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Vascular cognitive impairment (VCI) is increasingly recognized as the second 
most prevalent cause of dementia, primarily attributed to vascular risk factors and 
cerebrovascular disease. Numerous studies suggest that blood biomarkers may 
play a crucial role in the detection and prognosis of VCI. This study conducted a 
meta-analysis to evaluate the potential of various blood biomarkers associated with 
neuronal function as indicators of VCI. We searched four major databases—PubMed, 
Embase, Web of Science, and the Cochrane Library—up to December 31, 2023, for 
research on blood biomarkers for VCI. Of the 4,043 studies identified, 30 met the 
inclusion criteria for this review. The nine peripheral biomarkers analyzed for their 
association with neuronal function include amyloid beta 42 (Aβ42), amyloid beta 
40 (Aβ40), Aβ42/Aβ40 ratio, total Tau (t-Tau), phosphorylated tau 181 (p-tau 181), 
neurofilament light (NfL), brain-derived neurotrophic factor (BDNF), S100B, and 
soluble receptor for advanced glycation end products (sRAGE). Our findings reveal 
that peripheral Aβ42, Aβ42/Aβ40 ratio, NfL, and S100B significantly differ between 
VCI and non-VCI groups, indicating their potential as blood biomarkers for VCI.
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1 Introduction

Vascular cognitive impairment (VCI) refers to cognitive deficits associated with 
cerebrovascular diseases, encompassing a broad range of conditions from vascular mild 
cognitive impairment to vascular dementia (VaD) (1). It is the second most common cause of 
dementia after Alzheimer’s disease (AD), accounting for at least 20% of all dementia cases (2). 
Worldwide, more than 57 million people are affected by dementia, a number projected to 
exceed 150 million by 2050 (3). Early diagnosis of VCI presents significant challenges, 
increasing the risk of disability and mortality, which places a substantial burden on both 
families and society (4, 5). The International Vascular Impairment of Cognition Classification 
Consensus Study (VICCCS) classifies VCI into mild and severe forms. Severe VCI includes 
post-stroke dementia, subcortical ischemic vascular dementia, multi-infarct dementia, and 
mixed dementia (where vascular and neurodegenerative lesions coexist) (6). Clinically, VCI 
is characterized by attention deficits, impaired information processing, difficulties with 
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complex tasks, and disruptions in thinking and behavior (7). In some 
cases, patients may also experience mood disorders, such as vascular 
depression (8, 9).

Cerebral small vessel disease (cSVD) is the predominant 
pathological foundation of VCI (10). cSVD is categorized into six 
types, with Type I (arteriosclerosis) and Type II (cerebral amyloid 
angiopathy) being the most prevalent (11, 12). Emerging evidence 
indicates that the pathological mechanisms of cSVD involve 
hypoperfusion/hypoxia, blood–brain barrier (BBB) dysfunction, 
interstitial fluid (ISF)/cerebrospinal fluid (CSF) drainage obstruction, 
and vascular inflammation (10). On magnetic resonance imaging 
(MRI), cSVD typically manifests as white matter hyperintensities 
(WMHs), cerebral microbleeds (CMBs), subcortical infarcts, lacunes, 
perivascular space enlargement, and brain atrophy (13). WMH, also 
known as leukoaraiosis (LA), represents the most common 
neuroimaging feature of cSVD (14, 15). LA corresponds to specific 
abnormalities in the white matter, often characterized by multifocal or 
diffuse changes of varying sizes, primarily located around the 
ventricles (16). Numerous studies have shown that LA is increasingly 
prevalent in older adults, with approximately 90% of individuals over 
60 exhibiting detectable signs (12). LA has been reported to be closely 
associated with an elevated risk of cognitive dysfunction, motor gait 
impairment, stroke, dementia, depression, and even mortality (15, 
17–19). The Fazekas scale, based on MRI, is widely utilized in the 
clinical assessment of LA severity (20). Previous studies, such as the 
Leukoaraiosis and Disability (LADIS) study, have demonstrated that 
the severity of LA and the presence of diabetes are independent 
predictors of cognitive decline in initially non-disabled elderly 
individuals (21). Another LADIS study suggested that physical activity 
may reduce the risk of cognitive impairment (primarily VaD) in 
elderly individuals capable of living independently (22). Consequently, 
LA is intimately linked to cognitive function (23).

The diagnosis of VCI involves clinical evaluation, 
neuropsychological testing, and neuroimaging (24). The Montreal 
Cognitive Assessment (MoCA) and the Mini-Mental State 
Examination (MMSE) are the most commonly employed 
neuropsychological tools (25). However, these assessments are 
influenced by the patient’s age and educational background, and the 
evaluator’s subjectivity can also affect the accuracy of the results. 
Additionally, neuroimaging relies on high-quality scans and skilled 
radiologists, and its high cost limits its widespread clinical application. 
In contrast, blood biomarkers provide benefits such as accessibility, 
objectivity, minimal invasiveness, and low testing costs (26). As a 
result, many studies indicate that blood biomarkers are crucial in 
diagnosing VCI (24, 27). With the advancement of ultrasensitive 
technologies, such as single-molecule arrays and 
electrochemiluminescence analysis, concentrations below femtomolar 
levels can now be detected, enabling highly sensitive measurements 
of brain-derived proteins at low concentrations (26). Previous studies 
have shown that patients with VCI who are amyloid-positive 
experience a more rapid decline in cognitive function across multiple 
domains compared to amyloid-negative VCI patients, suggesting that 
VCI may also involve the pathological mechanisms underlying 
neurodegenerative diseases (28). Moreover, recent research has 
identified circulating biomarkers that influence neuronal function, 
including β-amyloid 42 (Aβ42), phosphorylated tau 181 (p-tau181), 
neurofilament light (NfL), and S100B, as being associated with VCI 
(29–32). Therefore, this paper aims to evaluate the potential of 

circulating biomarkers in predicting VCI, focusing on neuronal 
function, through a systematic review and meta-analysis, thereby 
providing some assistance for the early diagnosis and treatment of VCI.

2 Methods

2.1 Search strategy

The following keywords were combined for this study: (dementia 
OR cognitive impairment OR cognitive decline OR cognitive disorder 
OR cognitive dysfunction OR cognitive deficit) AND (vascular OR 
strokes OR stroke OR cerebrovascular accident OR brain vascular 
accident OR apoplexy OR cerebral infarction OR brain infarction OR 
brain hemorrhage OR cerebral hemorrhage OR hemorrhage) AND 
(biomarkers OR biomarker OR serum OR plasma OR circulation OR 
circulating OR peripheral OR whole blood). Four major databases, 
PubMed, Embase, Web of Science, and Cochrane Library, were 
searched for all research up until December 31, 2023.

2.2 Inclusion and exclusion criteria

The following were the inclusion criteria for the studies in this 
systematic review: (1) all biomarkers were derived from blood, 
including whole blood, serum, and plasma; (2) the study type was 
case–control, cross-sectional, or cohort; (3) the patients had a 
confirmed diagnosis of VCI; and (4) the samples included both the 
VCI group and the control group. The following were the exclusion 
criteria: (1) reviews, meta-analyses, and systematic reviews; (2) case 
reports and conference abstracts; (3) animal experimentation studies; 
(4) intervention experiments; (5) papers written in languages other 
than English; and (6) lack of access to full text or study data.

2.3 Data extraction

Data extraction was conducted independently by two researchers 
(W.H. and L.L.). The collected data comprised the first author’s surname, 
the publication year, the country of publication, the study type, the 
gender ratio, the mean age, the sample size, the diagnostic method for 
VCI, the sample source, and the biomarkers involved. For biomarkers 
identified in two or more articles, the mean and standard deviation (SD) 
of concentrations and the sample size for each group were extracted. 
Standard methods were used to estimate means and SDs when 
biomarker concentrations were reported in alternative formats, such as 
median or interquartile range (33, 34). Any conflicts during the process 
were resolved through continuous discussions involving all authors.

2.4 Quality assessment

The quality of the studies included in our review was evaluated 
using the Newcastle-Ottawa scale. All the studies had scores ranging 
from 7 to 9, suggesting good quality. This information can be found 
in Supplementary Table S1. Furthermore, we  have previously 
registered the systematic review program in PROSPERO (registration 
number CRD42024568815).
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2.5 Statistical analysis

The data were analyzed using RevMan 5.4 software. To account 
for variations in the assays used across different studies, the 
standardized mean difference (SMD) was selected as the effect size 
for comparing biomarker levels, along with the corresponding 95% 
confidence intervals (CIs). Heterogeneity among the included 
studies was assessed and quantified using the Cochrane Q test and 
I2 statistic. A random-effects model was applied when I2 exceeded 
50%, indicating substantial heterogeneity. Conversely, a fixed-
effects model was employed when heterogeneity was deemed 
insignificant (I2 < 50%). Statistical significance was defined as a 
p-value ≤0.05.

3 Results

3.1 Results of study inclusion

6,812 studies were identified from various databases: 1,719 from 
PubMed, 2,179 from Embase, 2,545 from Web of Science, 358 from 

the Cochrane Library, and 11 from other sources. After removing 
duplicates, the dataset was reduced to 4,043 studies. After reviewing 
titles and abstracts, 281 studies were selected for further consideration. 
Ultimately, 30 articles were included in the final analysis after a 
comprehensive full-text review (Figure 1).

3.2 Characteristics of the included studies 
reporting potential biomarkers for VCI

Table  1 presents data from research on potential blood 
biomarkers for VCI. The 30 included articles, published between 2005 
and 2023, comprise 10 case–control studies (35–44), 11 cohort 
studies (29–32, 45–51), and 9 cross-sectional studies (52–60). The 
studies involved participants from Germany, China, Turkey, 
Singapore, Italy, and Sweden, with sample sizes ranging from 55 to 
5,323. Participants were categorized by gender, and the average age 
was documented. Each study also specified the type and diagnostic 
criteria of VCI in patients. Furthermore, the type of blood sample 
(serum or plasma) and the associated blood biomarkers 
were recorded.

FIGURE 1

Flow diagram of the study selection.
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TABLE 1 Summary of the 30 selected studies reporting potential blood biomarkers for VCI.

Author, 
Year

Country Study type Sample 
type

Male/
female

Mean 
age

Sample 
size

Diagnosis of 
VCI

Specimen Biomarkers

Emanuele, 

2005 (52)
Italy

Cross-sectional 

study
VaD 136/268 74.4 404

NINDS-AIREN 

criteria
Plasma sRAGE

Bibl, 2007 

(35)
Germany

Case-control 

study
VaD 37/35 70.1 72

NINDS-AIREN 

criteria
Plasma

Aβ42, Aβ40, Aβ38/

Aβ40

Uslu, 2012 

(57)
Turkey

Cross-sectional 

study
VaD 27/40 68.4 67

NINDS-AIREN 

criteria
Serum Aβ42, IL-6, TNF-α

Liang, 2013 

(53)
China

Cross-sectional 

study
VaD 162/188 69.3 350

NINDS-AIREN 

criteria
Plasma sLRP, sRAGE

Gao, 2015 

(40)
China

Case-control 

study
cSVD-CI 212/205 72.5 417 MRI and MoCA Serum

S100B, ADMA, 

TC, TG, LDL, HDL

Shi, 2017  

(42)
China

Case-control 

study
VaD \ 52.1 276

NINDS-AIREN 

criteria
Serum S100B

Xu, 2016  

(58)
China

Cross-sectional 

study
VaD 62/59 74.5 121

NINDS-AIREN 

criteria
Plasma

FBG, HbA1c, LDL, 

sRAGE

Tang, 2017 

(56)
China

Cross-sectional 

study
PSD 111/61 72.1 172

NINDS-AIREN 

criteria
Plasma sRAGE, esRAGE

Chi, 2019 

(29)
China

Prospective 

cohort study
PSCI 45/10 61.2 55 MoCA Plasma

Aβ42, Aβ40, Aβ42/

Aβ40, t-Tau

Chen, 2019 

(37)
China

Case–control 

study
PSD 148/86 65.5 234

NINDS-AIREN 

criteria
Serum

AChE, BChE, 

AChE activity, 

BChE activity, ChE 

activity

Mao, 2020 

(48)
China

Prospective 

cohort study
PSCI 117/71 68.1 188 MoCA Serum

TC, TG, LDL, 

HDL, Aβ42, hs-

CRP, Hcy, T3, T4, 

FT3, FT4, TSH,

Zuliani, 2020 

(60)
Italy

Cross-sectional 

study
VaD 371/327 77.0 598

NINDS-AIREN 

criteria
Serum BACE1

Ma, 2020 (54) China
Cross-sectional 

study
VaD 109/67 69.4 176

NINDS-AIREN 

and DSM-5 

criteria

Serum
NfL, TC, TG, LDL, 

HDL, FBG

Wang, 2020 

(43)
China

Case–control 

study
VaD 107/65 63.3 172

NINDS-AIREN 

and ICD-11
Serum

NRG 1, FBG, HDL, 

LDL

Shao, 2020 

(55)
China

Cross-sectional 

study
VaD 109/79 73.1 188

NINDS-AIREN 

and DSM-5 

criteria

Serum

NPTX2, FT3, FT4, 

TSH, FBG, HbA1c, 

HDL, LDL, TG, TC

Holm, 2020 

(46)
Sweden

Prospective 

cohort study
VaD 3731/1592 69.3 5,323 DSM-4 criteria Plasma

MR-PENK A, 

NT-PTA

Chua, 2020 

(38)
Singapore

Case–control 

study
VaD 175/209 72.6 384

NINDS-AIREN 

criteria
Plasma

S1Ps, IL-6, IL-8, 

TNF

Wang, 2021 

(31)
China

Prospective 

cohort study
PSCI 893/801 64.0 1,694 MoCA Plasma

NfL, HbA1c, hs-

CRP, Hcy

Wang, 2021 

(49)
China

Prospective 

cohort study
PSCI 174/130 64.9 304 TICS-40 Serum NfL

Zhong, 2021 

(51)
China

Prospective 

cohort study
PSCI 433/184 60.0 617 MoCA, MMSE Plasma

choline, betaine, 

TMAO

Zhao, 2021 

(59)
China

Cross-sectional 

study
VaD 126/55 67.6 181

NINDS-AIREN 

and DSM-5 

criteria

Serum
NCAM, FBG, 

HDL, LDL

(Continued)
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3.3 Meta-analysis results of the potential 
biomarkers

Figure 2 presents the results of a meta-analysis conducted on 
potential blood biomarkers for VCI that were commonly identified 
across two or more studies. The analysis incorporated nine biomarkers: 
Aβ42, Aβ40, Aβ42/Aβ40 ratio, total Tau (t-Tau), p-tau 181, NfL, brain-
derived neurotrophic factor (BDNF), S100B, and soluble receptor for 
advanced glycation end products (sRAGE).

3.3.1 Meta-analysis results for Aβ42
As depicted in Figure 2A, we performed a meta-analysis of six 

studies examining peripheral Aβ42 levels involving 196 VCI patients 
and 332 non-VCI patients. The results demonstrated that Aβ42 levels 
were significantly lower in the VCI group compared to the control 
group (SMD = −0.42, 95% CI = (−0.83, 0.00), p = 0.05). Figure 3A 
illustrates that the funnel plot was approximately symmetrical, 
indicating an absence of significant publication bias. A subgroup 
analysis based on VCI subtypes revealed no significant differences in 
peripheral Aβ42 levels between the VaD and post-stroke cognitive 

impairment (PSCI) groups compared to the control group. The overall 
difference between subgroups was not statistically significant 
(p = 0.38), as shown in Figure 4A.

3.3.2 Meta-analysis results for Aβ42/Aβ40 ratio
We conducted a meta-analysis of two studies assessing peripheral 

Aβ42/Aβ40 ratios, including 53 VCI patients and 138 non-VCI 
patients. As presented in Figure 2C, the results indicated that the 
Aβ42/Aβ40 ratio was significantly lower in the VCI group relative to 
the control group (SMD = −0.33, 95% CI = (−0.65,-0.01), p = 0.04). 
The funnel plot, depicted in Figure  3B, suggested no significant 
publication bias. Given the limited number of studies, further 
subgroup analysis was not performed.

3.3.3 Meta-analysis results for NfL
We conducted a meta-analysis of five studies examining 

peripheral NfL levels involving 1,325 VCI patients and 1,256 
non-VCI patients. As shown in Figure 2F, the meta-analysis results 
indicate that NfL levels in the VCI group were significantly higher 
than those in the control group (SMD = 1.41, 95% CI = (0.90, 

TABLE 1 (Continued)

Author, 
Year

Country Study type Sample 
type

Male/
female

Mean 
age

Sample 
size

Diagnosis of 
VCI

Specimen Biomarkers

Huang, 2022 

(30)
China

Prospective 

cohort study
PSCI 97/39 58.8 136 MoCA Plasma

Aβ42, Aβ40, Aβ42/

Aβ40, t-Tau, p-tau 

181, BDNF

Dong, 2022 

(45)
China

Prospective 

cohort study
PSCI 413/180 60.1 593 MoCA Plasma NPY

Jiang, 2022 

(47)
China

Prospective 

cohort study
PSCI 157/107 65.0 264 MoCA Plasma

NfL, HbA1c, hs-

CRP, Hcy

Cao, 2022 

(36)
China

Case-control 

study
cSVD-CI 144/125 68.5

269 MRI and MoCA Serum Hsp70, Hcy, hs-

CRP, HDL, LDL, 

TG, TC

Liu, 2022 

(41)

China Case-control 

study

VaD 98/80 68.6 178 DSM-5 criteria Serum BDNF, Hcy, NO, 

IFN-γ

Xu, 2023 (44) China Case-control 

study

PSCI 65/55 76.0 120 MMSE Serum TC, TG, LDL, 

HDL, UA, Cr, FBG, 

WBC, Hb, Aβ42, 

p-tau 181

Chua, 2023 

(39)

Singapore case–control 

study

VaD 240/286 73.7 526 NINDS-AIREN 

criteria

Plasma NfL, p-tau 181

Li, 2023 (32) China prospective 

cohort study

PSCI 85/73 72.3 158 MoCA Serum FPG, HbA1c, TC, 

TG, LDL, HDL, 

Hcy, S100B

You, 2023 

(50)

China prospective 

cohort study

PSCI 418/182 59.9 600 MoCA Plasma sDPP4

Abbreviations: VaD: vascular dementia, NINDS-AIREN: National Institute of Neurological Disorders and Stroke and Association Internationale pour la Recherché et l’Enseignement en 
Neurosciences, sRAGE: soluble receptor for advanced glycation end products, Aβ: amyloid beta, IL-6: interleukın-6, TNF-α: tumor necrosis factor-alpha, sLRP: Soluble low density lipoprotein 
receptor-related protein, cSVD-CI: cerebral small vessel disease with cognitive impairment, MRI: magnetic resonance imaging, MoCA: Montreal Cognitive Assessment, ADMA: asymmetric 
dimethylarginine, TC: Total cholesterol, TG: Triglyceride, LDL: Low-density lipoprotein, HDL: High-density lipoprotein, FBG: fasting blood glucose, HbA1c: glycated hemoglobin, PSD: 
post-stroke dementia, esRAGE: endogenous soluble receptor for advanced glycation end products, PSCI: post-stroke cognitive impairment, t-Tau: total Tau protein, AChE: 
Acetylcholinesterase, BChE: Butylcholinesterase, ChE: Cholinesterase, hs-CRP: Hypersensitive C-reactive protein, Hcy: Homocysteine, T3: Triiodothyronine, T4: Thyroxin, FT3: Free 
triiodothyronine, FT4: Free thyroxin, TSH: Thyrotropin, BACE1:β-secretase enzyme 1, DSM: Diagnostic and Statistical Manual of Mental Disorders, NfL: neurofilament light, ICD: 
International Classification of Diseases, NRG 1: neuregulin 1, NPTX2: Neuronal Pentraxin 2, MR-PENK A: Midregional Proenkephalin A, NT-PTA: N-terminal Protachykinin A, S1Ps: 
Sphingosine-1-phosphates, IL-8: interleukın-8, TNF: tumor necrosis factor, TICS-40: the Telephone Interview of Cognitive Status-40, MMSE: Mini-Mental State Examination, TMAO: 
trimethylamine Noxide, NCAM: neural cell adhesion molecule, p-tau 181: phosphorylated tau 181, BDNF: brain-derived neurotrophic factor, NPY: Neuropeptide Y, Hsp70: heat shock protein 
70, NO: nitric oxide, IFN-γ: interferon-γ, UA: uric acid, Cr: creatinine, WBC: white blood cells, Hb: hemoglobin, sDPP4: soluble dipeptidyl peptidase-4.
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FIGURE 2 (Continued)
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1.91), p < 0.00001). The funnel plot in Figure 3C displayed poor 
symmetry, suggesting a certain degree of publication bias. 
Subgroup analysis based on VCI subtypes revealed that both the 
VaD group (SMD = 2.01, 95% CI = (0.46, 3.56), p = 0.01) and the 
PSCI group (SMD = 0.99, 95% CI = (0.84, 1.15), p < 0.00001) had 
significantly elevated peripheral NfL levels compared to the control 
group, while the overall subgroup difference was not statistically 
significant (p = 0.20) (Figure 4B).

3.3.4 Meta-analysis results for S100B
We also conducted a meta-analysis of three studies on peripheral 

S100B levels involving 341 VCI patients and 404 non-VCI patients. 
The results showed that S100B levels in the VCI group were 
significantly higher than those in the control group (SMD = 2.64, 95% 
CI = (0.29, 4.99), p = 0.03) (Figure 2H). Additionally, the funnel plot 
in Figure 3D indicated no significant publication bias. Due to the 
limited number of studies, no further subgroup analysis was performed.

FIGURE 2

Forest plots for potential biomarkers. Forest plots of the (A) Aβ42, (B) Aβ40, (C) Aβ42/Aβ40, (D) t-Tau, (E) p-tau 181, (F) NfL, (G) BDNF, (H) S100B, 
(I) sRAGE levels.
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3.3.5 Meta-analysis results for Aβ40, t-tau, 
p-tau181, BDNF, and sRAGE

As illustrated in Figures  2B,D,E,G,I, there were no significant 
differences between the two groups in terms of Aβ40 (SMD = 0.16, 95% 
CI = (−0.13, 0.45), p = 0.28), t-Tau (SMD = −0.20, 95% CI = (−0.73, 
0.34), p = 0.48), p-tau181 (SMD = 0.11, 95% CI = (−0.63, 0.85), 
p = 0.76), BDNF (SMD = −1.78, 95% CI = (−5.34, 1.77), p = 0.33), and 
sRAGE (SMD = −0.25, 95% CI = (−0.94, 0.43), p = 0.47).

4 Discussion

VCI defines the wide spectrum of cognitive disorders caused by 
different types of cerebrovascular disease and is deemed to be the most 
common cognitive disorder in the elderly (2). To date, the exact 
neurochemical basis underlying VCI is not completely clarified. Some 
of the molecular, biochemical, and electrophysiological abnormalities 
detected in VCI seem to correlate with disease process and progression. 
A previous prospective study showed that at least seven different 
pathologies can predict VCI: large infarcts, lacunar infarcts, 

microinfarcts, myelin loss, arteriolosclerosis, cerebral amyloid 
angiopathy (CAA), and perivascular space dilation (61, 62). Growing 
evidence correlates cerebral hypoperfusion to both cognitive decline 
and white matter lesions (WMLs) (62). Emerging evidence indicates 
that various components, such as oxidative stress, neurotransmitter 
imbalance, neuroinflammation, endothelial dysfunction, and cortical 
hyperexcitability, play significant roles in VCI (63). Of note, VCI is the 
only contribution that can be, at least in part, preventable and treatable 
(64). The search for novel hallmarks of disease process and progression, 
such as serological, CSF, and instrumental markers, is needed to allow 
an early, tailored, and accurate screening of VCI patients. Previous 
meta-analyses have not examined the relationship between VCI and 
blood biomarkers related to neuronal function. In the present study, 
we have explored the potential of specific biomarkers associated with 
neuronal function as indicators. A meta-analysis was conducted on 
markers examined in two or more of the 30 studies considered.

Cerebral ischemia induces amyloid aggregation, exacerbating 
inflammatory and neurodegenerative processes in the brain 
parenchyma, resulting in cognitive dysfunction (65–68). Aβ is a 4 kDa 
protein produced through the sequential proteolytic cleavage of 

FIGURE 3

Funnel plot for (A) Aβ42, (B) Aβ42/Aβ40, (C) NfL, (D) S100B.
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amyloid precursor protein (APP) by β-secretase and γ-secretase (69). 
Aβ42 and Aβ40 are the two most prevalent isoforms, with Aβ40 being 
the most abundant (70, 71). Due to its higher hydrophobicity and 
propensity to aggregate, Aβ42 demonstrates more significant 
neurotoxicity, with even low concentrations capable of inducing 
neuronal death (72) and was considered significant potential for the 
diagnosis of AD (73–77). Huang et al. previously investigated the 
potential of common AD biomarkers in predicting VCI (30). In this 
study, we performed a meta-analysis to assess the potential of five AD 
biomarkers in individually predicting VCI. Our findings indicate that 
the peripheral levels of Aβ42 and the Aβ42/Aβ40 ratio in the VCI 
group were significantly lower than those in the control group, while 
no significant difference was observed in Aβ40 between the two 
groups. The results of this study suggest that peripheral Aβ42 has 
potential as a predictor for VCI, aligning with previous findings (29, 
35, 44, 48). However, further subgroup analyses did not reveal 
statistically significant differences between the VaD and PSCI groups 

compared to the control group. Therefore, the results of this meta-
analysis should be interpreted with caution. Moreover, more extensive 
cohort studies are necessary to validate the ability of Aβ42 to 
differentiate VCI from AD. It has been reported that the plasma Aβ42/
Aβ40 ratio exhibits the strongest correlation with CSF biomarkers 
(78). Combining Aβ42 with Aβ40 can account for inter-individual 
differences in Aβ processing and potential pre-analytical confounding 
factors (79). Previous studies have reported strong consistency 
between the plasma Aβ42/Aβ40 ratio and amyloid positron emission 
tomography (PET) status (80). Although the meta-analysis results for 
the Aβ42/Aβ40 ratio in this study showed significant differences, only 
two studies were included, both with small sample sizes. Future 
research should further investigate the relationship between plasma 
Aβ42/Aβ40 and VCI.

NfL is a crucial component of the neuronal axonal cytoskeleton 
and is highly concentrated in neuronal axons (81, 82). Pathological 
processes that result in neuronal axonal damage lead to the release of 

FIGURE 4

Subgroup analysis for (A) Aβ42 and (B) NfL.
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NfL into the CSF and, at lower concentrations, into the bloodstream 
(81, 83). Given the strong correlation between NfL levels in the CSF 
and peripheral blood, coupled with advancements in quantitative 
detection techniques for plasma NfL (pNfL), research on the role of 
pNfL in neurodegenerative diseases and brain injuries has been 
increasing (31, 84–86). Previous studies have identified circulating 
NfL as a biomarker for AD (73, 85, 87–89). Recently, NfL has also 
been associated with VCI (31, 39, 47, 49, 54). This study’s meta-
analysis reveals that circulating NfL levels are significantly higher in 
VCI patients than controls. The levels of circulating NfL were found 
to have a positive correlation with VCI in all of the included studies. 
Further subgroup analysis indicates that NfL levels in patients with 
VaD and PSCI are significantly elevated compared to controls, with 
the SMD for the VaD group being more significant than that for the 
PSCI group (2.01 vs. 0.99). We hypothesize that the more severe 
cognitive dysfunction in VaD results in greater neuronal axonal 
damage, leading to increased NfL release (90). Additionally, a meta-
analysis has shown that CSF NfL levels in VaD patients are 
significantly higher than in AD patients (91). Recently, two studies 
have reported that plasma NfL levels in VCI patients are significantly 
elevated compared to those in the AD group, highlighting its 
potential to distinguish between VCI and AD (39, 92). Meanwhile, a 
study established a VCI mouse model and found that treatment with 
the angiotensin 1-7/MAS receptor agonist could reverse cognitive 
impairment and significantly reduce NfL levels, suggesting that 
circulating NfL may be a prognostic biomarker for VCI (93). Another 
longitudinal study showed that baseline NfL levels in cSVD patients 
could predict changes in MRI biomarkers, cognitive decline, and 
dementia over a five-year follow-up period; however, no significant 
changes in NfL levels were observed during the follow-up (94). In 
conclusion, we  believe that NfL is a promising diagnostic and 
prognostic biomarker for VCI.

S100B is a calcium-binding protein primarily located in astrocytes 
and Schwann cells, and it is associated with dystrophic axons within 
Aβ plaques. Upon central nervous system injury, glial cells become 
activated, and if the BBB is compromised, S100B can be released into 
the bloodstream (32, 95). This protein has diverse functions, including 
regulating protein phosphorylation, cell growth, movement, 
differentiation, the cell cycle, and transcription processes (96). At 
nanomolar concentrations, S100B functions as a neurotrophic factor; 
however, higher micromolar concentrations may induce apoptosis 
(97). Previous studies have demonstrated an association between 
peripheral S100B levels and VCI (32, 40, 42, 98). Our meta-analysis 
indicates that serum S100B levels are significantly elevated in the VCI 
group compared to the control group. Therefore, we propose S100B as 
a potential biomarker for VCI.

Our meta-analysis found no significant differences between the 
two groups in t-Tau and p-tau 181. Notably, among the three studies 
examining peripheral concentrations of p-tau 181, two reported a 
positive correlation with VCI, while one found the opposite. Thus, 
future research should continue to investigate this biomarker. 
Moreover, the meta-analysis did not reveal any statistically significant 
differences in BDNF and sRAGE between the groups. It is important 
to note that the number of studies and the overall sample size included 
in our analysis were limited, and the results may not fully reflect the 
roles of these biomarkers in VCI. Therefore, larger, multicenter, 
prospective cohort studies are needed to better understand the 
genuine relationship between these biomarkers and VCI.

From the studies reviewed here, it appears evident that the 
biomarkers of neuronal function were deemed to play a role in 
VCI. Although some of these pathomechanisms are also shared by AD, 
the findings seem to converge on the possibility that some changes 
might be specifically involved in VCI patients. Recent studies have 
identified an association between neuronal functional circulating 
biomarkers and “asymptomatic” or “covert” cSVD (ccSVD) (99). For 
instance, one cohort study demonstrated that brain atrophy and WMH 
are independently associated with plasma NfL levels in cSVD patients 
with cognitive impairment (100). Additionally, a longitudinal study 
revealed that plasma NfL levels were significantly elevated in 
individuals with moderate to severe cSVD burden compared to those 
without such burden, and these levels positively correlated with CMBs, 
lacunar infarcts, and moderate to severe WMH (101). Other studies 
have also suggested that peripheral NfL levels serve as a valuable 
low-invasive biomarker that can complement MRI findings and may 
reflect the severity of the cSVD burden (102–104). In addition, a 
population-based aging study identified a correlation between a lower 
plasma Aβ42/Aβ40 ratio and higher plasma p-tau217 levels with CAA 
in individuals exhibiting CMBs (105). Research conducted by Huss 
et al. revealed that serum levels of glial fibrillary acidic protein (GFAP) 
in patients with sporadic cSVD were significantly associated with 
neurocognitive function. This finding suggests that astrocyte 
dysfunction may play a critical role in the progression of cSVD (106). 
GFAP, an intermediate filament protein of the astrocytic cytoskeleton, 
is a specific marker of reactive astrogliosis (107). A prospective cohort 
study further indicated that serum GFAP is a promising liquid 
biomarker for sporadic cSVD, as it correlates with clinical severity and 
cognitive function (108). Consequently, peripheral neuronal functional 
biomarkers are also crucial in understanding cSVD.

In addition to circulating biomarkers, recent studies have 
identified neurophysiological and hemodynamic markers as 
significant predictors of VCI (109). Research suggests that a reduction 
in cerebral blood flow (CBF) precedes the clinical onset of VCI, 
indicating that CBF measurement could aid in the early detection of 
VCI patients (110, 111). The strong correlation between CBF and 
neuronal function and metabolism underscores its clinical relevance 
as a marker of brain function (112). Proper regulation of CBF and 
normal brain metabolism are essential for maintaining cognitive 
function (112). MRI-based arterial spin labeling (ASL) method is a 
non-invasive MRI technique that measures tissue perfusion in 
capillaries and small arteries (109, 113). ASL is a non-invasive MRI 
technique that measures tissue perfusion in capillaries and small 
arteries (109, 113). It can be seamlessly integrated into routine brain 
MRI scans, requiring only 5 min of scanning time (114). ASL offers 
several advantages, including non-invasiveness, the absence of 
radiation or tracer use, high reproducibility, and broader accessibility 
(115). A recent cohort study demonstrated that a decline in 
ASL-detected CBF is significantly associated with overall cognitive 
function in VCI patients (116). Several other studies have reported 
similar findings, suggesting that ASL-based CBF measurement, as a 
viable alternative to PET (115), holds promise for the early prediction 
of VCI (111, 117, 118).

Transcranial Doppler ultrasound (TCD), also a non-invasive 
examination method, may not match the spatial resolution of 
functional MRI or PET, but it plays a crucial role in hemodynamic 
assessment due to its excellent temporal resolution (5 milliseconds), 
ease of operation, and strong resistance to motion artifacts (109). 

https://doi.org/10.3389/fneur.2025.1496711
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Huang et al. 10.3389/fneur.2025.1496711

Frontiers in Neurology 11 frontiersin.org

Previous TCD studies suggested that insufficient cerebral perfusion 
and high vascular resistance may contribute to the development of VCI 
(119). Furthermore, a meta-analysis of TCD by Fresnais et al. indicated 
that, compared to cognitively normal elderly individuals, patients with 
VaD exhibit significantly reduced cerebral blood velocity (CBV) in the 
MCA and a significantly increased pulsatility index (PI) (120).

At present, there is a deficiency in effective therapies and methods 
for VCI (121). Recent research has highlighted the significant role of 
transcranial magnetic stimulation (TMS) in diagnosing and treating 
VCI (122). TMS is a non-invasive and relatively safe brain stimulation 
technique that has garnered attention for its ability to selectively 
induce electrical currents in specific cortical regions through 
electromagnetic induction (123). Some studies have found that the 
motor cortex in patients with VaD is more easily excited compared to 
the control group (resting motor threshold decreased), suggesting a 
compensatory mechanism in response to ischemic damage and 
neuronal loss (124). Additionally, research has demonstrated a 
significant reduction in short-latency afferent inhibition (SAI), an 
indicator of central cholinergic transmission, in VCI patients (62, 125, 
126). Regarding treatment, studies using VaD mouse models have 
shown that low-frequency repetitive TMS can ameliorate cognitive 
deficits by upregulating the release of hippocampal BDNF and 
enhancing the expression of N-methyl-D-aspartate (NMDA) 
glutamate receptors (122). A recent meta-analysis also indicates that 
TMS can improve cognitive abilities and daily living activities in 
stroke patients. The further search for novel hallmarks of disease 
process and progression, such as serological, instrumental or CSF 
markers, is needed to allow an early, tailored, and accurate screening 
of VCI patients. This will also pave the way to innovative the 
identification of predictors of drug response and therapeutic strategies.

5 Limitation

This study acknowledges several limitations. First, most included 
studies were conducted on Asian populations, which may introduce 
racial differences that could affect the research outcomes. Second, 
certain newly identified biomarkers associated with neuronal 
function, such as β-secretase 1 (BACE1), neuropeptide Y (NPY), 
neural cell adhesion molecule (NCAM), neuregulin 1 (NRG1), 
neuronal pentraxin 2 (NPTX2), and sphingosine-1-phosphate (S1P), 
were excluded from the meta-analysis due to the limited number of 
studies and small total sample size. These findings require further 
validation in future research. Third, the control groups in these studies 
predominantly consisted of healthy individuals or stroke patients, 
leaving the question of whether these biomarkers can distinguish 
between dementia subtypes unanswered. Fourth, due to the limited 
number of included articles, a subgroup analysis could not 
be performed for the Aβ42/Aβ40 ratio and S100B biomarkers. Finally, 
the predictive capacity of a single biomarker for VCI may be restricted, 
suggesting that future research might benefit from integrating multiple 
biomarkers to enhance predictive accuracy.

6 Conclusion

In this study, we found that the levels of circulating NfL and S100B 
in VCI patients were significantly higher than those in non-VCI 

patients, while the levels of Aβ42 and the Aβ42/Aβ40 ratio were 
significantly lower in VCI patients compared to non-VCI patients. 
Therefore, we suggest clinicians focus on these blood biomarkers and 
integrate neuroimaging and neuropsychological assessments to 
evaluate the risk of VCI, which may aid in early detection and timely 
intervention. Additionally, due to the limited number of studies, some 
other novel blood biomarkers could not be  included in the meta-
analysis, and we recommend further validation in future research.
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