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Purpose: This study aims to develop hippocampal texture model for predicting

cognitive impairment in middle-aged patients with cerebral small vessel

disease (CSVD).

Methods: The dataset included 145 CSVD patients (Age, 52.662 ± 5.151)

and 99 control subjects (Age, 52.576±4.885). An Unet-based deep learning

neural network model was developed to automate the segmentation of the

hippocampus. Features were extracted for each subject, and the least absolute

shrinkage and selection operator (LASSO) method was used to select radiomic

features. This study also included the extraction of total intracranial volume,

gray matter, white matter, cerebrospinal fluid, white matter hypertensit, and

hippocampus volume. The performance of the models was assessed using the

areas under the receiver operating characteristic curves (AUCs). Additionally,

decision curve analysis (DCA) was conducted to justify the clinical relevance of

the study, and the DeLong test was utilized to compare the areas under two

correlated receiver operating characteristic (ROC) curves.

Results: Nine texture features of the hippocampus were selected to construct

radiomics model. The AUC values of the brain volume, radiomics, and combined

models in the test setwere 0.593, 0.843, and 0.817, respectively. The combination

model of imaging markers and hippocampal texture did not yield improved a

better diagnosis compared to the individual model (p > 0.05).

Conclusion: The hippocampal texture model is a surrogate imaging marker for

predicting cognitive impairment in middle-aged CSVD patients.

KEYWORDS

cerebral small vessel disease, cognitive impairment, magnetic resonance imaging,

prediction model, radiomics

1 Introduction

In recent years, there has been a growing emphasis on the vascular cognitive

impairment stemming from cerebral small vessel disease (CSVD). CSVD has traditionally

been linked to disorders of the perforator artery and cerebral microcirculation. However,

there is now a consensus that CSVD and neurodegeneration coexist and mutually

exacerbate disease progression (1). Consequently, brain atrophy is recognized as a
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characteristic imaging marker of CSVD (1, 2). Notably, the atrophy

of the hippocampus has received significant attention due to its vital

role in memory, navigation, and cognition (3). Previous studies

have indicated that early Alzheimer’s disease (AD) is frequently

associated with reduced hippocampal subfields displaying various

phenotypes (4). Additionally, hippocampal atrophy not only

elevates the risk of progression from mild cognitive impairment

(MCI) to AD but also contributes to the progressive memory loss

in AD patients (5–7). White matter hyperintensity (WMH), brain

gray matter, and hippocampal volume have all been established

as independent predictors of cognitive impairment in CSVD (8).

Furthermore, brain atrophy is often closely associated with the

severity or burden of CSVD (9). However,WMH and brain atrophy

tend to be relatively mild in middle-aged patients with CSVD.

A long-term observational cohort study on middle-aged adults

revealed that a higher WMH burden was observed in only 3% of

the participants (10). Mu et al. reported that the incidence ofWMH

was only 2% in individuals aged 51–55 with Fazekas 3, while the

incidence increased to 24% in those aged 60–70 (11). Moreover, the

incidence of temporal lobe and hippocampal atrophy was 36.3%

in individuals aged 51–55, compared to 80% in those aged 60–

70 (11). Consequently, further validation is needed to confirm

the predictive value of brain atrophy and WMH for cognitive

impairment in middle-aged CSVD patients.

With the rapid advancement of image analysis techniques,

radiomics has garnered increasing attention in the study of

cognitive impairment (12). Radiomics allows for the extraction

of high-throughput features closely associated with cell-level

heterogeneity indices from segmented regions of the target

organ, enabling quantitative analysis of lesion heterogeneity

through appropriate models (13). These features can help identify

microcirculation and microenvironmental anomalies associated

with the disease. Previous studies have demonstrated the

effectiveness of hippocampal radiomics in differentiating between

Alzheimer’s disease (AD) and mild cognitive impairment (MCI)

from normal subjects (14–16). We posit that radiomics based on

structural MRI of the hippocampus could be leveraged for the

prediction of early cognitive impairment in middle-aged patients

with CSVD.

This study aims to develop a radiomics model based on

three-dimensional (3D) T1-weighted images to predict cognitive

impairment in middle-aged patients with CSVD. Additionally,

the study constructed and compared three models: the radiomics

model, the imaging marker model, and the combined model,

to assess the significance of imaging markers of CSVD and

hippocampal radiomics in predicting cognitive impairment in

middle-aged CSVD patients.

2 Materials and methods

2.1 Subjects

A community-based cross-sectional study was conducted at

Nanxishan Hospital of Guangxi Zhuang Autonomous Region from

May 2020 to June 2021, during which 145 CSVD patients with

cognitive impairment were recruited from the local community.

and CSVD was defined according to previous study (1). Ninety-

nine gender-age-and educational matched healthy populations

were recruited as control subjects. Demographic information,

including gender, age, BMI, and education level, was collected for

all participants. The cognitive assessment was performed using the

Beijing version of the Montreal Cognitive Assessment (MoCA)

by a skilled neuro-radiologist. A MoCA score of <26 indicates

cognitive impairment (17). Additionally, they underwent a brain

MRI examination within 1 week preceding the evaluations. The

process of inclusion and exclusion criteria in the current study is

illustrated in Figure 1.

2.2 MRI data acquisition

All MRI procedures were conducted using a 3.0T Magnetic

Resonance (MR) scanner (Ingenia CX, Philips Healthcare)

equipped with a 32-channel head coil. The scan sequences included

the following: three-dimensional (3D) T1 fast field echo with repeat

time (TR) of 6.4ms, echo time (TE) of 3.0ms, field of view (FOV)

of 240 × 240 × 180mm, reconstruction voxel size of 1.1 × 1.1 ×

1.1mm, reconstruction matrix of 400 × 400, and slice thickness

of 1.1mm; 3D T2 spin echo with TR of 2,500ms, TE of 232ms,

FOV of 250 × 25 × 180mm, reconstruction voxel size of 1.1

× 1.1 × 1.1mm, reconstruction matrix of 512 × 512, and slice

thickness of 1.1mm; 3D fluid attenuated inversion recovery with

TR of 4,800ms, TE of 244ms, FOV of 240 × 240 × 173mm,

reconstruction voxel size of 1.1 × 1.1 × 1.1mm, reconstruction

matrix of 384 × 384, and slice thickness of 1.2mm. Susceptibility

weighted imaging (SWI) with TR of 51ms, TE of 9.8ms, FOV of

230 × 189 × 130mm, reconstruction voxel size of 0.3 × 0.3 ×

1mm, reconstruction matrix of 768 × 768, and slice thickness of

1mm. Each subject underwent the aforementionedMRI sequences.

2.3 Hippocampal segmentation

An Unet-based deep learning neural network model was

developed in this study, with the insertion of two modules,

semantic-aware normalization (SAN) and semantic-aware

whitening (SAW), between the encoder and the decoder to

enhance the generalization capability of the model (18). Raw

MR scans were input into the hierarchical model, and the

probability outputs were obtained using the sigmoid function

after the training process. The training data for automated

hippocampal segmentation in this study were obtained from

a public dataset (https://www.kaggle.com/datasets/sabermalek/

mrihs). The detailed procedure of hippocampal segmentation is

described in our earlier study (19).

2.4 Brain volume features segmentation

The CAT12 package was integrated into Statistical Parametric

Mapping (SPM) software to post-process our 3D T1-weighted

image data. SPM12 was utilized within MATLAB 2018b

(MathWorks, Natick, MA). Subsequently, the CAT12 algorithm
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FIGURE 1

Flowchart of inclusion/exclusion process for subject recruitment.

automatically segmented each structural image into gray matter

(GM), white matter (WM), and cerebrospinal fluid. DARTEL

normalization was then employed to transform the images into

Montreal Neurological Institute (MNI) space. Whole-brain gray

matter (GM) volume for statistical analyses was derived by

smoothing the normalized GM images with a full width at half

maximum of 8mm. The total intracranial volume (TIV) was

computed as the sum of the GM, WM, and cerebrospinal fluid

(CSF) volumes. Importantly, group comparisons were solely

conducted within a GM mask created by thresholding the mean

GM map, including all participants at 0.25 through our automated

procedure. Hippocampal volumes (H-VOL) were evaluated

using an automated procedure within VolBrain, an online brain

segmentation tool (https://volbrain.net). Figure 2 illustrates the

radiomics analysis workflow in this study.

2.5 Radiomic features extraction and
features selection

In this study, radiomic features were extracted using

pyradiomics (http://pyradiomics.readthedocs.io) from 3D

MRI T1-weighted images. The extracted features included first-

order features, gray-level co-occurrence matrix (GLCM), gray

level dependence matrix (GLDM), gray-level run length matrix

(GLRLM), gray-level size zone matrix (GLSZM), neighboring gray

tone difference matrix (NGTDM), and shape features. First-order

features describe the distribution of pixel intensities in an image,

encompassing mean, variance, and skewness. GLCM features

capture spatial relationships and intensity distribution among

pixels, while GLDM features represent pixel intensity distribution.

GLRLM features characterize the periodicity and directionality

of texture, and GLSZM features depict spatial relationships and

intensity distribution between adjacent pixels. NGTDM features

represent an improved form of gray-level co-occurrence matrix

features, and shape features illustrate the contours and shape

information of objects in an image. Each feature value was

normalized using Z-scores [(x – µ)/σ ], where x refers to the

value of the feature, µ represents the average value of the feature

for all patients in the cohort, and σ indicates the corresponding

standard deviation, thus removing the unit limits of each feature

before applying the machine learning model for classification.

Additionally, all subjects were randomly divided into training and

test sets in a ratio of 8:2.

Due to the high complexity of the extracted features, there was

a risk of overfitting in the analysis. Thus, employing the Lasso

algorithm was necessary to refine the model by constructing a

penalty function. This function compresses some coefficients to

zero, aiming to enhance the predictive accuracy and interpretability

of the model. The least absolute shrinkage and selection operator

(LASSO) is a popular high-dimensional data analysis method used

to improve prediction accuracy and interpretation. By estimating

the regression coefficients for every feature and successively

shrinking them, LASSO avoids inflating the estimated coefficients,

resulting in superior predictive performance and eliminating

irrelevant features. Subsequently, the optimal λ was used to

determine the number of features and select the most predictive

subset, whose corresponding coefficients were evaluated (Figure 3).

The radiomic texture was computed by summing the selected

features weighted by their coefficients.

The final selected features were utilized to construct models

employing three machine learning algorithms: K-Nearest

Neighbors (KNN), Random Forest, and Extra Trees. Additionally,

a 10-fold cross-validation process was implemented on the

data. Ultimately, the best-performing model was chosen for

presentation. All feature selection and classification operations

were conducted using Python. Radiomic features were derived

from correlation filters, and the most robust, non-redundant, and

predictive features were selected using LASSO.
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FIGURE 2

The flowchart shows the process of radiomics and brain volume analysis in CSVD patients.

2.6 Prediction model building

Brain volume features were selected using LASSO.

Subsequently, prediction models were created incorporating

brain volume markers and radiomic texture for final interpretation

and analysis. The combined model was developed in conjunction

with brain volume markers and radiomic texture. The diagnostic

efficacy of the prediction models were assessed in the test

set, and receiver operating characteristic (ROC) curves were

utilized for evaluating the diagnostic efficacy of three models

(Figure 4).

2.7 Clinical usefulness and calibration
curves

The decision curve analysis (DCA) was utilized to validate

the clinical relevance of this study, providing insights into the

net benefit derived from choosing a specific threshold probability.

DCA quantified the clinical value by estimating the net benefits

based on threshold probabilities, with net benefit representing the

true positives minus the fraction of false positives, weighted by

the relative harm of false-positive and false-negative results. The

threshold probability, Pt, determined the point where the expected
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FIGURE 3

Radiomics feature selection using the least absolute shrinkage and selection operator (LASSO) regression model. (A) Tuning parameter (λ) selection in

the LASSO model was performed by 10-fold cross-validation using minimum criterion. The optimal λ values are indicated by dotted vertical lines. A λ

of 0.0045 was chosen. (B) LASSO coe�cient profiles of 1,197 radiomics features were generated vs. the selected log λ values using 10-fold

cross-validation. (C) Nine radiomics features with non-zero coe�cients were selected. (D) Feature weights of the random forest model.

FIGURE 4

Receiver operating characteristic (ROC) curves of the brain volume,

radiomics, and combined models. CI, confidence interval.

benefit of treatment equaled the expected benefit of avoiding

treatment (Figure 5).

Moreover, calibration curves were employed to assess the

calibration of the radiomics model. Additionally, the Hosmer–

Lemeshow test was performed to evaluate the calibration of each

model, demonstrating the accuracy of predicted risks of CSVD by

comparing them to the observed outcomes of CSVD (Figure 6).

2.8 Statistics

In this study, missing value processing was performed as

follows: for numeric features, the mean value was utilized for filling.

Statistical analyses were conducted using Python software (Version

3.7; https://www.python.org). Normal distribution of variables for

the control subject group and CSVD group was tested. We tested

normality of variance using the Kolmogorov-Smirnov Test. In a

two-tailed analysis, a p-value <0.05 was considered statistically

significant. An independent sample t-test was employed to evaluate

the measurement variables, and the chi-square test and Fisher exact

test were used to compare the categorical variables. The predictive

performance of the models was assessed using ROC analysis. The

DeLong test, a non-parametric approach, was utilized to compare

the areas under two correlated ROC curves, determining if there
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FIGURE 5

Decision curve analysis (DCA) for the predictive models. The y-axis

stands for the net benefit, and the x-axis represents the threshold

probability. The radiomics model achieved a larger net benefit

compared to the brain volume model and the combined model.

was a statistically significant difference in the predictive accuracy of

different diagnostic tests.

3 Results

3.1 Patient characteristics

The patient characteristics for the CSVD and healthy control

groups are presented in Table 1. No significant differences in sex,

age, or education were observed (P > 0.05). The mean age was

52.57 ± 4.88 years in the control subjects and 52.66 ± 5.15 years

in the CSVD group. However, there were statistically significant

differences in TIV, GM, WM, WMH, and hippocampal volume,

with lower values observed in the CSVD group compared to the

control subjects.

3.2 Radiomics feature and models building

In this study, 1,197 features were extracted from 3D MRI T1-

weighted images, including 234 first-order features, 286 GLCM

features, 182 GLDM features, 208 GLRLM features, 208 GLSZM

features, 65 NGTDM features, and 14 shape features. Finally,

9 radiomics features with non-zero coefficients were selected

(Figure 3). Three machine learning algorithms were utilized to

construct the radiomics model. Among these models, the random

forest model achieved the best ROC on the testing set. In the

training set, the area under the ROC curve (AUC) was 0.999

[95% Confidence Interval (CI): 0.998–1.000], with an accuracy,

sensitivity, and specificity of 98.2%, 96.9%, and 100%, respectively.

In the testing set, AUC was 0.843 (95% CI: 0.684–1.000), with

an accuracy, sensitivity, and specificity of 80%, 73.3%, and 90%,

respectively (Table 2).

FIGURE 6

Calibration curves of the brain volume, radiomics, and combined

models for predicting CSVD. The y-axis represents the actual

incidence rate of CSVD. The x-axis represents the predicted risk of

CSVD. The diagonal dotted line represents the prediction of an ideal

model. A closer fit to the diagonal dotted line indicates a more

accurate prediction. CSVD, cerebral small vessel disease.

Furthermore, the feature wavelet_LLH_first order_Maximum

obtained the highest weight among the selected features using the

random forest machine learning algorithm (Figure 3). The results

of the Random Forest model and Extra Trees model displayed

significant differences, as evidenced by the DeLong test (P= 0.047)

(Table 3).

3.3 Combined model build and correlation
analysis

In this study, brain volume features, including WHM, TIV,

GM, and hippocampal volume, were selected using LASSO to

construct the brain volume model, which was then combined with

hippocampal omics textures to form the combined model. The

performance of the brain volume model, radiomics model, and

combined model in the training and test sets is summarized in

Table 4. The AUC of the brain volume model was 0.593 (95% CI:

0.356–0.831), the AUC of the combined model was 0.817 (95% CI:

0.635–0.998), and the AUC of the hippocampal omics model was

0.843 (95% CI: 0.684–1.000) (Table 4, Figure 4). The DeLong test

indicated no statistical difference in the AUC values among the

three models (Table 5). The brain volume model exhibited higher

sensitivity (93.3%) compared to the radiomics model (73.3%),

whereas the radiomics model had higher specificity (90.0%) than

the brain volume model (30.0%). Additionally, the combination

of imaging markers and hippocampal texture did not enhance

diagnostic efficacy compared to the individual model (p > 0.05)

(Table 4).
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TABLE 1 Demographic information in this study.

Normal controls
(n = 99)

CSVD
(n = 145)

T-value/X2 P-value

Age (year, mean± SD) 52.576± 4.885 52.662± 5.151 −0.131 0.896

Male (n, %) 44 (44%) 65 (44.8%) 0.003 0.953a

Education (year, mean± SD) 11.995± 2.617 11.754± 3.898 0.537 0.592

MOCA (mean± SD) 27.172± 1.069 21.352± 4.161 13.606 <0.001

BMI (mean± SD) 23.26± 2.072 24.511± 2.81 −3.782 <0.001

Fazekas grade (%) 19.152 <0.001b

0 15 (15.2) 2 (1.4)

I 66 (66.7) 106 (73.1)

II 15 (15.2) 25 (17.2)

III 3 (3.0) 12 (8.3)

LIs (%) 9 (9.1) 17 (11.7) 0.673a

CMBs (%) 16 (16.2) 25 (17.2) 0.863a

TIV (mean± SD) 1494.574± 130.124 1451.171± 128.543 2.577 0.011

GM (mean± SD) 580.013± 42.034 562.161± 43.145 3.207 0.002

WM (mean± SD) 510.743± 49.454 493.417± 51.715 2.615 0.009

CSF (mean± SD) 402.597± 74.695 393.38± 92.148 0.827 0.409

WMH (mean± SD) 1.221± 1.002 2.213± 3.781 −2.548 0.011

H-VOL (cm3 , mean± SD) 7.416± 0.696 7.129± 0.663 3.246 0.001

CSVD, cerebral small vessel disease; MOCA, montreal cognitive assessment; BMI, body mass index; TIV, total intracranial volume; GM, gray matter; WM, white matter; CSF, cerebrospinal

fluid; WMH, white matter hyperintensities; H-VOL, hippocampus volume; SD, standard deviation.

Statistics were analyzed with independent samples t-test, unless otherwise indicated.
aFisher exact test or chi-square test.
bAdjusted chi-square test.

TABLE 2 Classification performance.

Model Accuracy AUC 95%CI Sensitivity Specificity PPV NPV Task

KNN 71.7 0.760 0.699–0.821 80.8 58.4 0.739 0.675 Train

KNN 72.0 0.763 0.581–0.945 66.7 80.0 0.833 0.615 Test

Random forest 98.2 0.999 0.998–1.000 96.9 100 1.000 0.957 Train

Random forest 80.0 0.843 0.684–1.000 73.3 90.0 0.917 0.692 Test

Extra trees 99.5 1.000 0.999–1.000 99.2 100 1.000 0.989 Train

Extra trees 76.0 0.767 0.570–0.963 66.7 90.0 0.909 0.643 Test

KNN, K-Nearest Neighbors; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the receiver operator characteristic curve.

3.4 Clinical usefulness and calibration
curves

The combined model reached a threshold probability of

0.7. The hippocampal omics model demonstrated a greater net

benefit at the threshold probability compared to both the brain

volume model and the combined model (Figure 5). The calibration

curve of the radiomics model depicted the most consistent

predicted probabilities among the three models with the observed

frequencies, as the curve closely followed the diagonal reference line

(Figure 6).

4 Discussion

The objective of this study was to develop a prediction

model based on hippocampal texture for predicting cognitive

impairment in middle-aged patients with CSVD. Nine

texture features were screened to construct the prediction

model. The findings indicated that the hippocampal omics

model exhibited high diagnostic performance in predicting

cognitive function impairment in middle-aged CSVD

compared to the brain volume-based imaging marker model.

Furthermore, the combination of the two models did not
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significantly enhance the predictive efficacy of the hippocampal

omics model.

The study utilized a Random Forest Classifier to develop a

radiomics model that achieved 80% accuracy in distinguishing

CSVD patients from normal subjects, with a sensitivity of 73.3%

and specificity of 90%. This model demonstrates good accuracy and

specificity, making it a valuable diagnostic tool. It is well-established

that hippocampal atrophy in AD patients primarily results from the

accumulation of Tau and amyloid deposits, leading to the formation

of characteristic neurofibrillary tangles, which subsequently disrupt

the structure and function of hippocampal neurons and nerve

fibers (20). The etiology of hippocampal atrophy in CSVD

patients is more complex, potentially involving microcirculatory

disturbances in addition to neurodegeneration (1). Despite

the different pathological and physiological mechanisms of

hippocampal atrophy in the two diseases, it has been shown

that using hippocampal volume and textural features reflecting

microstructural damage is effective for disease prediction (20, 21).

Khan et al. achieved 80.7% classification accuracy in differentiating

AD from normal controls using hippocampal volume (21).

Furthermore, radiomic features can capture more subtle changes

in microstructure and microenvironment compared to volume

features. Luk et al. illustrated that hippocampal occupancy yielded

an AUC of 0.843, with 77.6% sensitivity and 79.6% specificity, while

texture achieved an AUC of 0.928, with 88% sensitivity and 84.9%

specificity in predicting MCI conversion to AD (15). Feng et al.

demonstrated that radiomic features enabled the differentiation of

AD from normal controls with an accuracy of 86.75% (specificity

= 88.89% and sensitivity = 84.21%) and an AUC of 0.93 (22).

Leandrou et al. showed that a radiomics model achieved 84.7%

classification accuracy in differentiating AD from normal controls,

with a sensitivity of 0.799, specificity of 0.878, and an AUC

of 0.91, respectively (23). The accuracy of our model is similar

to that of the aforementioned study. However, the sensitivity

TABLE 3 Delong test of KNN, random forest and extra trees model in test

set.

Random
forest vs.

KNN model

Random
forest model
vs. extra trees

model

KNN model
vs. extra trees

model

P-value 0.083 0.047 0.874

KNN, K-Nearest Neighbors; vs., versus.

and specificity exhibit more variability across different studies,

indicating potential influence from diverse algorithm models.

The radiomics model in this study achieved an AUC of 0.843,

signifying strong diagnostic value. Overall, our findings emphasize

the potential of hippocampal texture characteristics as imaging

biomarkers for predicting cognitive impairment in middle-aged

CSVD patients.

The second important finding of this study is that, while

there were statistical variances in hippocampal volume, TIV,

GM, and WM between the two groups, the imaging marker

model exhibited significantly lower efficacy in predicting cognitive

impairment in middle-aged CSVD patients compared to the

hippocampal textural model. Specifically, the imaging marker

model achieved an accuracy of 68%, an AUC of 0.593, a sensitivity

of 93.3%, and a specificity of 30%. Prior studies have asserted

that brain atrophy and cortical thinning are crucial indicators

of aging, neurodegenerative diseases, and CSVD (1, 24). Fein

et al. demonstrated that hippocampal and cortical atrophy were

the strongest predictors of subcortical ischemic vascular disease

(20). Other studies have shown that brain atrophy outperforms all

other lesions in predicting cognitive outcomes and disabilities in

CSVD (20, 24). In our study, we observed that a brain volume

model had lower AUC and specificity but with a high sensitivity

of 93.3%. There are several reasons that may explain this result.

From the neurodegeneration perspective, brain atrophy occurrence

in CSVD patients is closely related to age and interacts with the

total load of CSVD, and the lower enrollment age and CSVD load

in this study may reduce the incidence of brain atrophy (9, 25).

From the vasogenic pathology perspective, the middle-aged CSVD

population has a high cerebral perfusion reserve, leading to a

relatively small impact of CSVD on cerebral perfusion reduction in

middle age, causing subtle secondary structural changes (26, 27). In

this study, the lower enrollment age and CSVD burden were linked

to fewer brain morphological changes, consequently reducing

the predictive efficacy of brain atrophy on cognitive function.

Furthermore, the morphological features of brain atrophy have

TABLE 5 Delong test in test set.

Brain volume
model vs.
radiomics
model

Brain volume
model vs.
combined
model

Radiomics
model vs.
combined
model

P-value 0.069 0.062 0.530

TABLE 4 The results of di�erent models.

Model Accuracy (%) AUC 95%CI Sensitivity (%) Specificity (%) PPV NPV Task

Brain volume model 98.2 0.998 0.995–1.000 99.2 96.6 0.977 0.989 Train

Radiomics model 98.2 0.999 0.998–1.000 96.9 100 1.000 0.957 Train

Combined model 99.1 1.000 0.999–1.000 98.5 100 1.000 0.978 Train

Brain volume model 68.0 0.593 0.356–0.831 93.3 30.0 0.667 0.750 Test

Radiomics model 80.0 0.843 0.684–1.000 73.3 90.0 0.917 0.692 Test

Combined model 84.0 0.817 0.635–0.998 73.3 100 1.000 0.714 Test

CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the receiver operator characteristic curve.
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high sensitivity and low specificity to CSVD cognitive function.

Therefore, further investigation of the extent of brain atrophy in

different age groups of CSVD patients is essential.

WHM and brain atrophy are considered the primary

neuroimaging features of cerebral small vessel disease based on

the 2023 neuroimaging standards (1). WMH is also among the

most prevalent and prominent changes in elderly individuals

(28). Previous studies have established that WMH is linked

to a significant decline in overall cognitive function (29, 30).

Our analysis corroborates the findings of prior research. The

severity of WMH correlates with further declines in cognitive

scores; Zeng et al. observed that participants with a Fazekas

score of 3 or higher exhibited significant impairments in both

cognitive functions and in their white matter microstructure

(31). Moreover, Wang et al. demonstrated the heterogeneity

of WMH concerning its severity and its impact on cognitive

impairment (32). However, in this study, the lower WMH load in

the enrolled CSVD population diminished the predictive efficacy

of WMH.

Previous studies have highlighted the emergence of radiomics

as a promising technology capable of enhancing disease diagnosis

and prediction by extracting high-throughput quantitative

features from medical images of the hippocampus in Alzheimer’s

disease (33–36). In our present study, we extracted classes of

quantitative radiomic features from the hippocampus to assess

microenvironmental changes in patients with CSVD. We selected

9 higher texture features, including first-order (n = 3), GLDM (n

= 1), NGTDM (n = 2), and GLCM (n = 3) among the features.

In our study, the feature “wavelet_LLH_first order_Maximum”

exhibited the highest weight among the selected features. Wang

et al. have demonstrated that GLCM and GLSZM features were

associated with the Mini-mental State Examination scores in

diagnostic models for AD and aMCI (35, 37). Furthermore,

GLCM analysis serves as a highly sensitive method for analyzing

Granule Neurons of the Hippocampal Dentate Gyrus following

cortical injury (38). We utilized GLCM and GLSZM features to

construct our model. In the field of medical image diagnostics,

various types of features, including first-order, GLCM, GLDM,

and GLRLM, are commonly combined with other feature types,

such as log-sigma original and wavelet features (39). The use of

wavelet transform enables the investigation of a range of scales,

facilitating the enhancement of subtle contrast variations between

lesions and normal tissues (40). This approach is preferred over

using them individually. Although ongoing research is exploring

the correlation between multiple radiomic features and pathology,

such studies are still in their preliminary stages, and there are

currently insufficient research results to explain the interpretability

of these features.

In the clinical setting, the changes in clinical symptoms

in middle-aged individuals with CSVD are not significant.

Neuropsychological tests necessitate a high degree of patient

cooperation, and some patients may struggle to accurately

complete the tests. Radiomic features offer a more objective and

convenient biomarker for predicting cognitive impairment in

CSVD. Specifically, 3D-T1 imaging is commonly used in routine

brain examinations, allowing the 3D T1-based hippocampal texture

omics model to be readily employed for the primary prevention of

cognitive impairment in patients with CSVD.

However, this study has several limitations. Firstly, it was

conducted at a single center with a small sample size, potentially

constraining the generalizability of the results. Due to the

limited sample size, cognitive impairment was not classified into

mild, moderate, and severe categories, and there was insufficient

neuroimaging data for analysis. In the subsequent phase, we aim

to include a larger sample size and more neuroimaging data to

establish deep learning models for examining the relationship

between the hippocampus and cognitive impairment in CSVD.

Additionally, as the study was conducted at a single center, the

images were not preprocessed, emphasizing the need for external

validation through multi-center studies with larger sample sizes.

Secondly, the study involved predominantly Chinese participants,

necessitating caution in generalizing the results to other ethnic

groups due to potential differences. Thirdly, the developed

automatic segmentation algorithm for the hippocampus was

not compared with other existing algorithms. Fourthly, while

our study achieved favorable results with the Random Forest

classifier in terms of AUC and accuracy, selecting the best-

performing fold in 10-fold cross-validation may have obscured

the model’s performance variability across other folds. To mitigate

this limitation, we will explore model performance variability

more thoroughly using stricter cross-validation strategies and

a wider range of evaluation metrics in future work. Fifthly, a

clear distinction between CSVD and AD remains challenging due

to their mutual high-risk factors and shared disease pathways.

However, the potential confounding effect of AD on our study

results is mitigated by the fact that our subjects were middle-

aged adults with high MoCa scores indicative of minimal AD

risk, and we conducted a thorough medical history collection

to exclude clinical manifestations of AD at enrollment. Finally,

the clinical interpretability of our proposed prediction method is

lacking, in our upcoming research efforts, we plan to utilize the

feature importance assessment technique to accurately quantify the

contribution of each feature to the prediction outcomes.

5 Conclusions

In conclusion, our findings indicate that radiomics analysis of

hippocampal texture can effectively predict cognitive impairment

inmiddle-aged patients with CSVD. However, the combinedmodel

utilizing radiomic signatures, TIV, GM, WMH, and hippocampal

volume values does not significantly improve diagnostic efficacy.

Furthermore, a radiomics model based on hippocampal structure

represents a convenient and reliable protocol for the primary

assessment of cognitive impairment inmiddle-aged CSVDpatients.
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