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Introduction: The brain’s spontaneous neural activity can be recorded during rest 
using resting state functional magnetic resonance imaging (rs-fMRI), and intricate brain 
functional networks and interaction patterns can be discovered through correlation 
analysis. As a crucial component of rs-fMRI analysis, effective connectivity analysis 
(EC) may provide a detailed description of the causal relationship and information 
flow between different brain areas. It has been very helpful in identifying anomalies 
in the brain activity of depressed teenagers.

Methods: This study explored connectivity abnormalities in brain networks and 
their impact on clinical symptoms in patients with depression through resting 
state functional magnetic resonance imaging (rs-fMRI) and effective connectivity 
(EC) analysis. We first introduce some common EC analysis methods, discuss 
their application background and specific characteristics.

Results: EC analysis reveals information flow problems between different brain 
regions, such as the default mode network, the central executive network, and 
the salience network, which are closely related to symptoms of depression, such 
as low mood and cognitive impairment. This review discusses the limitations 
of existing studies while summarizing the current applications of EC analysis 
methods. Most of the early studies focused on the static connection mode, 
ignoring the causal relationship between brain regions. However, effective 
connection can reflect the upper and lower relationship of brain region 
interaction, and provide help for us to explore the mechanism of neurological 
diseases. Existing studies focus on the analysis of a single brain network, but 
rarely explore the interaction between multiple key networks.

Discussion: To do so, we can address these issues by integrating multiple 
technologies. The discussion of these issues is reflected in the text. Through 
reviewing various methods and applications of EC analysis, this paper aims to 
explore the abnormal connectivity patterns of brain networks in patients with 
depression, and further analyze the relationship between these abnormalities and 
clinical symptoms, so as to provide more accurate theoretical support for early 
diagnosis and personalized treatment of depression.
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1 Introduction

1.1 The epidemiology and social impacts of 
depression

Over the past few decades, there has been a sharp rise in the 
number of new instances of depression, which has serious 
consequences for public health worldwide (1). According to recent 
statistics reports, depression is more common in women than in men 
worldwide and is rising (2). The disparity in prevalence between men 
and women is influenced by a variety of factors, including societal, 
psychological, and biological aspects. Because adolescent females’ sex 
hormones alter more dramatically, their prevalence is higher (3). 
Approximately 290 million individuals worldwide suffer from 
depression as of 2019, making up 3.75% of the world’s population. The 
incidence is 30–35% higher in those between the ages of 15 and 29 (4, 
5). Depression progressively became one of the main mental illnesses 
impacting the health of teenagers between 1990 and 2019 (6). Patients 
suffering from depression may experience severe mental health 
problems, including sleep disorders, cognitive impairment, executive 
dysfunction, and an increased risk of suicide (7). Investigating 
objective indicators of depression is crucial for early diagnosis and 
therapy because of the shortcomings and subjectivity of the scoring 
systems currently in use (Figure 1).

1.2 The use of resting-state fMRI in 
depression research

Recently, some studies have proposed that resting-state fMRI has 
certain application values in the treatment of depression, mainly 
manifested as follows: First, identifying abnormal signals. Resting-
state fMRI can effectively identify abnormalities in brain functional 
networks. Existing research has confirmed that there are abnormal 
phenomena in the brain network connections of individuals with 
depression, mainly appearing in the default mode network (DMN) 
and the medial prefrontal cortex to the limbic emotional regulation 
circuit (MRC) (8). These abnormalities affect the subject’s cognitive 
and emotional regulation. Second, understanding the pathological 
mechanisms, the onset mechanisms of depression are often related to 
abnormalities in brain functional networks (9). The promotion and 

application of resting-state fMRI technology have unveiled the 
pathological mechanisms of depression for medical professionals (10). 
Third, powerful in evaluation and prediction, comparing clinical 
presentations before and after treatment to assess treatment effects. 
Evaluating the scientific nature and feasibility of medication plans, 
judging whether brain cognitive and emotional regulation has 
improved after medication, and also predicting individual medication 
responses (11). Fourth, comparing patient groups, by comparing 
different types of onset patients, finding similarities and differences 
among them, which provides a basis for depression classification and 
process management (12, 13). Fifth, revealing gender differences, 
studies show significant differences in brain regions between male and 
female patients with severe depression (14).

1.3 Definition and importance of effective 
connectivity

Even though functional connectivity (FC) in the brain can now 
be seen with resting-state functional magnetic resonance imaging 
(fMRI), it is still challenging to completely comprehend the causal 
relationships between various brain regions when relying only on 
correlation analysis of FC. Effective connectivity (EC) becomes very 
crucial in fMRI research in this situation. As a vital instrument for a 
thorough investigation of brain function, EC shows how neurons 
cooperate to provide intricate cognitive and behavioral processes by 
examining the connections and information flow between various 
brain regions. In addition, it shows how different parts of the brain 
interact dynamically, particularly how information moves from the 
sensory cortex to higher cognitive regions and how strongly. We can 
better understand the neurobiological mechanisms underpinning 
early-stage depression by using EC to uncover patterns of information 
transmission between different parts of the brain in the study of 
adolescent depression (15). According to recent studies, adolescents 
with depression have very different EC patterns than adult patients, 
and these early alterations in functional connectivity could be  a 
predictor of the condition’s long-term course (16). By building and 
evaluating dynamic models, like Dynamic Causal Modeling (DCM), 
EC can more accurately represent the driving mechanisms of neural 
networks than FC, which mainly concentrates on the statistical 
connections between brain areas. Thus, in addition to conceptually 

FIGURE 1

The proportion of global depression cases to the total number of people in 2019 and the proportion of depressive patients by age group.
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addressing FC’s shortcomings, EC offers a more thorough viewpoint 
for comprehending the dynamic connections within intricate brain 
functional networks in real-world applications. Combining FC and 
EC provides more thorough and extensive theoretical support for the 
diagnosis and treatment of neurological illnesses by analyzing the 
brain’s resting state functional organisation and underlying neural 
mechanisms. In order to achieve early intervention and individualized 
treatment, it is crucial to conduct a thorough examination of effective 
connection in young patients with depression. In addition to offering 
comprehensive data on connection strength, directionality, and time 
series, EC illustrates the dynamic transfer of information within brain 
networks by building causal relationship models between different 
brain areas. For the purpose of comprehending intricate neural 
processes like perception, memory, and decision-making, this allows 
researchers to go beyond conventional correlation analyses and 
investigate how the brain coordinates its activities under various states 
(such as resting or performing tasks) (17). Alterations in EC often 
reflect the fundamental pathological mechanisms underlying 
psychiatric disorders such as depression, schizophrenia, and 
Alzheimer’s disease (18, 19). Researchers can learn more about how 
these illnesses impair the regular operation of brain networks by 
contrasting the EC patterns of patients and healthy people. Moreover, 
adding structural connectivity (SC) data to EC models can greatly 
improve the analysis’ accuracy and explanatory capacity (20). Even 
though resting-state fMRI has shown great promise in the study of 
depression, the development of efficient connectivity analysis enables 
a more thorough understanding of the causal relationships within 
brain networks and their roles in the etiology of depression, especially 
in patient populations of adolescents. In addition to addressing gaps 
in the literature, this offers a strong theoretical framework for creating 
intervention tactics that are more accurate and successful.

1.4 Rationale for focusing on three 
networks and the role of other networks

The salience network (SN), central executive network (CEN), and 
default mode network (DMN) are the main research objects in this 
study. Their significant significance in the fundamental mechanisms 
of depression informed the decision, which was not made by mistake. 
Abnormal functioning of the DMN, particularly overactivation 
between the anterior medial prefrontal cortex and the posterior 
cingulate gyrus, is frequently regarded as a major neural basis for 
ruminative thinking and negative self-evaluation. The DMN is closely 
linked to self-reflection and intrinsic emotional regulation. CEN is 
essential for goal-directed behavior and cognitive regulation. 
According to the study, patients were more likely to show signs of 
inattention and trouble completing activities when the connection of 
the CEN was compromised. The slow or rigid emotional reactions of 
patients are typically directly linked to the malfunctioning of the SN 
network, which serves as a “hub” between the DMN and CEN and is 
in charge of screening and processing important inputs. According to 
these results, these three networks are essential to the study of 
depression and are hence the subject of this investigation.

However, we also know that the aforementioned networks are 
not the only pathogenic processes of depression. However, we also 
know that the aforementioned networks are not the only pathogenic 
processes of depression. In certain disease processes, other functional 

networks—like the limbic system and attention networks—may also 
be  crucial. For instance, the limbic system has a direct role in 
emotion production and memory integration, whereas attention 
networks are linked to information filtering and attention 
management. These networks were excluded from our analysis for a 
number of reasons. To guarantee the study’s relevance and the depth 
of its conclusions, this research first sought to concentrate on the 
networks most strongly linked to the fundamental mechanisms of 
depression. Second, our chosen dynamic causal modeling approach 
is best suited for examining the causal relationships between 
particular networks rather than the intricate relationships among all 
functional networks. Lastly, in order to guarantee the accuracy of 
data analysis, we must choose research objects sensibly given the 
constraints of sample size and research resources. In order to present 
a more comprehensive map of brain connections and offer more 
multifaceted theoretical support for the diagnosis and treatment of 
depression, future research can progressively include these networks 
in the discussion. These networks were excluded from our analysis 
for a number of reasons. To guarantee the study’s relevance and the 
depth of its conclusions, this research first sought to concentrate on 
the networks most strongly linked to the fundamental mechanisms 
of depression. Second, our chosen dynamic causal modeling 
approach is best suited for examining the causal relationships 
between particular networks rather than the intricate relationships 
among all functional networks. Lastly, in order to guarantee the 
accuracy of data analysis, we must choose research objects sensibly 
given the constraints of sample size and research resources. In order 
to present a more comprehensive map of brain connections and offer 
more multifaceted theoretical support for the diagnosis and 
treatment of depression, future research can progressively include 
these networks in the discussion.

1.5 Method

This paper reviews the progress of studies on effective connectivity 
of depression in adolescents based on resting state functional magnetic 
resonance imaging (rs-fMRI) through systematic review and review 
analysis. The study participants were primarily adolescents with 
untreated first episode depression and were compared with healthy 
controls. 2,045 articles were retrieved from the PubMed database, 
which included the keywords “adolescent depression,” “resting state 
magnetic resonance imaging,” “effective connectivity,” and “brain 
networks.” Then 879 articles were further screened according to 
inclusion and exclusion criteria (Figure 2).

Qualifications for inclusion:

 1. Adolescent brain function during resting state fMRI studies, 
especially in patients with major depressive disorder (MDD).

 2. To determine the causative relationship between brain 
networks, apply efficient connection analysis techniques (e.g., 
Granger causal analysis, dynamic causal model, structural 
equation model, etc.).

 3. Examine anomalies in the brain’s functional networks, 
especially those that are connected to central symptoms like 
self-talk, emotional control, and cognitive control.

 4. The material that has just been published is given priority in 
order to guarantee cutting-edge technology and timely research.
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Termination of the standard:

 1. Research that did not employ resting state fMRI or that did not 
have depression or teenagers as their primary focus were not 
included. Studies without resting state fMRI were not taken 
into consideration because it is a crucial non-invasive 
neuroimaging technique that is frequently used to examine 
brain network connection.

 2. Research that solely examined functional connection without 
looking at causal connectivity was not accepted. Granger 
causality and dynamic causal modeling are two examples of 
causal analysis techniques that were necessary for inclusion 
since they are crucial for comprehending brain 
network connections.

 3. Due to possible bias and untrustworthy results, research with 
subpar statistical analysis (such as non-significant results, 

FIGURE 2

Flowchart of the literature screening process.
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incorrect methodologies) or inadequate data processing (such 
as motion artifacts, poor standardization) was disqualified. 
Excluded studies also lacked a control group or had inadequate 
sample sizes (less than 10 participants per group).

 4. To guarantee the review’s timeliness and accuracy, the more 
recent or methodologically sound version was given priority 
when several studies from the same team were available.

2 Etiology, characteristics, and 
neuroimaging studies of adolescent 
depression

2.1 Features and challenges of adolescent 
depression

Adolescence is a critical period in the development of the human 
being; during this time, people’s physical, psychological, and social 
roles will change significantly. Additionally, even small environmental 
changes at this time may cause significant swings in psychological 
health, therefore this period of life need special attention. Adolescent 
depression’s clinical presentations can be somewhat complicated, with 
a high misdiagnosis rate and a range of symptoms that include loss of 
interest and self-blame (21, 22). Research indicates that kids in middle 
and high school are most susceptible to depression (23). According to 
pertinent research, adolescent depression is a result of a complex 
interplay of genetics, social pressures, and the environment. Medical 
professionals should detect these potential risk factors as soon as 
feasible to enhance the prognosis and prevalence (24). In the future, 
studies combining psychiatry, psychology, and neuroscience may 
be  conducted to gain a deeper understanding of the causes and 
management of adolescent depression. Though this treatment plan has 
not been widely employed in clinical practice, the academic 
community now believes that the combination of medication therapy 
and cognitive behavioral therapy is a good alternative for tailored 
treatment (22).

2.2 The present status of resting-state fMRI 
research in adolescent depression patients

In recent years, research on adolescent depression has shifted its 
focus to aberrant brain functional connections and their significance 
in pathogenesis. Several key brain areas have shown signs of 
dysfunction in studies. For instance, the regional homogeneity (ReHo) 
values are notably higher in the lingual gyrus, middle occipital gyrus, 
postcentral gyrus, and precentral gyrus. In contrast, ReHo values are 
lower in the vermis. These findings suggest that these regions might 
play a significant role in the onset of teenage depression (25). Research 
using the triple network model has shown brain network issues in 
adolescents with major depressive disorder (MDD). These problems 
mainly appear as too much connection in the salience network (SN), 
more connectivity between the default mode network (DMN) and SN, 
and weaker connections within the Central Executive Network 
(CEN). These network dysfunctions might cause problems with 
thinking and negatively impact emotional control (26). Studies of 
adolescents having their first depression episode with no prior 
treatment have found various connectivity problems in their brain 

networks. When resting, these adolescents showed weak links between 
the right amygdala, the prefrontal cortex, and the anterior cingulate 
cortex, which affects normal emotional control circuits (27). Also, 
poor connectivity between the bilateral dorsal anterior cingulate 
cortex and areas like the right superior frontal gyrus, frontal pole, and 
inferior frontal gyrus has been connected to problems in controlling 
emotions and a higher chance of depression (28–30). Addictive 
behaviors, like intense internet use, disrupt brain networks too, 
leading to strong emotional changes and more depression symptoms 
when limits are set (31). These discoveries help us understand the 
underlying biological changes in adolescent depression and suggest 
new ways to treat it.

3 Concepts of several effective 
connectivity analysis methods and 
their prospective applications in fMRI 
research

3.1 Dynamic causal modeling

Dynamic causal modeling (DCM) uses Bayesian algorithms to 
simulate the underlying neural activities from multimodal 
neuroimaging data. It works by employing generative and inversion 
methods to predict how different brain regions connect (32). The 
DCM model brings together neural models and hemodynamic 
models to forecast activity in brain areas. Using Bayesian algorithms, 
it compares different results to find the best one. This method helps 
uncover how information is combined across various brain regions 
under different situations. In fMRI research, the DCM model has 
become widely used for assessing cognitive levels of subjects and can 
reconstruct brain network connectivity maps based on EEG/MEG 
data (33, 34).

However, when dealing with huge model sets, user-defined model 
spaces might cause combinatorial explosion, making selection more 
difficult. Random effects and nonlinear modeling have helped to 
address these challenges, increasing flexibility and accuracy in 
interpreting complicated brain data (35). The efficacy of DCM is 
dependent on striking a balance between model biological realism and 
statistical inversion methods’ robustness.

Recent improvements have expanded DCM’s use in fMRI to infer 
effective connection across large-scale networks. Dual-state models 
have allowed for more exact assessment of intrinsic connection 
strengths, particularly in capturing neuronal dynamics (36). The 
relevance of self-connections in DCM analysis has frequently been 
neglected, emphasizing the need for additional research (37). 
Nonlinear equations based on the Wilson-Cowan model have also 
been found to outperform classic bilinear equations in DCM (38).

The Bayesian model offers unique advantages, enhancing the 
group-level analysis capabilities of dynamic causal modeling (DCM) 
and addressing inter-individual heterogeneity (39). This is particularly 
effective across a variety of research topics, where model analysis and 
predictions achieve satisfactory levels (40). Frequency domain DCM 
technology supports resting-state functional magnetic resonance 
imaging, serving as a common research paradigm and a crucial metric 
for assessing the effectiveness of brain network connections (41). 
Sparse DCM, with its high computational efficiency, allows for 
predictions across all brain regions, reducing the complexity 
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associated with high-dimensional data processing (42). Stochastic 
DCM exhibits robustness, adeptly handling samples with high noise 
and data missing, making it widely used in research studies of various 
disease states to assess brain function (43). Cross-modal DCM helps 
explain how the brain interacts with external information, offering 
detailed insights into emotional cognition and how different senses 
integrate (44).

As research models get better, there have been ongoing 
improvements and updates in Dynamic Causal Modeling (DCM). 
This advancement provides new methods and tools for studying brain 
networks and how they process different types of information. Interest 
in researching DCM models is likely to stay high moving forward. 
Future developments will include integrating frequency domain, 
stochastic, and sparse modeling. These enhancements will increase the 
models’ ability to explain data and their practical value. This progress 
supports research into brain capabilities and lays the groundwork for 
precise treatments of neurological diseases.

In an fMRI study based on a dynamic causal model (DCM), the 
research question is first identified. Then, identify the brain region of 
interest and its links to function. Finally, the experimental hypothesis 
is proposed. Subsequently, fMRI data was collected to determine the 
experimental paradigm and record dynamic changes in specific brain 
activity. The data needs to be pre-processed, including head motion 
correction, spatial normalization and smoothing, as well as time series 
data for the region of interest (ROI) to ensure the normality and 
validity of the results. Candidate models are built using 
neurophysiological assumptions, defining connections, inputs, hidden 
states, and outputs. Model estimate employs techniques such as 
Bayesian Model Averaging (BMA), with model fit determined by 
computing free energy. Model comparison determines the best-fitting 
model based on free energy and assesses parameter relevance. The 

analysis focuses on evaluating the causal linkages between brain areas 
using the best model and ensuring that they are consistent with the 
hypothesis. Finally, discoveries are presented through reporting and 
visualization, summarizing the process and laying groundwork for 
future research (Figures 3, 4).

3.2 Granger causality analysis

Granger causality analysis (GCA) is a time-series method based 
on multiple linear regression that is commonly used to identify 
effective connection between brain areas. It makes no assumptions 
and objectively analyses the strength and direction of brain network 
connections, resulting in great sensitivity and accuracy, notably in 
investigations of neurological and psychiatric illnesses (45). GCA’s 
strength stems from the use of vector autoregressive (VAR) models to 
forecast future values and infer causation by examining the impact of 
one variable on another (46). As a result, GCA has earned a reputation 
in neuroscience for exposing functional and directional connections. 
However, GCA has limits, especially when used with complicated 
brain systems. Its assumptions of stationarity and linearity may not 
always be valid, and applying it to nonlinear or nonstationary data can 
result in incorrect conclusions (47). The sluggish dynamics of 
functional magnetic resonance imaging (fMRI) signals, as well as 
regional hemodynamic fluctuations, call into question the assumptions 
concerning temporal precedence (48). GCA has its limitations, it still 
possesses advantages that other models cannot match, such as 
reducing errors in results due to incorrect hypotheses. GCA is widely 
used in studies on how brain mechanisms operate under cognitive 
deficits. To address the shortcomings of GCA, some scholars have 
proposed using it in conjunction with Dynamic Causal Modeling 

FIGURE 3

The steps for constructing a DCM model.
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(DCM) to create complex new models. Given the many hidden layers 
in brain systems, some have also suggested combining DCM with 
Bayesian models to assess whether there is a causal relationship 
between hypothesis conditions and the neural system. The hidden 
states and coupling parameters of the DCM model reveal details about 
brain connectivity (49). The integration of GCA and DCM provides a 
foundation for deep logical analysis of brain networks, opening new 
avenues for research into neurological issues.

3.3 Structural equation modeling

The Structural Equation Modeling (SEM) has strong statistical 
abilities that help uncover complex relationships among various types 
of variables. SEM’s key advantage is its use of multiple assessment 
indices to evaluate and analyze latent variables with minimal 
measurement errors (50). It is more inclusive than traditional 
analytical models, enabling the exploration of multiple pathways 
within one model. SEM is widely used for validating theoretical 
models (50), making it a preferred tool in fields like psychology, 
sociology, and education. For instance, in psychology, SEM uses 
confirmatory factor analysis (CFA) to examine individual 
psychological changes (51); in sociology, it clarifies the relationships 
between different social variables (52); and in medical science, it 

investigates the causal links between causes of diseases and their 
symptoms (50). SEM’s precise and objective analysis is especially 
valuable in research involving complex variables and multiple 
hidden layers.

In recent years, Structural Equation Modeling (SEM) has been 
widely used in studies involving resting-state fMRI, uncovering levels 
of connectivity within human brain networks. Research indicates that 
SEM is effective in identifying causal relationships between different 
brain regions, facilitating precise analyses of neural network states. As 
a result, SEM has become a popular tool in resting-state fMRI 
research. It is particularly valued for assessing the connectivity of the 
brain’s default mode network (DMN), and for distinguishing between 
the brain patterns of elderly patients with depression and those of 
healthy groups (53). The exploratory Structural Equation Modeling 
(eSEM) also serves as a potent analytical tool, enhancing some 
functionalities of traditional SEM and offering more flexibility in 
modeling group data (54). Subsequently, this model framework was 
applied in resting-state fMRI research topics, demonstrating group 
connectivity pathways and predicting individual brain network 
connections. The expanded unified Structural Equation Model 
(euSEM) predicts the modulatory effects of experimental interventions 
on inter-regional coupling, fulfilling the analytical needs of complex 
brain networks (55). In summary, the prospects for SEM applications 
are very promising, with derivative models based on SEM enhancing 

FIGURE 4

Potential of Generating Multimodal Predictions from the Same (Neuronal) Dynamic Causal Model. Adapted from Friston et al. (118), shared under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/), DOI link: https://doi.org/10.1016/j.neuroimage.2017.02.045. The figure depicts the 
possibility of using the same dynamic causal model (DCM) to generate multimodal predictions. While previous figures focused on creating BOLD 
responses via hidden neural states, the same states can also be used to anticipate local field potentials or event-related responses, which are depicted 
here by a linear mapping to conventional electromagnetic fields. The top of the picture depicts a first-order kernel mapping from experimental inputs 
to anticipated electrophysiological responses, which represent the reaction to brief stimuli. Under the premise of local linearity, these kernels can 
be used to predict evoked responses caused by random variations in mean neural activity. This means that, given the spectrum density of neural 
fluctuations, evoked responses can be elicited. These responses are depicted on the right side of the figure using their autospectra (solid and dashed 
lines reflecting the presence or absence of observational noise) and corresponding autocovariance functions (the Fourier transform of the 
autospectra). The equations in the image describe the relationships between the first-order kernel, cross-spectral density, and covariance functions, all 
of which are utilized to make these predictions.
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understanding of brain functional network connectivity and providing 
data support for disease prediction and precision treatment.

3.4 Vector autoregressive model

The Vector Autoregression (VAR) model is commonly used for the 
statistical analysis of multiple variables, describing the relationships 
between economic variables and time series data. Its operational 
mechanism involves modeling variables and then combining them with 
their own lagged values to examine dynamic changes. With the 
maturation of VAR models, they now provide significant support for 
resting-state fMRI studies. Traditional models, which assume that 
connectivity among brain regions remains stable during scans, often fail 
to handle the real-time variations seen in imaging data. To tackle this 
issue, the Time-Varying VAR (TV-VAR) model was developed to allow 
for a flexible switch between dynamic and static monitoring (56). In 
functional MRI studies, choosing the right model order for VAR requires 
considering factors like data dimensionality, individual differences, and 
the goals of the experiment. While researchers commonly use first-order 
VAR models, higher data dimensions might require a higher model 
order (57). Determining the most suitable model order can be guided by 
criteria such as AICc and KICc, ensuring dynamic, thorough, and 
efficient capturing of information about brain network connectivity (58).

The analysis shows that the VAR model, along with its enhanced 
versions, has significantly supported resting-state fMRI research. 
These models excel in identifying brain networks and assessing 
network functional connectivity. They are adept at uncovering deep, 
hidden dynamic information, which opens new avenues for 
neurological research and lays a strong foundation for the precision 
treatment of neurological disorders.

3.5 Transfer entropy

Transfer Entropy (TE) is a key concept in information theory that 
mainly focuses on the direction and strength of information transfer 
between different time series. TE stands out from other correlation 
analyses because it is based on changes in probability distributions and 
can reveal nonlinear and lag relationships without assuming any 
specific dynamics of the system. This method is particularly effective 
for analyzing complex neural network data, whether from 
Electroencephalography (EEG) or functional Magnetic Resonance 
Imaging (fMRI). TE helps to clarify the effective connectivity between 
brain regions and unveils the pathways through which neural 
networks transmit information.

In neuroimaging, TE has been used on both static and dynamic 
brain networks. For example, when paired with EEG and transcranial 
magnetic stimulation (TMS), TE has mapped dynamic brain 
connection, exposing information flow during cognitive tasks (59, 60). 
However, TE has limitations. In nonlinear systems, it is possible to 
underestimate the efficiency of information transport. In multivariate 
networks, spurious connections can cause misinterpretations and 
reduce result accuracy (61). Thus, large-scale data processing using TE 
necessitates multivariate methodologies and stringent statistical tests 
in order to eliminate false positives and improve reliability.

In resting-state fMRI research, TE is commonly used as a model-
free tool for assessing effective connectivity. It measures information 

transmission across brain areas, overcoming the assumptions made by 
standard models such as Granger causality and dynamic causal 
modeling. TE is particularly effective in detecting nonlinear interactions 
in brain networks (62). Studies reveal that TE is strong in noisy, linearly 
mixed environments, demonstrating its dependability (63). In complex 
brain networks, Transfer Entropy (TE) shows causal links in big, 
spread-out networks during cognitive tasks, helping us understand how 
the brain is organized (64). Extensions to TE, like phase TE and 
complex-valued TE, enhance its power to detect detailed interactions 
in certain frequency bands or multivariate systems. These are especially 
useful in studying brain oscillations and phase information (65, 66). 
While Transfer Entropy (TE) offers clear advantages over other 
methods, it also comes with limitations. In complex multivariate 
studies, the presence of spurious connections can lead to errors in the 
topological structure of brain networks. Additionally, TE might struggle 
with detecting highly nonlinear events. To maintain the objectivity of 
research results, it’s crucial to be thoughtful about when and how TE is 
applied, considering the specific conditions of each study (61).

To sum up, even though Transfer Entropy (TE) has some limits, 
it still serves well for studying connectivity in resting-state fMRI, 
especially for nonlinear connections. We can still do more research to 
better use TE. By combining TE with other models when we look at 
complex and nonlinear problems, we can learn more accurately about 
how brain networks work. This helps a lot in neuroscience studies.

3.6 Effective connectivity analysis using AI 
causal inference (deep learning)

In the past few years, research on AI-based causal inference has 
greatly improved the study of effective connectivity in neuroscience. 
Particularly, deep learning algorithms have started new paths for 
analyzing data from functional Magnetic Resonance Imaging (fMRI). 
Researchers have utilized these algorithms to figure out causal links 
between brain regions and to track brain activities. For example, they 
have created techniques like effective connectivity using deep 
reinforcement learning, known as EC-DRL (67), and systems using 
meta-reinforcement learning, called MetaRLEC (68). With the help of 
these new technologies, models of neural networks and dynamic causal 
learning are brought together. This combination addresses issues like 
high noise and small data sets. These models can also track changes 
over time and examine dynamic effective connectivity (dEC) (69, 70).

The use of deep learning algorithms for causal analysis has greatly 
advanced the study of effective connectivity, showing a lot of value in 
areas like brain development and neurodegenerative diseases. AI and 
methods driven by deep learning for causal inference are now key 
tools in researching effective connectivity. This marks a new era in 
neuroscience research and analysis. This change has made it possible 
to model neural dynamics more precisely and to understand complex 
brain functions and disorders better.

3.7 Directed acyclic graph

3.7.1 Bayesian network
Bayesian Networks (BNs) are probabilistic graphical models that 

deal well with uncertainty in areas like medical diagnostics, image 
processing, and information retrieval (71). They start with creating a 
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Directed Acyclic Graph (DAG) from data analysis, which helps in 
forming causal relationships and making Conditional Probability 
Tables (CPTs) for looking at data in numbers. This model works well 
for studying random variables in complex systems (72). Adding to the 
traditional BN models, researchers have developed Dynamic Bayesian 
Networks (DBNs) to study brain connectivity (effective connectivity) 
(73). Traditional BNs focus on causal structures in functional magnetic 
resonance imaging (fMRI) but do not include time-related connections 
between brain areas. DBNs, however, add a time aspect, which improves 
how the model handles time but can cause some loss of information. 
This limits its use. To overcome these issues, new forms like Gaussian 
DBNs and non-stationary Dynamic Bayesian Networks (nsDBNs) have 
been made (74, 75). DBNs are good at showing how brain connections 
change over time, while nsDBNs are better for dealing with time series 
data that changes, helping to estimate how brain regions change over 
different times. These improved BN models not only show how brain 
regions connect effectively but also help understand how the brain 
integrates functions and how neural dynamics change.

In conclusion, Bayesian Network models and their advancements 
have been crucial in neuroscience. They address the shortcomings of 
traditional models and offer extra data for predicting and analyzing 
neural connections. With the help of information technology, the 
potential applications of these models are expected to 
expand significantly.

3.7.2 LiNGAM
The Linear Non-Gaussian Acyclic Model (LiNGAM) integrates 

linear correlation analysis with non-Gaussian noise causal analysis, 
featuring statistical functionality and inference capabilities (76). Faced 
with non-Gaussian noise data, LiNGAM can automatically generate 
Directed Acyclic Graphs (DAGs), delineating the causal relationships 
among various variables. It also distinguishes between noise and normal 
data, enhancing the precision of the results (77). Owing to these 
advantages, the model is widely applied, mapping the causal structure 
between different regions in brain network studies of effective 
connectivity. The LiNGAM model continues to evolve, capable of 
handling high-dimensional, nonlinear, and multi-domain data with high 
analytical efficiency and minimal error (78, 79). In the study of neural 
connectivity networks, the LiNGAM model is a viable option, though it 
still faces challenges in computing massive and high-dimensional data. 
To address this, researchers have innovatively proposed the probabilistic 
Linear Non-Gaussian Acyclic Model (pLiNGAM), which incorporates 
population data, ensuring data and causal structure stability even when 
fMRI data points are insufficient (80).

Undoubtedly, in the study of brain connectivity networks, 
LiNGAM and its optimized versions perform admirably, offering high 
processing efficiency and handling a large volume of data. Suitable for 
various types of data, these models provide stable analysis results. In 
the identification of brain systems, LiNGAM models effectively reveal 
causal relationships, making them a commonly employed tool in 
neuroscience research.

3.8 Pairwise inference methods

3.8.1 Generalized partial correlation
Generalized Partial Correlation (GPC) primarily considers 

external factors and analyses their correlations, representing a 

traditional statistical method. When studying neuroimaging data, 
employing GPC is both feasible and scientific. Firstly, it reflects the 
relationships between different brain regions, and secondly, it 
establishes causal pathways. Building on GPC, two methods have been 
developed: Generalized Partial Directed Coherence (g-PDC) and 
Generalized Orthogonalized Partial Directed Coherence (g-OPDC) 
(81, 82). These methods support the study of brain connectivity 
during cognitive activities, reducing the risk of volume conduction 
artifacts and ensuring that prediction results more closely mirror 
actual conditions.

In summary, regarding the research topic of effective connectivity 
in the brain, GPC and its extensions are highly valuable. They reveal 
the connections and causal structures between brain regions and are 
adept at handling nonlinear and asymmetric data. These advantages 
are prominent, and the market prospects for these methodologies 
are promising.

3.8.2 Likelihood ratio
The Likelihood Ratio (LR) evaluates the probabilities of two 

competing hypotheses, with one termed the null hypothesis and the 
other the alternative hypothesis, determining the level of support each 
hypothesis provides to the assessment criteria. Common evaluation 
methods include Activation Likelihood Estimation (ALE) and 
Two-stage Empirical Likelihood (TETEL), among others.

ALE combines numerous fMRI studies to generate probabilistic 
brain activation maps for emotional processes, making it a valuable 
quantitative tool in affective neuroscience (83). TETEL analyses 
longitudinal neuroimaging data by changing the exponentially tilted 
likelihood ratio to accurately estimate temporal and spatial 
relationships (84).

In effective connection research, LR is commonly utilized for 
causal inference, notably in functional and effective connectivity 
studies, and is a critical tool for evaluating causal linkages between 
brain areas (85). It enables researchers to extend beyond statistical 
connections and make more strong causal inferences, particularly in 
complex neural networks, which improves knowledge of brain 
function. Overall, LR improves causal inference in neuroscience, 
providing more precise direction and enhanced tools for future 
research (Table 1).

3.9 Summary of the chapter

In fMRI research, each efficient connectivity analysis method has 
advantages and disadvantages. Dynamic Causal Modeling (DCM) 
combines neuronal and hemodynamic models within a Bayesian 
framework, providing insights into brain function; yet, its reliance on 
model specification frequently results in combinatorial explosion, 
particularly in large-scale network research. Granger Causality 
Analysis (GCA) does not require a preset model, making it ideal for 
investigating unknown linkages; but, its assumptions of linearity and 
stationarity restrict its accuracy in complicated systems. Structural 
Equation Modeling (SEM) effectively manages measurement error but 
struggles with high-dimensional and nonlinear dynamic data. Vector 
Autoregressive (VAR) models and their time-varying extensions 
(TV-VAR) represent dynamic relationships in time series, but 
selecting the right model order for high-dimensional data presents 
issues. AI-based causal inference approaches, such as deep learning, 
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perform well with high-noise and small-sample datasets, but they 
require big datasets and are difficult to comprehend. Directed Acyclic 
Graphs (DAGs), particularly Bayesian networks, are effective in 
modeling causal relationships in complex systems, although they are 
computationally intensive when dealing with huge datasets. Pairwise 
inference methods such as Generalized Partial Correlation (GPC) and 
Likelihood Ratios (LR) operate well with nonlinear and asymmetric 
data, but they may result in spurious connections in multivariate 
network analyses. In conclusion, each method has distinct applications 
and limits. Future research should combine several methodologies to 
better capture the complexity of brain networks, enhancing 
neuroscience and laying a solid foundation for detecting and treating 
neurological illnesses (Figure 5).

4 Abnormal effective connectivity in 
brain networks of depression patients

4.1 Abnormal effective connectivity in the 
default mode network

Human self-cognition is facilitated by the default mode network 
(DMN), a significant brain functional network that is mostly engaged 
during rest (86). Its central areas include the bilateral inferior parietal 
lobules (IPL), anterior cuneus, posterior cingulate cortex (PCC), and 
medial prefrontal cortex (mPFC), which are linked to social cognition, 
self-reflection, and emotional regulation (87). Furthermore, research 
has revealed that patients with significant depression have unstable 
DMN brain area connections, particularly between mPFC and PCC, 
which may result in rumination symptoms and persistently negative 
self-reflection (88, 89). Furthermore, in patients with recurrent 
depression, researchers found a more significant disruption of the 
effective connection (EC) between the dorsal attention network (DAN), 
salience network (SN), and DMN than in patients with primary 
depression (90). This suggests that internetwork coupling disorder is 
part of the pathological mechanism of depression. These results may 
contribute to our understanding of depression’s network connections.

4.2 Abnormal effective connectivity in the 
central executive network

The Central Executive Network (CEN), also known as the 
Cognitive Control Network (CCN), is a key brain functional network 

responsible for goal-directed behavior and complex information 
processing. The dorsolateral prefrontal cortex (DLPFC), which 
promotes goal-directed behavior and complicated information 
processing, is one of the key regions of the Central executive Network 
(CEN) (91). Along with the default mode network (DMN) and 
salience network (SN), CEN is a dynamic adaptive network that can 
be swiftly reorganized in a variety of cognitive activities and that can 
control the ratio of internal thought to external task demands (92). 
Research has demonstrated a strong correlation between cognitive 
decline and the loss of CEN functional connectivity, particularly in the 
early phases of neurodegenerative disorders and aging (93). It may 
be challenging for patients to suppress negative thoughts, rumination, 
and depressive moods since the CEN network’s self-connectivity is 
increased in depression patients while they are at rest, while the DMN 
network’s connection to the CEN network is diminished (94). 
Furthermore, a decrease in cognitive control is linked to disjointed 
connections between the medial frontal gyrus and the right superior 
marginal gyrus in the CEN, which may cause patients to experience 
difficulty making decisions and get distracted (95). In brain network 
switching and the processing of critical information, SN is crucial. 
Research has indicated that depressed individuals’ lower sensitivity to 
outside stimuli and difficulty switching tasks are related to the 
diminished effective connection between CEN and SN (96).

4.3 Abnormal effective connectivity in the 
salience network

The anterior cingulate cortex (ACC) and ventral anterior insula 
(vAI), along with the amygdala, hypothalamus, ventral striatum, and 
thalamus, form the core of the salience network (SN) (97). Integrating 
internal and exterior environmental perception data is a key function of 
the insula and anterior cingulate cortex. In order to adapt to shifting 
cognitive and emotional demands, SNS functionally transition between 
the frontoparietal network (FPN) and the default mode network (DMN) 
(98). Studies using functional magnetic resonance imaging (fMRI) have 
demonstrated a strong correlation between aberrant functional 
connections between brain networks and a number of mental illnesses, 
including major depressive disorder (MDD), schizophrenia, and 
schizophrenia (99). Changes in the functional and efficient connection 
between the Central Executive Network (CEN), DMA, SN, and the triple 
brain network were the specific focus of these investigations. The 
pathogenic process of MDD involves the weakening of the effective SN 
to DMN connection (EC) and the strengthening of EC from CEN to SN 

TABLE 1 Summary of effective connectivity analysis methods.

Method Key features Limitations Application

DCM, SEM Explains dynamic brain mechanisms Limited for nonlinear or large-scale data Dynamic modeling, network analysis

GPC, LR
Simple, suitable for nonlinear 

relations
Prone to spurious connections Pairwise causal inference

Bayesian Networks, LiNGAM Models complex causal relationships High computational demands Large-scale network modeling

GCA, VAR
Suitable for linear causality in time-

series data
Assumes stationarity and linearity Temporal causality analysis

TE Captures nonlinear information flow Sensitive to noise and spurious connections Nonlinear network analysis

AI (e.g., EC-DRL) Effective for noisy and complex data Requires large datasets, hard to interpret High-dimensional causal analysis

In this table, we provide an overview of effective connectivity analysis methods, highlighting their strengths, weaknesses, and specific use cases in studying brain networks.
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in patients. These changes are closely correlated with the severity of the 
disease (100). Furthermore, it has been discovered that the SN’s 
connections—particularly the EC that connects the DLPFC and the right 
anterior insula (rAI)—may be a significant indicator of how well a patient 
may respond to repeated transcranial magnetic stimulation (rTMS). 
Patients with strong EC between SN and CEN are more likely to respond 
favorably to rTMS prior to receiving therapeutic therapy (101). Our 
knowledge of the pathophysiology of MDD has substantially increased 
as a result of these investigations, and they will also aid in the development 
of future fMRI-based frequency-specific biomarkers.

4.4 Correlation between abnormally valid 
connections and analysis methods

In this study, we found that the abnormal connectivity characteristics 
of brain networks in young patients with depression are closely related to 
the various effective connectivity analysis methods mentioned above. The 
dynamic causal model (DCM) reveals a causal relationship between the 
weakened connection between DMN and CEN, which is consistent with 
established theories about the mechanisms of cognitive and emotional 
disorders. Granger Causality Analysis (GCA) also captures the dynamic 
pattern of enhanced connectivity between SN and DMN, especially its 
directional changes, which can give us a better understanding of network 
abnormalities in emotion regulation.

Structural equation models (SEM) show unique value in analyzing 
complex network interactions. Through SEM, we observed significant 
differences in the connectivity characteristics of DMN and CEN in 
different age groups, which suggests that the brain network of 
depression may have age-related evolutionary characteristics. At the 
same time, the analysis results of transfer entropy (TE) further enrich 
our understanding of the nonlinear dynamic connection between SN 
and CEN, especially in capturing the direction of information flow, 
which shows high sensitivity and applicability.

The comprehensive application of the above methods not only 
makes the research conclusions more comprehensive, but also 
provides a multi-dimensional perspective for revealing the complex 
mechanism behind brain network abnormalities. Combining DCM, 
GCA, SEM and TE techniques, we have deepened our understanding 
of the characteristics of brain networks in young patients with 
depression, and provided a reliable basis for the design and 
optimization of clinical interventions.

5 Clinical significance and future 
research directions

5.1 Findings from resting-state fMRI and EC 
studies for depression diagnosis

Recent advances in resting state functional magnetic resonance 
imaging (rs-fMRI) and effective connection (EC) have been 
substantial. Patients with first-episode major depressive disorder 
(FEDN-MDD) and those who relapsed showed significant variations 
in the related network ECS (102), which may indicate that depression 
develops gradually. The cerebellar neocortic circuit and cerebellar 
basal ganglia circuit in patients with major depression show significant 
changes, according to a study that gathered a large amount of rs-fMRI 
data and analyzed differences between patients with major depressive 
disorder (MDD) and healthy control (hc) patients. It also analyzed 
changes in the cerebellum and brain network (EC) in patients with 
major depressive disorder (103). This experiment suggests that the 
cerebellum brain may play a role in the onset and progression of 
depression; therefore, the cerebellar brain may need to be taken into 
account in future studies when designing experiments. Combining 
resting-state functional MRI (rs-fMRI) with generative models such 
as dynamic causal modeling (DCM) enhances the accuracy of 
predicting depressive episodes. The regression dynamic causal model 

FIGURE 5

A summary of the effective join processing methods mentioned in the article. The two methods used in effective connection research are network 
reasoning based on a one-step multivariable process and paired reasoning based on a two-step paired process. The former deals with multiple 
variables, often inferring connections between multiple brain regions at once. On the other hand, pairwise reasoning based on a two-step pairwise 
process first deduces the connections between pairwise brain regions and then integrates them into the reasoning of the entire network.
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(rDCM) is specifically designed for analyzing rs-fMRI data. It starts 
by evaluating whole-brain networks to provide directional estimates 
that are both rapid and precise, leading to recommendations for 
enhancing both functional and effective connectivity patterns in 
patients with major depressive disorder (MDD) (104). Improving 
research models can heighten the validity and reliability of analyses, 
making them more suitable for various complex scenarios. The 
differences discerned through EC pattern analysis (105) enable the 
flexible selection of model combinations in complex network studies, 
thereby ensuring precision and reliability in research outcomes.

These findings have revealed the cerebral origins of depression, 
offering crucial guidance for diagnosing and precisely treating the 
condition. Effective connectivity (EC) differs across various brain regions, 
and these differences serve as potential biomarkers for personalized and 
precise treatment strategies, establishing their significant clinical value. 
Predictive analytics and mapping of brain network relationships and 
structural changes have improved both diagnostic and treatment strategies, 
enhancing outcomes in clinical practice.

5.2 Issues for future research

5.2.1 Sample size and heterogeneity
Current research on functional magnetic resonance imaging 

(fMRI) encounters several challenges, such as indeterminate study 
samples, uncontrollable data heterogeneity, and varied demographic 
standards. These issues may lead to results that lack objectivity and 
have replication difficulties. Due to small sample sizes, the reliability 
and validity of findings are often compromised, which can render the 
conclusions non-representative and miss important effects (106). To 
enhance future research, several measures could be  implemented: 
consistently reporting effect sizes; concentrating on data variability 
and increasing sample sizes as necessary; and combining data from 
multiple sources to manage data heterogeneity effectively. For 
instance, Site Minimization Algorithms (SMA) could help regulate 
data heterogeneity (107). Another strategy might be improving data 
coordination procedures to ensure consistency. Expanding the 
diversity of fMRI study samples to include a wider range of racial, 
gender, and economic groups could also enhance the generalizability 
of the research (108). Additionally, focusing research populations 
more on women, adolescents, and diverse racial groups could broaden 
the scope and impact of the findings.

In summary, future research using rs-fMRI and EC should 
emphasize the quantity, diversity, and heterogeneity of samples. This 
approach will help ensure the objectivity, generalizability, and 
reliability of the findings.

Furthermore, the potential preventive effects of counseling and 
psychological therapy were not evaluated in this study. Despite the fact 
that these therapies are frequently used in practice to stop or lessen 
symptoms during episodes, we were unable to thoroughly assess their 
effects in this study because of a lack of pertinent data. In order to 
further examine psychological therapy and counseling interventions’ 
possible significance in symptom management, future research should 
think about incorporating them into the evaluation.

5.2.2 Interdisciplinary collaboration and 
technology integration

Research in a number of fields, including clinical medicine, 
computer science, neurology, and data science, may benefit from the 

application of rs-fMRI technology. As a result, in order to handle the 
complexity and data processing issues, the study team needs the 
necessary equipment (109). Future studies should require relevant 
researchers to become proficient in a variety of technologies. Creating 
uniform methods for preprocessing and tools for analysis is crucial as 
we deal with more data and complex signals (110). This requires new 
algorithms and also teamwork across different fields in collecting, 
processing, and analyzing data. Techniques like dynamic rs-fMRI and 
multiband imaging offer new insights into the time-related and spatial 
changes in brain networks. Their practical application is dependent on 
interdisciplinary efforts in noise reduction, parameter optimization, and 
sophisticated methods such as graph theory-based network analysis, 
which have shown promise in finding complex brain structures (111). 
However, future development of these technologies necessitates greater 
interdisciplinary collaboration, particularly in assessing biological 
relevance. As rs-fMRI’s potential for identifying and treating psychiatric 
and neurodegenerative illnesses rises, interdisciplinary collaboration 
becomes increasingly important (112). Despite better understanding of 
cognitive brain networks, using this knowledge faces challenges like 
signal differences and not enough standardized studies. Machine 
learning and big data analytics might help solve these problems (113). 
However, working closely across different fields is essential to make sure 
these technologies work well and are used widely. Research findings 
point out that understanding and treating depression are closely 
connected to the study of EC. Future investigations might slowly focus 
more on brain paths that are part of depression. This could make research 
outcomes more useful in real-world settings, helping to offer more 
support in clinics. Technological progress, like using machine learning 
to mimic the EC of brain networks, allows for predicting EC levels and 
checking how patients react to different treatments like drugs, therapy, 
and brain stimulation methods. Studying EC helps medical experts 
precisely find and tailor treatment strategies that suit the forecasted 
outcomes for people with depression. This is very important for young 
people with depression, as they often deal with a lot of school-related 
stress. By examining the EC in their brain areas and using different 
imaging types together, doctors can assess brain function, show pictures 
of brain structure issues, and thus create more accurate treatment plans.

Research on effective connectivity supports the medical treatment 
of depression by bringing together different research methods and 
encouraging collaboration across various fields. For example, merging 
machine learning algorithms with neuroimaging helps create precise 
treatment plans for each person. It is only by working together that 
technologies like resting-state fMRI and effective connectivity can 
keep improving. This will lead to better personalized medical services.

5.3 Comparisons of effective connectivity 
findings across age groups

Though comparisons with brain network features in other age 
groups, particularly older patients, can offer more information, 
this study concentrated on effective connectivity (EC) deficits in 
adolescents with depression. According to studies, teenage 
patients’ aberrant brain networks are primarily dynamic 
alterations, with a particularly strong link between DMN and 
SN. The instability of emotional and cognitive control during the 
adolescent brain’s maturation period may be connected to this 
phenomena (114). On the other hand, the internal function of the 
DMN, particularly the connection between the mPFC and the 

https://doi.org/10.3389/fneur.2025.1498049
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Deng et al. 10.3389/fneur.2025.1498049

Frontiers in Neurology 13 frontiersin.org

PCC, was significantly diminished in older patients with 
anomalies in their brain networks. The substantial impacts of 
aging on brain network function are reflected in this long-term 
degeneration, which is frequently accompanied by cognitive 
decline and increased rumination (115).

Even though the two patient groups have different abnormalities, 
DMN and SN dysfunctions are significant in both adolescents and 
older patients, indicating that depression may have some fundamental 
brain mechanisms in common. While the reduced connections in 
older patients are more likely to be  due to long-term pathogenic 
processes, the improved dynamic connections in teenagers may be a 
reflection of the plasticity of brain networks. This mix of distinctions 
and similarities offers hints for investigating the brain processes 
underlying depression in various age groups.

To ascertain whether adolescent brain network abnormalities are 
primarily caused by adolescent brain network remodeling or are 
influenced by outside psychological pressure, future research should 
investigate the mechanism behind these abnormalities in greater 
detail. The development trajectory of depression, the scientific 
foundation for the creation of stratified intervention strategies, and 
the creation of individualized treatment plans based on the brain 
network characteristics of patients of various ages are also anticipated 
to be  revealed by comparing the brain network characteristics of 
elderly and adolescent patients.

5.4 Chapter summary

This section talks about how rs-fMRI and EC analysis are important 
in diagnosing and treating depression. It is evident that despite being 
current research challenges, these areas are pivotal for future investigations. 
They play a crucial role in identifying neurobiological markers of 
depression, particularly in predicting anomalies within brain functional 
networks. Current research has limitations, such as insufficient sample 
sizes, significant data variability, inadequate models, and restricted 
interdisciplinary research, indicating substantial room for improvement 
in future studies. Specifically, the volume of research on effective 
connectivity in adolescent depression is limited, with few references and 
inadequate sample sizes, affecting the reliability and validity of conclusions. 
Additionally, data variability, such as differences in depression severity and 
brain connectivity models between genders, impacts the objectivity of 
results (116). Currently, commonly used models in the field include 
dynamic causal modeling (DCM) and Granger causality analysis (GCA). 
These linear models struggle with analyzing dynamic and complex neural 
data, such as nonlinear or dynamically interactive data. Improper 
preprocessing can also increase result repeatability and decrease 
conclusion validity. The time resolution of rs-fMRI is limited, making it 
difficult to capture rapid dynamic activities. To address these issues, 
increasing sample sizes, improving data heterogeneity, and utilizing 
multimodal imaging analysis to obtain comprehensive brain activity maps 
are recommended, thereby providing more robust data support for precise 
diagnosis and treatment of depression.

6 Conclusion

Studies on resting-state functional MRI (rs-fMRI) and effective 
connectivity (EC) have built a solid base, both practical and 

theoretical, for understanding depression. Research has linked the 
start of depression to problems in EC within brain networks, 
especially in the Default Mode Network (DMN), Central Executive 
Network (CEN), and Salience Network (SN). Looking at the 
connections in these areas helps reveal the complex biology of 
depression and may provide markers to better diagnose and treat 
it. Current studies show that lower connectivity in the DMN, CEN, 
and SN can mess up how emotions are controlled and increase 
thinking problems. These issues can lead to ongoing negative 
feelings and deep thinking about the same sad thoughts. Also, 
problems in the SN can disturb how emotions are regulated, 
making depression more likely. These insights help shape technical 
strategies for treating depression (117).

This paper investigates how three main brain networks connect: 
the Default Mode Network (DMN), Central Executive Network 
(CEN), and Salience Network (SN). It looks at young people with 
depression. By comparing, it shows that understanding these 
connections can help in diagnosing and treating this condition. At 
first, different models for studying connections were combined with 
resting-state fMRI. This was to find unusual connections that might 
be early signs of trouble. The research finds these connections are very 
important for accurate treatments. They could help stop depression in 
young people before it starts.

Future studies need to look at a couple of important points. First, 
we  need more people in the studies, and we  must control the 
differences in the data carefully. A small number of participants makes 
it hard to apply the findings widely, and too much difference in the 
data can make the results less valid and reliable. Second, it is becoming 
very important to use ideas from different fields and new technologies. 
By using many types of imaging together, we can move beyond just 
one way of studying things. This will help us understand brain activity 
better and support making treatment plans that are accurate and 
specific to each person.

Finally, rs-fMRI and EC analysis have revealed the brain 
mechanisms behind depression. This is both a main area of interest 
and a challenge in research today. Going forward, we need to tackle 
problems like not having enough participants, varied data, studies that 
only use one scientific approach, and old research methods. A deeper 
understanding of brain network functions and connectivity will 
contribute significantly to the precision medicine of 
neurological disorders.
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