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Background: In patients who have undergone ischemic stroke therapy, retained 
iodine-based contrast can resemble acute intracranial hemorrhage (ICH) on 
standard computed tomography (CT). The purpose of this study is to determine 
the accuracy of commercially available artificial intelligence software for 
differentiating hemorrhage from contrast in such cases.

Methods: A total of 45 CT scans analyzed by Aidoc software that also included 
dual-energy iodine subtraction maps from dual energy CT from 23 unique 
patients (12 male, 11 female, age range 30–99 years, mean age 67.6 years, 
standard deviation 18.5 years) following recent ischemic stroke therapy were 
retrospectively reviewed for the presence of hemorrhage versus retained 
contrast material.

Results: The sensitivity and specificity of the model in detecting acute intracranial 
hemorrhage as opposed to contrast were 51.7 and 50.0%, respectively. The 
positive and negative predictive values were 65.2 and 36.4%, respectively.

Conclusion: The current Aidoc software is not optimized for differentiating 
between acute hemorrhage and retained contrast on CT. This justifies the 
development of a more robust artificial intelligence model trained to differentiate 
between ICH and iodine contrast based on both DECT and standard CT images.
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Introduction

Acute intracranial hemorrhage (ICH) after intravenous thrombolytic therapy for ischemic 
stroke is rare but potentially life-threatening depending on the size and location of the bleed. 
Rapid identification and management are essential to achieving positive patient outcomes (1). 
Following ischemic stroke, patients may receive acute interventions such as intravenous tissue 
plasminogen activator (tPA) administration (e.g., alteplase or tenecteplase) or mechanical 
thrombectomy to restore cerebral blood flow. Diagnostic imaging prior to treatment typically 
involves the use of an iodine-based contrast agent to evaluate vascular occlusion, collateral 
flow, and perfusion status. However, blood–brain barrier (BBB) leakage can lead to retention 
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of contrast material, which may persist in subsequent non-contrast 
imaging, complicating the differentiation between retained contrast 
and acute ICH. Post-treatment imaging, typically performed without 
the administration of an iodine contrast agent, aims to detecting 
complications such as ICH, but retained iodine contrast from 
pre-treatment imaging may appear as hyperdense foci on standard 
head CT, mimicking hemorrhage. Previous studies estimate that 
iodine extravasation may account for up to 84% of hyperdense foci 
seen on follow-up scans after non-mechanical thrombolysis for 
ischemic stroke (2, 3). Thus, retained contrast can present a challenge 
in post-treatment imaging, as it is difficult to differentiate from 
acute ICH.

Dual-energy computed tomography (DECT) provides a solution 
to this diagnostic challenge by utilizing two unique photon energy 
spectra to better distinguish materials with varying attenuation 
properties (4). With post-processing, DECT exams can be used to 
generate an iodine overlay map (IOM), enabling the creation of 
virtual non-contrast (VNC) images (5–8). These VNC images 
subtract densities corresponding to iodine contrast from the 
enhanced images, significantly aiding in the differentiation between 
retained iodine contrast and acute ICH. Because of its ability to 
generate IOMs and VNC images, DECT achieves nearly 100% 
accuracy in distinguishing between retained iodine contrast and 
hemorrhage in scenarios of post-ischemic stroke therapy (9). While 
VNC images generated by DECT may slightly differ in the exact 
attenuation values as compared to true non-contrast CT (NCCT), 
multiple studies have shown that these differences are relatively minor 
and that VNC images can be used reliably in diagnostic scenarios 
(10–12).

With the increasing use of artificial intelligence (AI) as a useful 
tool in the field of radiology over the past several years, many triage 
AI models have been developed and implemented in various hospitals 
across the world. While some of these AI models perform at very high 
accuracy, others are underdeveloped or not trained to a level at which 
they can be consistently reliable in clinical situations. In the setting of 
post-stroke therapy CT imaging, an AI model able to differentiate 
between retained contrast and acute hemorrhage would enable the 
flagging of cases with suspected ICH, allowing for more rapid 
identification and intervention, leading to better patient outcomes.

Recently, Aidoc (Tel Aviv, Israel) has created an artificial 
intelligence (AI) model to detect acute ICH on standard CT images, 
flagging images with suspected hemorrhage for further review by a 
trained radiologist. Despite the promisingly high performance 
reported (13), this model does not appear to be  optimized for 
detecting the difference between ICH and retained contrast material 
on conventional CT exams. We  have previously shown that the 
implementation of an automatic flagging system decreases scan view 
delay time and expedited diagnosis of urgent conditions (14). Because 
of the critical need to quickly identify and assess potential cases of 
ICH, it is important to assess the ability of the Aidoc model to 
accurately distinguish between ICH and retained iodine contrast, and, 
if it cannot, to develop a novel model that can do so with more 
generalizable accuracy.

In this study, we use the Aidoc model to predict contrast versus 
hemorrhage for 45 CT exams showing hyperdensities confirmed to 
be either retained contrast or acute hemorrhage. Through this analysis, 
we show that performance of current AI models in distinguishing 
between retained contrast and acute ICH on post-stroke therapy CT 

scans is insufficient, and a more robust model needs to be trained 
and validated.

Materials and methods

Inclusion criteria

This study retrospectively analyzes CT and DECT exams of adult 
patients (age 18+) admitted to the University of Chicago Medical 
Center between January 2014 and June 2024 in the setting of acute 
ischemic stroke. After NCCT confirmation of an ischemic lesion, 
patients included in the study underwent acute tenecteplase therapy 
and subsequent follow-up DECT imaging at 24–48 h post-treatment 
to monitor for the presence of acute intracranial hemorrhage 
(Figure 1). Several included patients underwent multiple follow-up 
imaging studies (Table 1).

A search of the imaging database identified 98 CT image sets from 
49 unique patients, some of whom underwent multiple post-treatment 
scans. 53 of these imaging sets (from 26 unique patients) did not show 
any hyperdensity and thus were excluded from analysis. The remaining 
45 image sets were included in the analysis. These image sets were 
collected from 23 unique patients, 12 male (52%), 11 female (48%), 
age range 30–99 years, mean age 67.6 years, standard deviation 
18.5 years.

Imaging specifications

DECT image sets were obtained using a GE Gemstone Spectral 
CT in helical scan mode. Images were obtained at a tube voltage of 
80/140 kVp and a tube current of 300 mA. Tube rotation time was 
0.8 s and pitch was 0.52. Images were obtained at a thickness of 5 mm 
and with a reconstruction interval of 0.63 mm.

Standard CT image sets were obtained at a tube voltage of 140 kVp 
and a tube current of 405 mA. Pitch was 0.52. Images were obtained 
at a thickness of 0.63 mm and a reconstruction field-of-view of 
299 mm with a standard reconstruction filter.

Aidoc software

After anonymization, conventional CT image sets were fed 
into an FDA-approved convolutional neural network algorithm 
developed by Aidoc aimed at identifying ICH via slice-by-slice 
analysis. In prior studies, this model is reported to detect ICH 
with a specificity of 99%, a sensitivity of 95%, and an overall 
accuracy of 98% (13).

Analysis

Both standard CT and DECT image sets for patients meeting the 
inclusion criteria were obtained from the imaging database. Under the 
guidance of an experienced neuroradiologist, DECT image sets 
(including an iodine suppression map) from each case were used to 
confirm each hyperdensity as acute ICH, retained iodine contrast, or 
both. The neuroradiologist’s assessment constituted the ground truth 
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for this study. A confusion matrix was then constructed based on the 
predictions of the Aidoc software and the ground truth obtained from 
the neuroradiologist’s interpretation of the DECT image sets. 
Specificity, sensitivity, positive predictive value, and negative predictive 
value were then calculated for the Aidoc software.

IRB statement

This study was approved by the Institutional Review Board at the 
University of Chicago. No patient identifiers were recorded, and all 
images were fully anonymized before being fed into the Aidoc 
software. As this study falls under the category of quality improvement 
research, the need for patient consent was waived.

Results

A total of 45 image sets from 23 unique patients were fed into the 
Aidoc software. After receiving an image set, the software determined 
if the hyperdensity on the image likely represented ICH or retained 
iodine contrast. These results were then compared with the diagnosis 

made from the DECT scan. Of the 45 images screened by the software, 
29 (64%) were flagged as positive for ICH, and 16 (36%) were flagged 
as negative. Among the 29 images flagged by the software as positive 
for ICH, the true positive rate was 52% (15/29), and the false positive 
rate was 48% (14/29). Of the 16 images screened as negative for ICH, 
the true negative rate was 50% (8/16) and the false negative rate was 
50% (8/16) (Table 2). The sensitivity, specificity, positive predictive 
value, and negative predictive value were calculated as 51.7, 50.0, 65.2, 
and 36.4%, respectively, with an overall accuracy of 51.1% (Table 3). 
A receiver operating characteristic (ROC) curve was generated using 
the Aidoc model classification and demonstrated an area under the 
curve (AUC) of 0.51 (Figure 2).

Discussion

Despite the ability of the Aidoc model to detect ICH on NCCT 
images as reported in the original study (13), our results show that the 
Aidoc deep learning model is not optimized for detecting acute ICH 
in the presence of possible retained iodine contrast. In the presence of 
contrast, the Aidoc software was only able to correctly flag 65.2% of 
ICH-positive cases, misjudging the remaining 34.8% as 
retained contrast.

Accurate differentiation between retained contrast and ICH is critical 
for timely and effective clinical management. A model capable of reliably 

FIGURE 1

Inclusion criteria for analyzed images (Created using BioRender).

TABLE 1 Patients receiving multiple follow-up imaging studies.

# follow-up 
imaging studies

# patients # image sets 
generated

1 12 12

2 5 10

3 3 9

4 1 4

5 2 10

Total 23 45

TABLE 2 Confusion matrix.

Ground 
truth 

positive (+)

Ground truth 
negative (−)

Total

Aidoc positive (+) 15 8 23

Aidoc negative (−) 14 8 22

Total 29 16 45

https://doi.org/10.3389/fneur.2025.1458142
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.biorender.com


Olsen and Ginat 10.3389/fneur.2025.1458142

Frontiers in Neurology 04 frontiersin.org

FIGURE 3

Example of a false positive reported by the Aidoc algorithm: the retained contrast in the left frontal lobe (red arrow) seen on contrast CT (left) was 
flagged for ICH. The iodine suppression image (right) confirms that there is no hemorrhage.

distinguishing between the two could significantly reduce diagnostic 
errors, streamline clinical workflow, and enhance patient outcomes. Cases 
in which retained contrast is misclassified as ICH may lead to unnecessary 
interventions, delayed care for actual ICH cases, and increased costs. 
Conversely, false negatives, where true ICH is misclassified as contrast, 
could cause delay in treatment, including failure to initiate life-saving 

therapies such as anticoagulation reversal or surgical intervention. 
Integrating a highly sensitive and specific AI model into radiological 
workflows could enhance diagnostic accuracy, reduce radiologist 
workload, and minimize human oversight. For example, a model with a 
specificity of 98% could eliminate up to 90% of false ICH alarms, while 
maintaining a sensitivity of 95% could ensure timely detection of nearly 
all true ICH cases. Refining AI algorithms to minimize false outputs and 
incorporating clinician feedback into iterative development are essential 
steps to achieving optimal clinical impact.

Analysis of the image sets used in this study showed that ICH 
flagging seemed to follow an attenuation-based pattern. Acute ICH 
displays strong hyperattenuation on contrast CT, and in many false 
positive cases, the retained contrast was found to be  particularly 
hyperattenuating (Figure 3). Conversely, cases of retained contrast that 
were correctly judged as ICH-negative tended to display contrast with 
weaker hyperattenuation (Figure 4). While our dataset included only 
three cases presenting with petechial hemorrhage, all were 
inappropriately judged to be ICH-negative by the Aidoc algorithm.

There are several limitations to this study. First, our study included 
multiple follow-up image series from several of the same patients. While 
these repeated scans from the same patient are not completely 
independent data points, we performed an additional sensitivity analysis 
in which only the first follow-up scan per patient was included. The 
sensitivity was 62.7% and the specificity was 26.7%, confirming that while 
there were changes to the statistical outcome, our overall claims about the 
accuracy of the model remained consistent. Second, the true-positive and 
false-negative rates may be exaggerated due to an overrepresentation of 
patients presenting with ICH at follow-up in comparison to patients 
without ICH. Additionally, the standard imaging indication for post-
thrombolytic therapy is NCCT rather than contrast CT or DECT, leading 
to the availability of a small number of cases for analysis. To confirm that 
the findings of this study are generalizable, more DECT scans from post-
tenecteplase patients should be fed through the algorithm, ideally from a 
broad range of locations. Despite the limitations of this analysis, the poor 
performance of the Aidoc system in distinguishing between acute 
hemorrhage and retained iodine contrast is not ideal. Finally, the ground 
truth was determined from DECT images alone instead of MRI.

TABLE 3 Statistical calculations.

Parameter Value 95% CI

Sensitivity 51.7% 32.5–70.6%

Specificity 50.0% 24.7–75.4%

Positive predictive value 65.2% 50.6–77.4%

Negative predictive value 36.4% 23.6–51.5%

Overall accuracy 51.1% 35.8–66.3%

FIGURE 2

ROC curve created from the Aidoc model classifications with an 
AUC of 0.51.
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The development of a more robust AI detection system is 
necessary to reduce the time radiologists spend reviewing 
critical cases. A more optimized AI model could help prioritize 
urgent cases, ensuring that potentially life-threatening 
conditions such as ICH are flagged quickly for immediate 
attention. This could prevent delays and reduce the risk of 
congestion on ‘stat’ reading lists, where time-sensitive cases are 
often very high-volume yet still require swift interpretation to 
guide clinical decisions.

Conclusion and future directions

Our analysis shows that the Aidoc software was unable to 
consistently differentiate between acute ICH and retained iodine 
contrast on post-tPA CT images. We  believe this warrants the 
development of a more robust AI detection system that can 
be deployed to flag the images of patients with potential ICH, leading 
to quicker treatment and more favorable outcomes.
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FIGURE 4

Example of a false negative reported by the Aidoc algorithm: a small area of hemorrhage along the posterior cingulate gyrus (red arrows) as seen in the 
contrast CT (left) is confirmed by persistence in the iodine suppression image (right).
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