
cThe p-value for each correlation is presented within the significance column.
dSample size represented for each variable.

significant relationship. Finally, the current study recruited older

adults who reported no cognitive concerns of any kind but did

not explicitly assess for COVID infection history. Given the

prevalence of COVID-19, heterogeneity of strains and immunity

over time, it would be challenging, but ideally, a third control

group would be included comprised of older adults who had

contracted COVID-19 and reported no changes in cognition.

Further, the present sample was comprised predominantly of

female participants. This is a reflection of the sample collected.

While there has been some research that has suggested a greater

reported of cognitive symptoms in women relative to men with

long-COVID, in the context of this study, it could also reflect

openness to research participation more broadly. Given the

relatively small sample size, we do not have the power to examine

the independent effect of sex as it relates to long-COVID, however,

we did match participants based on sex and we have regressed out

the effects of sex when appropriate (e.g., use of normative reference

groups for neuropsychological data that consider sex, statistically

controlling for sex in CVR analyses). Future studies examining

sex more directly are of interest for understanding long-COVID,

though unfortunately with the current sample size this could

not be explored. Finally, regarding CVR, there are limitations

specific to the breath holding task. Efforts were made to address

limitations in the following ways: participants were instructed

to perform BH on expiration only which has been shown to

be more repeatable than BH on inspiration, a paced breathing

paradigm was used to control participants’ breathing rate, and

finally, respiratory traces were collected for all participants and

manually inspected to ensure each participant performed 4 breath

holds. Future studies controlling for end tidal pressure CO2 would

be recommended.

5 Conclusions and future directions

The results from this study suggest older adults with

long-COVID exhibit alterations in cerebrovascular reactivity

compared to cognitively unimpaired older adult sample.

In particular, more extreme CVR values were observed in

the long-COVID group which were also associated with a

greater number of total subjective cognitive symptoms. While

acute management of COVID-19 infection has drastically

improved, a significant proportion of individuals report

prolonged symptoms in the months following resolution

of acute COVID-19 infection. Potentially, CVR could be

examined over the course of long-COVID or examined as a

risk factor for development of long-COVID. CVR has been

hypothesized as a potential target for treatment (61) and could

be a target of interest for Long-COVID. While long-COVID is

a relatively new syndrome, there is a larger body of literature

on cognitive changes in the other post-infectious disease states.

Our findings may have utility for the analysis of other post-

infectious states associated with cognitive changes (e.g., Myalgic

encephalomyelitis/chronic fatigue syndrome, Lyme Disease, etc)

as well.

Long-COVID encompasses a wide range of symptoms that

must be understood within both the context of an individual’s

health history and the broader dynamics of the ongoing pandemic,

including variations in viral strains, vaccine timelines, and other

evolving factors. This study focused on persistent cognitive

changes among older adults, but these symptoms exist alongside

other manifestations such as dyspnea, palpitations, peripheral

neuropathy, and psychiatric changes (e.g., anxiety). Moreover,

the emergence and progression of long-COVID symptoms

show different patterns over time depending on the aspect of

health being assessed. Early autonomic nervous system (ANS)

changes, such as alterations in heart rate variability, typically

linked to fatigue, may resolve within 6 to 13 months post-

infection (62). In contrast, cognitive symptoms can persist

for a longer duration, from 6 to 113 months post-infection.

Notably, in that study presence of cognitive symptoms was not

correlated with ANS functioning, suggesting that mechanisms

such as neuroinflammation or microvascular dysfunction may

underlie prolonged cognitive concerns. Previous studies have

also highlighted the role of vascular risk factors (particularly

hypertension, but also cardiovascular disease or diabetes) as well as

older age (63), prior infections or vaccine exposure in modulating

long-COVID outcomes and immune responses to vaccination (64).
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Aforementioned comorbid conditions also have been found to have

an impact on CVR, as well as cognition in older adulthood, again

highlighting the needed for future studies that can examine these

complex processes.

There is emerging evidence suggesting that long-COVID may

impact physiological processes associated with biological aging

more directly (e.g., via inflammation and oxidative stress) (65).

This could provide a useful framework for understanding the

final finding of this study, where more extreme cerebrovascular

reactivity (CVR) values were associated with worse objective

memory performance. While reduced CVR is linked to cognitive

decline in both pathological and normal aging, a DisCo-

Z approach to CVR may capture more subtle changes in

neurovascular function that affect memory in older adults. In

the broader context of long-COVID, one study found evidence

of accelerated biological aging in individuals with acutely

asymptomatic or mild COVID-19 infection (65). Specifically, 1-

year post-infection, these individuals exhibited increased DNA

methylation age (DNAmAge) and shortened telomere length

(TL) (65). This acceleration in biological aging could potentially

explain the cognitive symptoms observed in older adults with

long-COVID, and might also help to explain the broader

relationship between CVR and memory in the full sample.

Future studies should explore this mechanism further to better

understand its relationship to cognitive impairment in long-

COVID. Additionally, persistence of the SARS-CoV-2 spike protein

has been observed in brain samples and meninges following

resolution of acute infection (66). The authors demonstrated that

the persistence of the spike protein was associated with chronic

inflammation and biomarkers associated with neurodegeneration.

Future exploration of the spike protein as a mechanism associated

with both cognitive symptoms in long-COVID and CVR would be

of interest.
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