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Objective: This study aims to develop an unsupervised automated 
method for detecting high-frequency oscillations (HFOs) in intracranial 
electroencephalogram (iEEG) signals, addressing the limitations of manual 
detection processes.

Method: The proposed method utilizes an unsupervised convolutional variational 
autoencoder (CVAE) model in conjunction with the short-term energy method 
(STE) to analyze two-dimensional time-frequency representations of iEEG 
signals. Candidate HFOs are identified using STE and transformed into time-
frequency maps using the continuous wavelet transform (CWT). The CVAE 
model is trained for dimensionality reduction and feature reconstruction, 
followed by clustering of the reconstructed maps using the K-means algorithm 
for automated HFOs detection.

Results: Evaluation of the proposed unsupervised method on clinical iEEG data 
demonstrates its superior performance compared to traditional supervised 
models. The automated approach achieves an accuracy of 93.02%, sensitivity 
of 94.48%, and specificity of 92.06%, highlighting its efficacy in detecting HFOs 
with high accuracy.

Conclusion: The unsupervised automated method developed in this study offers 
a reliable and efficient solution for detecting HFOs in iEEG signals, overcoming 
the limitations of manual detection processes of traditional supervised models. 
By providing clinicians with a clinically useful diagnostic tool, this approach 
holds promise for enhancing surgical resection planning in epilepsy patients and 
improving patient outcomes.
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1 Introduction

Epilepsy, a complex neurological disorder characterized by 
recurrent and unpredictable seizures, affects over 65 million people 
globally, constituting a significant public health burden (1). Despite 
considerable advancements in antiseizure medications and other 
therapeutic modalities, a substantial proportion of individuals with 
epilepsy continue to experience uncontrolled seizures, severely 
impacting their quality of life and daily functioning (2, 3). For 
individuals with medically refractory epilepsy, surgical intervention 
remains a viable option aimed at achieving seizure freedom and 
improving overall well-being. Central to the success of epilepsy 
surgery is the accurate localization and delineation of the epileptogenic 
zone (EZ), the area of the brain responsible for initiating and 
propagating seizures. Accurate delineation of the EZ is critical to 
ensure maximal resection of epileptogenic tissue while minimizing the 
risk of postoperative neurological deficits.

Intracranial electroencephalogram (iEEG) recordings play a 
pivotal role in the pre-surgical evaluation of epilepsy patients (4) by 
providing direct and high-temporal-resolution insights into the spatial 
and temporal dynamics of epileptiform activity within the brain. Over 
recent years, high-frequency oscillations (HFOs) in iEEG signals have 
emerged as potential biomarkers for the epileptogenic tissue, offering 
valuable insights into the pathophysiology of epilepsy and guiding 
surgical decision-making. However, the manual detection and 
characterization of HFOs present significant challenges. Traditional 
methods rely on labor-intensive and subjective processes for feature 
extraction and annotation, leading to variability in results and 
hindering scalability for large-scale analysis. Moreover, the manual 
analysis of iEEG recordings is time-consuming and resource-intensive, 
limiting its clinical utility in routine practice. Most recently, Zhang 
et al. (4) explored whether the unique mechanisms of pathological and 
physiological HFOs are reflected in their signal morphology within 
intracranial EEG (iEEG) recordings. They also examined whether this 
mechanism-based distinction could be  replicated using a deep 
generative model.

In response to these challenges, various HFOs detection models 
based on semi-and unsupervised machine learning attracted 
researchers’ attention, such as the K-means model (K-means) (5), the 
Gaussian mixture model (GMM) (6), the fuzzy c-means model (FCM) 
(7), and mean-shift algorithm (7). Blanco et al. (8) reported a K-means 
model to automatically detect HFOs, which screened out all possible 
HFOs (pHFOs) with the RMS method first, then extracted 7 features 
of HFOs signals, and used a K-means model to cluster them. 
Alternatively, Liu et al. (5) screened the pHFOs signal by calculating 
the Hilbert transform envelope of the original EEG signal and then 
used the K-means model to cluster them with three features of the 
sub-band power ratio, high band entropy, and peak-sink energy ratio. 
Moreover, Liu et al. (6) used the root mean square method to screen 
pHFOs, performed time-frequency analysis to extract features and 
finally adopted the GMM for clustering them. Wu et al. (7) used the 
root mean square method to screen pHFOs from EEG data and 
extracted four features: short-term energy, fuzzy entropy, power ratio, 
and spectral centroid. He proposed the quadric error metrics (QEM) 
algorithm to calculate the optimal number of clusters, and finally, real 
HFOs were detected automatically by FCM clustering with the number 
of cluster centers being. Du et al. (9) proposed a semi-supervised 
learning-based method for HFOs detection in EEG signals, which first 

used wavelet entropy and the Teanger energy operator to detect 
pHFOs and then used labeled EEG data to initialize the K-means 
model. Migliorelli et al. (10) proposed a HFOs detection algorithm 
based on the S-transform and the GMM algorithm. The algorithm 
performed Stockwell transformation on EEG signals to extract features 
and then used GMM to perform cluster analysis on the features. Wan 
et al. (11) extracted four features by combining a variety of signal 
analysis methods to analyze the pHFOs signals, such as the Stockwell 
forward and inverse transformation, the singular value decomposition, 
etc., and clustered them with the improved FCM algorithm. However, 
considerable difficulties of such supervised learning and semi-and 
unsupervised methods seem to be built in, such as exhausting and 
subjective feature extraction from either the time domain or the 
frequency domain, feature selection by ranking them with statistical 
tests. Although recently deep learning models for HFOs detection 
without any issues as above, time-consuming tasks for manually 
labeling pHFOs events to train supervised deep learning model is still 
ineluctable, as reported in (12) and one of our previous work (13).

We develop an unsupervised method for automatically detecting 
and characterizing HFOs in iEEG signals. Leveraging advancements in 
machine learning and signal processing, our approach aims to streamline 
the identification of HFOs while ensuring accuracy and reproducibility. 
Specifically, we  propose a novel framework that integrates a 
convolutional variational auto encoder (CVAE) model with the short-
term energy method (STE) to analyze two-dimensional time-frequency 
representations of iEEG signals. Through unsupervised feature 
extraction and clustering techniques, our method seeks to enhance the 
efficiency and objectivity of HFOs detection, facilitating precise 
localization of the EZ and guiding surgical resection planning. By 
evaluating the performance of our automated approach on a diverse 
dataset of clinical iEEG recordings from patients with medically 
intractable epilepsy, we aim to demonstrate its potential as a valuable tool 
for neurosurgeons and epileptologists in the management of epilepsy.

2 Materials and methods

The proposed automatic HFOs detector in terms of its 2D time-
frequency map, which is based on the CAVE model together with the 
STE method 2D CNN (Figure 1).

2.1 Clinical dataset

Five consecutive patients with medically intractable epilepsy were 
involved in the study. For each patient, pre-surgical monitoring was 
performed in the epilepsy monitoring unit of the Department of 
Neurosurgery, West China Hospital, Chengdu, Sichuan Province, 
China. this hospital. And, the classification of postoperative outcomes 
for epilepsy surgery of each patient was given according to Engel’s score, 
including Class I: free from disabling seizures; Class II: Rare disabling 
seizures (almost seizure free), Class III: worthwhile improvement, Class 
IV: No worthwhile improvement. Follow-up of all patients was >1 year.

Specifically, around 46–110 intracranial EEG electrodes formatted 
in subdural silastic grids were implanted on the cortical surface of every 
patient for a continuous EEG recording, as shown in Table 1. All raw 
iEEG data included in this study conformed to the same characteristics: 
the continuous duration of recordings was greater than 2 h in the awake 
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state, the sampling rate was 4,096 Hz, the data were recorded by using 
a subdural silastic grid with 46–110 electrodes in 4 mm diameter 
electrode contracts and 10 mm inter-electrode spacing with XLTEK 
EMU128FS system (Natus Neurology, USA), and no hardware filters 
were used during data acquisition (13). Five patients with refractory 
epilepsy were screened according to the criteria and recorded for a total 
of 14 h. Note that not all electrode channels are available, where totally 
corrupted channels with artifacts and noise enormous amplitudes due 
to improper patient movement were excluded. All patients signed the 
consent form, and the ethics committee [2022-IRB Review (9)] on 
biomedical research at West China Hospital of Sichuan University, 
China, approved the proposed study.

2.2 Data pre-processing and initial 
detection of suspected HFOs

In this study, to adapt to data filtering and pre-screening HFOs, 
all collected iEEG recordings were firstly down-sampled to 2,560 Hz. 

Then, each iEEG recording war is cut into segments with a length of 
150 ms for further data preprocessing. Moreover, each segment was 
pre-processed by a 50 Hz multi-notch filter and a 4th order Butterworth 
band pass filter (80–500 Hz) so as to remove power frequency 
interference and other electrophysiological signal interference in EEG 
signals, respectively. Subsequently, the short time energy (STE) per 
frame was calculated from the filtered iEEG data using a 10 ms sliding 
window (14). The mathematical expression of the STE are mentioned 
in Equation 1:

 
( ) ( )2

1

1 t

k t N
E t x k

N
∗

= − +
= ∑

 
(1)

Where, E*(t) is the short-term energy of the frame, starting at t. 
x(k) is the kth point of pHFO, and N is the number of sample points 
contained in the frame. STE defines a threshold that exceeds 3 times 
the standard deviation (SD) of the mean of the STE signal. The 
150 ms raw iEEG signal segment was identified as pHFO when the 

FIGURE 1

Schematic diagram of the proposed HFOs detector using the convolutional variational automatic encoder (CVAE) model (F) fed by a two-dimensional 
time-frequency map (E) of intracranial electroencephalogram (iEEG) signals (B), which were recorded by intracranial EEG electrodes (A) and 
subsequently pre-processed by digital filters (C), noted that the short time energy of each segment was calculated for an initial detection of suspected 
HFOs (D).

TABLE 1 Intracranial EEG recording in patients with medically intractable epilepsy.

Patient No., 
Gender

Patient Age 
(year)

Pathology 
Diagnosis

Implantation Sites No. of 
Selected/Total 
Channels (n)

Recording 
Length in 

Awake State 
(hrs)

Engel 
Class 
(year)

Pt1, Male 26 FCD LTOL, RFTPL 66 (84) 4 II (2)

Pt2, Female 19 DG LFTPL 54 (74) 3 III(1.4)

Pt3, Male 20 No excision RTP 90 (110) 3 IV

Pt4, Male 23 HS LATL 24 (84) 2 I(2)

Pt5, Female 54 LGG BTL 38 (46) 2 IV(1)

FCD, Focal Cortical Dysplasia; DG, Dense Gliosis; HS, Hippocampal Sclerosis; LGG, Low Grade Glioma; LTOL, Left Temporal Occipital Lobe; RFTPL, Right Frontal Temporal Parietal Lobe; 
LFTPL, Left Frontal Temporal Parietal Lobe; RTP, Right Temporoparietal Pillow; LATL, Left Anterior Temporal Lobe; BTL, Bilateral Temporal Lobe.
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STE values for three consecutive frames all exceeded the defined 
threshold. The center of pHFOs is located in the middle of these 
three adjacent segments. The STE estimation threshold E0 is 
mentioned in Equation 2 below:

 0 avE E k SD∗= +  (2)

Where. k is the weight of SD, and Eav is the average of STE. The 
parameter k needs to be tuned to strike a balance between the higher 
sensitivity of the STE estimator and fewer falsely detected HFOs events.

In this work, the method of STE was designed as an initial 
detection of HFOs for rapidly selecting all candidate HFOs with 
lower cost of computation in raw iEEG in this study, as we know that 
it would take lot of time for the subsequent CNN classifier if all of raw 
iEEG data are directly input in terms of 2D time-frequency map. So, 
the value of the parameter k is set for an initial detector with a high 
sensitivity and a low specificity so as to find all suspicious HFOs or 
100% of the HFOs with respect to the gold standard data. In this 
work, the k value was specifically set as 5, and a total of 4,042 
fragments are obtained by applying STE estimation.

2.3 Feature extraction based on 
time-frequency analysis

Feature extraction and continuous wavelet transform (CWT) are 
the main time-frequency analysis methods used in previous studies of 
HFOs (15). Feature extraction in the time and frequency domains 
reduces 1D iEEG signals to feature scalars, while CWT delineates 1D 
iEEG signals on a 2D TFM, as shown.

To preserve the complete information contained in pHFO 
events, we employ the analytic Morse CWT function to generate 
TFM (16). Compared with other commonly used time-frequency 
representations, such as Morlet wavelets and derivatives of 
Gaussian wavelets, analytical Morse wavelets are more suitable for 
describing specific time and frequency components (17). In this 
study, each TFM is formatted as a color map with the size of 
875 × 656, which is a calculated energy scale plot that highlights 
the dominant frequency components on the time scale in red. 

Through in-depth observation, we  found that pHFOs can 
be divided into real HFOs segments and non HFOs segments such 
as spikes and artifacts. Figure 2 shows examples of the obtained 
TFM pHFOs.

Moreover, this study employed the gold standard for the 
detection of HFOs (18). And two neuro-electrophysiologists 
recognized each suspected HFO in terms of TFM accordingly as a 
real HFO or a non-HFO with the help of our custom designed GUI 
software on the basis of MATLAB software package (Mathworks, 
Natick, MA), as the 2D time-frequency map has demonstrated to be a 
promising approach to distinguish valid HFOs among background 
(6). Specifically, real HFOs event is represented obviously by an 
isolated island phenomenon in its time-frequency map, while such 
island phenomenon cannot be found for false HFOs such as spike 
and artifact, as shown in Figures 2a–d. Therefore, each TFM could 
be marked visually as HFOs or not clearly when the doctor inspected 
iEEG data.

It should be noted that all labeled TFMs were used only to 
evaluate the proposed method’s performance and train other 
existing supervised detectors in our comparative experiments. 
Finally, a total of 4,042 TFMs were recognized visually as 1,611 real 
HFOs and 2,431 non-HFOs (including 1,627 spikes and 804 
noises). Importantly, each visual recognition of HFOs in terms of 
TFM not only depends on morphological differences between 
pHFOs but also utilizes the dominant frequency components 
colored by red pixels. Since the TFM of HFOs presents red islands, 
it is easy to distinguish Rs and FRs from erroneously detected 
HFOs. Therefore, The TFM is decomposed into three grayscale 
images representing the red, green, and blue channels of the TFM 
in this study. Furthermore, we extracted the red channel of TFM 
and considered it as a surrogate for TFM, named R-TFM in the 
work. Note that this intuitively simple but fairly efficient process 
serves several purposes, including reducing dimensionality and 
improving detection performance.

2.4 CVAE-based HFOs detector

CVAE is an improvement over traditional auto encoders. It uses 
convolutional and pooling layers instead of the original fully 

FIGURE 2

Examples of the time-frequency maps of pHFOs groups including (a) real HFOs segments, (b) non HFOs segments (c) spike, and (d) artifact.
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connected layers, which are more efficient for images (19, 20). The 
proposed CVAE detector in this work is shown in Figure  3. 
We trained CVAE to remove noise in R-TFM and extract high-level 
features. Supposed X = (Xij, i < m and j < n), The method uses an 
encoder to obtain the overall posterior inference of the R-TFM. The 
encoder contains two convolutional layers with kernel sizes (m × n) 
of 32 × 32 and 16 × 16. We introduce qΦ(Z|X) to denote the encoder, 
where Φ represents the parameters of the encoder. N stands for 
Gaussian distribution. To address the problems caused by sampling 
operations in CVAE training, we employ the reparameterization trick 
proposed by Kingma et al. (18), Rezende et al. (21), and mentioned 
in Equation 3 below:

 

( )( ) ( )
( ) ( )( )
, log

| ; ;

µ σ

µ σΦ

=

=

Encoder X

q Z X N Z diag
 

(3)

The decoder is just a mirror encoder, which uses two convolutional 
transpose layers to define the conditional distribution of X as pθ (X|Z), 
where θ denotes the parameters of the decoder. Model the latent 
distribution prior p (z) as a unit Gaussian distribution. The network 
takes Z = [z1, z2, …. zl] as input, outputs a set of parameters pθ (X|Z), 
and then uses its output to reconstruct the denoised X. Variational 
auto encoders are usually trained by maximizing the evidence lower 
bound (ELBO). To improve the potential compactness of ELBO, 
CVAE is trained by minimizing the ELBO loss, which is defined as 
(21) and Equation 4 below:
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,
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(4)

Since the classification mechanism of R-TFM is relatively 
simple, easy to implement, and has a fast convergence speed, the 
K-means algorithm is used to classify it. Specifically, the 
reconstructed R-TFM is expanded into the array by vectorising the 
pixel matrix in a column-wise style (22). The K-means algorithm 
takes a vectorized version of the reconstructed R-TFM (size 64 × 64) 
as input and divides the reconstructed R-TFM into four groups 
(K = 4).

To assign these four sets of reconstructed R-TFMs to specific 
pHFOs classes (R, FR, spikes, and artifacts), we employed an HFOs 
distinguishing feature called the spectral centroid (SC), which is in the 
HFOs class Medium larger (8). SC denotes the frequency 
corresponding to the spectral centroid of the input data, which in our 
work are pHFOs (Equation 5):
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(5)

Where, T is the sampling period, and N is the number of sampling 
points in the pHFOs. M[k] is the multiuser power spectral density 
estimate, mentioned in Equation 6 below:

 
[ ] [ ] [ ] ( )1

2 /

0
, 0,1,2 ,

N
j N nk

n
M k w n x n e k Nπ

−
−

=
= = …∑

 
(6)

Where, w[n] and x[n] are Hamming windows and pHFOs, 
respectively. For each cluster of reconstructed R-TFM, its SCs were 
calculated with its corresponding pHFOs.

2.5 Evaluation of the proposed CAVE 
detector

The ground-truth labels of the TFM dataset are used to 
evaluate the performance of the CVAE based HFOs detector using 
a fivefold cross-validation. True positives (TP), true negatives 
(TN), false positives (FP), and false negatives (FN) are evaluated 
by comparing predicted labels with ground truth labels. TP 
represents the number of pHFOs correctly classified as HFOs (Rs 
and FRs), and TN represents the number of pHFOs correctly 
classified as falsely detected HFOs (spikes and artifacts). The 
mathematical expression of the evaluation methods (23, 24) are 
mentioned in Equations 7–9:

FIGURE 3

The proposed convolutional variational auto-encoder model framework.
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TABLE 3 Classification results using unsupervised machine learning models.

Unsupervised Machine Learning 
Model

Accuracy (%) Sensitivity (%) Specificity (%)

Mean-shift 85.81 71.86 95.15

K-means 91.20 87.54 93.70

GMM 85.84 71.88 95.18

FCM 92.22 92.77 91.47

 

TP TNAccuracy
TP TN FP FN

+
=

+ + +  
(7)

 

TPSensitivity
TP FN

=
+  

(8)

 

TNSpecificity
TN FP

=
+  

(9)

3 Results

Our study’s main steps are preprocessing, initial detection of 
suspected HFOs, feature extraction, and algorithm implementation. 
To verify the effect of the deep unsupervised model proposed in this 
study, we  used two supervised algorithms including K-nearest 
neighbor (KNN) (25) and support vector machine (SVM) (26, 27) to 
classify R-TFM and then used four unsupervised algorithms currently 
commonly used in HFOs automatic detection to cluster R-TFM (size 
64 × 64) analysis and comparison. Specifically, these unsupervised 
algorithms include the mean-shift algorithm, K-means algorithm, 
GMM algorithm, and FCM algorithm. At the same time, we compared 
the clustering performance of the model without CVAE reconstruction 
and after CVAE reconstruction to verify the reconstruction effect on 
the same clinical dataset as mentioned above. For the proposed model 
of CVAE, trainings with various parameters are a time-consuming 
process. However, the training process can be carried out off-line. In 
this study, the proposed unsupervised CVAE by using 2D TFMs as 
input can be trained in less than 20 min. As for the testing process, 
several experiments as mentioned above were performed on the 
recorded 14 h clinic iEEG data, and it was revealed approximately that 
the testing process is about 1 ms for one sample of 150 ms data.

In this study, the designed CAVE model ran on the deep learning 
framework Tensorflow 2.2 in the Microsoft Windows 10 operating 
system. All experiments including model training and test were 

conducted on a desktop computer with an Intel i9-10900K with 32 GB 
memory and an NVIDIA RTX-2070 GPU with 8 GB memory. Both 
of them ran on converted two dimensional images from ECG signal 
by using various wavelet or Fourier transform.

3.1 Classification results using supervised 
machine learning models

In this study, two commonly used machine learning algorithms 
including KNN and SVM were used firstly to classify the R-TFM 
dataset, whose performances were used as a reference to further 
evaluate the CVAE based unsupervised model proposed in this work. 
As there two algorithms are supervised algorithms, the R-TFM of each 
pHFOs accompanying its label both are fed into the model, where all 
of real HFOs events including Rs and FRs are marked as a positive 
sample (1) whereas both Spikes and artifacts marked as a negative 
sample (0). Noted that the use of different kernel functions has an 
impact on the classification results of SVM.

As shown in Table 2, classification performances of the KNN 
model and the SVM model with three different kernel functions, such 
as linear kernel, polynomial kernel, and Gaussian kernel, are obtained 
in an average value in terms of the accuracy, sensitivity, and specificity, 
respectively. It can be seen that when classifying HFOs, the specificity 
of the KNN is higher than that of the SVM, while the sensitivity of the 
SVM is generally higher than that of the KNN. Moreover, the SVM 
model could achieve the optimal effect when using the Gaussian 
kernel function for classification.

3.2 Classification results using 
unsupervised machine learning models

In this study, four unsupervised models including mean-shift, 
K-means, GMM, and FCM were evaluated separately to perform 
HFOs cluster analysis on the R-TFM dataset. Table  3 shows the 
obtained performances of each unsupervised algorithm in terms of 
accuracy, sensitivity, and specificity, respectively.

TABLE 2 Classification results using supervised machine learning models.

Supervised Machine 
Learning Model

Accuracy (%) Sensitivity (%) Specificity (%)

KNN 89.87 86.22 93.64

SVM Linear kernel 89.61 93.60 86.24

SVM Polynomial kernel 88.93 90.39 85.58

SVM Gaussian kernel 90.08 93.67 86.27
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In comparison with supervised models as shown in the Table 2, 
all evaluated unsupervised models can generally achieve higher 
specificity as shown in Table  3, whereas a lower sensitivity could 
be observed in unsupervised models except the FCM one. Moreover, 
a comprehensive analysis of all indicators shows that FCM performs 
well in terms of accuracy, sensitivity, and specificity, with an average 
index of 92.15%. Consequently, compared with supervised algorithms 
as mentioned above, unsupervised algorithms do not need to input 
the labels of R-TFM datasets. Unsupervised algorithms can learn the 
characteristics of the data and cluster data with similar characteristics 
into a group. On the other hand, unsupervised algorithms measure 
across the entire dataset, so there is no need to train the model with 
cross-validation. As such, the FCM algorithm would be the optimal 
clustering model for HFOs detection.

3.3 Classification results using proposed 
CVAE model on reconstructed dataset

The proposed CVAE model was employed before cluster analysis 
so as to train the R-TFM dataset. Table  4 shows the obtained 
performance of HFOs classification using the proposed CVAE model 
together with four unsupervised algorithms described above on the 
reconstructed R-TFM dataset. It should be noted that 200 epochs were 
adopted as the maximum training epoch in this work so as to ensure 
the convergence of the network, because we found the loss of CVAE 
stopped decreasing after 200 epochs of training in our preliminary 
experiment, Compared to performances of an automated HFOs 
classification of both supervised and unsupervised models as shown 
Tables 2, 3, respectively, it can be found that all indicators of methods 

with the proposed CVAE model shown in Table 4 are superior in this 
work. Importantly, the FCM algorithm after CVAE training shows the 
highest performance among with four CVAE based clustering models, 
where the performances of in term of accuracy, sensitivity, and 
specificity are 93.02, 94.48, and 92.06%, respectively. It demonstrates 
clearly that that using the CVAE model for feature reconstruction 
combined with the unsupervised FCM clustering algorithm could 
achieve a superior performance of HFOs detection.

3.4 Classification results using FCM 
clustering on TFM, R-TFM, reconstructed 
R-TFM datasets

Additionally, one more evaluation of the unsupervised FCM 
clustering algorithm on various datasets was performed in this 
work including the TFM, the R-TFM, and the reconstructed 
R-TFM datasets, as shown in Table 5. We could find that there is an 
obvious improvement of classification performance of FCM 
clustering on the reconstructed T-TFM dataset in comparison to 
those on either the TFM or R-TFM datasets. Specifically, the 
obtained sensitivity of FCM clustering on the reconstructed R-TFM 
dataset is nearly 11% higher than that on the R-TFM dataset. In 
summary, the effectiveness of R-TFM reconstruction from original 
EEG data with the proposed CVAE model would be clear for an 
unsupervised FCM clustering to achieve a more accurate 
classification of HFOs in patients with epilepsy. Meanwhile, it 
should be  noted that the classification performance of the 
unsupervised FCM model was found to be sensitive to the various 
latent layers and training epochs, as shown in Table 6. In this study, 

TABLE 4 Classification results using proposed CVAE models on reconstructed dataset.

Models Accuracy (%) Sensitivity (%) Specificity (%)

CVAE + Mean-shift 91.05 85.51 94.64

CVAE + K-means 92.85 93.91 92.14

CVAE + GMM 86.78 75.08 90.89

CVAE + FCM 93.02 94.48 92.06

TABLE 5 Classification results of the unsupervised FCM model on various datasets.

Models Datasets Accuracy (%) Sensitivity (%) Specificity (%)

FCM TFM 80.13 76.28 82.68

FCM R-TFM 92.22 92.77 91.47

FCM Reconstructed R-TFM 93.02 94.48 92.06

TABLE 6 Classification results of the unsupervised FCM model with various latent layers and training epochs.

latent 
layers (l)

epoch = 100 epoch = 150 epoch = 200

Acc (%) Sen (%) Sp (%) Acc (%) Sen (%) Sp (%) Acc (%) Sen (%) Sp (%)

10 90.03 93.44 89.05 93.39 94.41 92.72 92.58 94.35 91.40

20 91.13 93.91 91.24 92.26 93.79 91.24 92.45 94.29 91.24

30 91.87 92.99 93.25 92.87 94.29 91.94 92.62 94.23 91.57

40 90.65 94.00 91.94 92.13 93.73 91.07 92.53 94.58 91.20

50 91.19 93.74 89.56 92.40 93.67 91.57 93.02 94.48 92.06
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the R-TFM dataset was input into the CVAE for training. When the 
number of training epochs exceeded 200, the loss of the CVAE 
model stopped decreasing. Therefore, the maximum number of 
training epochs was set to 200 and a higher performance could 
be  determined by using fifty latent layers of the unsupervised 
FCM model.

4 Discussion

This study explores the application effect of a deep unsupervised 
algorithm in the automatic detection of HFOs signals and accordingly 
proposes an unsupervised clustering algorithm for HFOs detection 
based on CVAE model, which achieves a good performance in the 
automated detection of HFOs. Most of HFOs automatic detection 
algorithms that have been reported thus far are based on supervised 
learning. After obtaining the suspected HFOs signals from the EEG 
data, these methods still need to manually label them to assist them in 
training their machine learning model. This process is laborious, time-
consuming, and prone to human interference. On the other hand, 
traditional unsupervised machine learning methods require the 
features of the input data as the basis for judgment. Therefore, 
researchers must analyze the HFOs signals before inputting the 
clustering model and perform feature extraction. The process of 
feature extraction is often vulnerable to prior knowledge. The impact 
leads to inaccurate feature extraction and affects the final model 
performance. Based on this, the algorithm proposed in this paper does 
not require label-assisted model training and automatically classifies 
data with similar characteristics in the database into one category. At 
the same time, the model combined with deep learning algorithms can 
automatically extract the characteristics of the input signal without 
manual operation, reducing the need for manual operations. The 
effect of prior knowledge of the process.

For research on the automatic detection of HFOs, most researchers 
currently use supervised models, and fewer unsupervised models are 
used. This study explores the application of deep unsupervised models 
in the automatic detection of HFOs, and its performance even exceeds 

that of traditional supervised models. With unsupervised algorithms. 
Specifically, comparing Tables 2, 3, we  find that when using the 
traditional unsupervised model to detect HFOs automatically, the 
performance indicators are close to those of the supervised model but 
still slightly inferior to those of the supervised model. Comparing 
Tables 4, 5, it can be  found that we  used the clustering model to 
analyze the dataset after CVAE training, and each performance index 
increased. Metrics are already surpassed by supervised algorithms. It 
should be noted that the presented study still has been suffering from 
false positives introduced by noise, epileptic spikes, and other 
oscillatory events that contain harmonics, which resulted in a 
decreased performance by several percent in either the sensitivity or 
the specificity, as shown in Table 5. Two Examples of false HFOs were 
shown in Figure 4, where a spike and a noise were both detected as 
HFOs. As such HFOs detection techniques have been widely discussed 
over recent 10 years as mentioned above, ongoing studies of the new 
biomarker of HFOs events would be meaningful for our currently 
limited understanding of the mechanism of epilepsy.

4.1 Comparison between previously 
reported and proposed methods

In the presented work, the motivation was to propose a novel 
unsupervised method using only two convolutional layers for 
encoders and decoders of the proposed CAVE model together with an 
initial detector of the STE detector to quickly distinguish HFOs 
segments from non HFOs such as spikes and artefacts, the structure 
of which is much simpler and straightforward than that of a 
sophisticated HFOs detection algorithm recently reported in (4) 
where the complex ResNet54 were used as the backbone for encoders 
and decoders. Moreover, the correspondingly obtained performance 
was therefore comprised those of recently reported supervised and 
unsupervised methods as cited references (5, 7, 19, 20, 28) as shown 
in Table 7, where all a binary classification of iEEG segments between 
of real HFOs and non HFOs was performed. Additionally, it should 
be noted that we mixed all pHFOs segments in one datasets and used 

FIGURE 4

Two Examples of false HFOs: (a) a spike was detected as HFOs (Top: a spike without HFOs. Bottom: the time-frequency map of the spike). (b) A noise 
was detected as HFOs (Top: High-frequency noise signal. Bottom: the time-frequency map of the high-frequency noise).

https://doi.org/10.3389/fneur.2025.1455613
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Chen et al. 10.3389/fneur.2025.1455613

Frontiers in Neurology 09 frontiersin.org

a 5-fold cross validation rather than leave one subject in this work. The 
main reason why we used such cross-validation framework to evaluate 
the performance of our algorithm was of an engineering side so as to 
conduct an impartial comparison of performance reported by other 
studies, where a similar cross-validation framework was also employed 
as shown in references (5, 7, 19, 20, 28) in Table 7.

Specifically, According to references as described in Table  7. 
We reproduced five different algorithms for automatic HFOs detection 
and evaluated on the same clinical dataset collected in this work, 
including two supervised methods (19, 28) and two unsupervised 
methods (5, 7), and one more supervised deep learning algorithm 
using 2D-CNN (20). Compared with previous supervised machine 
learning models such as SVM and Neural networks reported in (19, 
28). The method presented in this study does not require manual 
feature extraction and/or feature selection. Meanwhile, two traditional 
unsupervised algorithms including the K-means model (5) and the 
expectation–maximization-Gaussian mixture model (EM-GMM) 
were also reproduced in this work. However, their relatively lower 
performance in clustering HFOs would be an obstacle to their wide 
acceptance in comparison to the proposed method, which uses a novel 
deep neural network of the CVAE model.

4.2 Applications of the proposed study

Epilepsy is one of the most frequent chronic neurological 
diseases affecting an estimated number of 65 million people of 
worldwide and occurs in all age ranges (29). In clinical, pre-surgery, 
accurate localization of the epileptic foci in the patient being 
resistant to drug treatment is considered to be the key to successful 
surgical resection. However, identifying this brain region is 
challenging, as it is usually determined by trained clinicians through 
visual inspection of the massive intracranial electroencephalography 
(iEEG) data along with synchronized video, and there is no 
diagnostic modality available today to measure the epileptogenic 
zone directly. As HFOs in intracranial electroencephalograms have 
been proven recently to be a reliable biomarker of the epileptic foci, 
the concentrations of detected HFOs could be  useful to localize 
epileptic zones in the pre-surgery iEEG signal analysis. With a deep 
CVAE model-based FCM clustering analysis in this work, the 
proposed method could automatically analyze iEEG signals in terms 
of a more informative representation of TFM and has the advantages 
of detecting HFOs and avoiding false detection caused by spikes and 

artifacts. By automatically detecting HFOs from the zone of seizure 
onset or at least estimating a region of interest containing or closed 
to the epileptogenic zone before the surgery procedure, the 
investigated unsupervised deep learning-based iEEG analysis 
technique would provide a useful and applicable pre-surgery 
guideline for the operator, and potentially reduce the time needed 
for long-term recording and manual inspection.

4.3 Limitations of the proposed study

This study also has some limitations. Due to the difficulty in 
collecting intracranial EEG signals, it is difficult for the patients in 
this study to cover multiple age groups and a variety of clinical 
symptoms. Therefore, it is necessary to continuously collect 
intracranial EEG data from epilepsy patients and expand patient 
data in our future work, and a larger and more diverse dataset with 
the leave-one-subject evaluation approach would strengthen our 
conclusions. Different clinical onset symptoms will be included to 
increase the generalization power of the model (30, 31). Meanwhile, 
further exploring subcategories of HFOs such as ripples 
(80–250 Hz) and fast ripples (250–500 Hz) (20, 32) as well as the 
use of recently reported explainable AI (XAI) techniques (33) in the 
unsupervised model would be meaningful, which could provide 
engineers with insights into how the model reconstructs the features 
and provide clinicians with insights into the underlying 
decision processes.

5 Conclusion

In this paper, we develop an automatic CVAE-based detector for 
unsupervised HFOs. For the first time, the deep learning models 
CVAE and 2D R-TFM are applied to HFOs detection. Extracting the 
red channel of the TFM can remove redundant information and 
capture salient features in the TFM. Furthermore, we use CVAE to 
perform automatic high-level feature extraction and reconstruction 
on the input features of the R-TFM dataset. Comprised of traditional 
supervised and other existing detectors for HFOs, a large number of 
comparative experiments are conducted to verify the effectiveness of 
the combination of the STE and CVAE. The superiority of our 
proposed detector with the best trained CVAE structure shows an 
advanced feature extraction as well as dimensionality reduction of 

TABLE 7 Comparison of performance among of previously reported and proposed methods for automated detection of HFOs.

Reference Methods Accuracy (%) Sensitivity (%) Specificity (%)

Dümpelmann et al. (19) Supervised Neural network 79.64 68.40 87.08

Liu et al. (5) Unsupervised K-means 89.00 66.00 93.00

Jrad et al. (28) Supervised SVM 85.06 83.80 85.89

Wu et al. (7)
Unsupervised EM-GMM 

based FCM
82.93 74.61 88.44

Ma et al. (20) Supervised 2D-CNN 91.26 78.65 99.62

Proposed Study
Unsupervised CVAE based 

FCM
93.02 94.48 92.06

Moreover, we also found that a 2D-CNN model reported in (20) shows a relatively higher specificity with an obvious decrease in sensitivity compared with those of the proposed method. In 
conclusion, the comparison shows that our CVAE-based FCM clustering method provides a better performance of HFO classification in terms of accuracy than five existing detectors.
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EEG data by avoiding the need to handcraft or select features and 
manual annotation training manually, and thus would potentially 
serve to provide a clinically useful tool.
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