Skip to main content

SYSTEMATIC REVIEW article

Front. Neurol.
Sec. Artificial Intelligence in Neurology
Volume 16 - 2025 | doi: 10.3389/fneur.2025.1474484

A Bibliometric Analysis of Studies on Artificial Intelligence in Neuroscience

Provisionally accepted
Murat Dener Murat Dener *Uğur Tekin Uğur Tekin
  • Gazi University, Ankara, Türkiye

The final, formatted version of the article will be published soon.

    The incorporation of artificial intelligence (AI) into neuroscience has the potential to significantly enhance our comprehension of brain function and facilitate more effective diagnosis and treatment of neurological disorders. Artificial intelligence (AI) techniques, particularly deep learning and machine learning, offer transformative solutions by improving the analysis of complex neural data, facilitating early diagnosis, and enabling personalized treatment approaches. A bibliometric analysis is a method that employs quantitative techniques for the examination of scientific literature, with the objective of identifying trends in research, evaluating the impact of influential studies, and mapping the networks of collaboration. In light of the accelerated growth and interdisciplinary scope of AI applications in neuroscience, a bibliometric analysis is vital for mapping the landscape, identifying pivotal contributions, and underscoring emerging areas of interest. This study aims to address this need by examining 1,208 studies published between 1983 and 2024 from the Web of Science database. The analysis reveals a notable surge in publications since the mid-2010s, with substantial advancements in neurological imaging, brain-computer interfaces (BCI), and the diagnosis and treatment of neurological diseases. The analysis underscores the pioneering role of countries such as the United States, China, and the United Kingdom in this field and highlights the prevalence of international collaboration. This study offers a comprehensive overview of the current state and future directions of AI applications in neuroscience, as well as an examination of the transformative potential of AI in advancing neurological research and healthcare. It is recommended that future research address the ethical issues, data privacy concerns, and interpretability of AI models in order to fully capitalize on the benefits of AI in neuroscience.

    Keywords: Neuroscience, Artificial Intelligence2, Bibliometric analysis3, scientometric analaysis4, research trend5

    Received: 27 Aug 2024; Accepted: 06 Jan 2025.

    Copyright: © 2025 Dener and Tekin. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Murat Dener, Gazi University, Ankara, Türkiye

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.