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Objective: To investigate the altered characteristics of cortical morphology 
and individual-based morphological brain networks in type 2 diabetes mellitus 
(T2DM), as well as the neural network mechanisms underlying cognitive 
impairment in T2DM.

Methods: A total of 150 T2DM patients and 130 healthy controls (HCs) were 
recruited in this study. The study used voxel- and surface-based morphometric 
analyses to investigate morphological alterations (including gray matter volume, 
cortical thickness, cortical surface area, and localized gyrus index) in the brains 
of T2DM patients. Then two methods, Jensen-Shannon divergence-based 
similarities (JSDs) and Kullback–Leibler divergence-based similarities (KLDs), 
were used to construct individual morphometric brain networks based on gray 
matter volume, to discover altered features of the topological network and 
extract abnormal key brain regions. Subsequently, partial correlation analyses 
were performed to explore the relationship between clinical biochemical indices, 
neuropsychological test scores, and altered cortical morphology and network 
indices.

Results: Brain regions with reduced gray matter volume and cortical thickness 
in T2DM patients were mainly concentrated in the frontal lobe, temporal lobe, 
parietal lobe, anterior cingulate gyrus, insula, lingual gyrus, and cerebellar 
hemispheres. The global attributes of the Individual-based morphological brain 
network were significantly reduced (Cp, Eloc, σ), with an increase in the nodal 
efficiency of the hippocampus and the nodal local efficiency of the anterior 
cingulate gyrus, and the nodal local efficiency of the parahippocampal gyrus 
and transverse temporal gyrus were reduced. There was a correlation between 
these node attributes and cognitive scale scores.

Conclusion: This study demonstrated that patients with T2DM exhibit generalized 
cortical atrophy and damage to individual morphologic brain networks. It also 
identified overlapping and cognitively relevant key brain regions, primarily 
within the limbic/paralimbic network (especially the hippocampus and cingulate 
gyrus), which may serve as imaging markers for identifying cognitive deficits in 
T2DM. These findings offer new insights into the neural network mechanisms 
underlying T2DM-associated brain damage and cognitive impairment.
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1 Introduction

Diabetes mellitus, a serious chronic disease, is characterized by 
elevated blood glucose concentrations associated with islet β-cell 
dysfunction (1). The global incidence of diabetes is escalating rapidly, 
with projections indicating a dramatic rise to 1.31 billion affected 
individuals by 2050, and prevalence exceeding 10% in some regions, 
predominantly driven by type 2 diabetes mellitus (T2DM), which 
constitutes over 95% of diagnosed cases (2, 3). This escalating health 
crisis poses significant challenges to human well-being and 
economic stability.

T2DM can lead to multi-system damage (4), including brain 
disorders such as stroke, depression, cognitive dysfunction, and 
dementia, which are considered important complications of T2DM 
(5). Diabetes mellitus is a risk factor for the development of dementia 
(6–8), with some studies suggesting that the risk of cognitive 
dysfunction in patients with type 2 diabetes mellitus is 1.5 to 2.0 
times higher than that of non-diabetic patients (9, 10). Early 
identification of cognitive deficits in T2DM and timely intervention 
can reduce the number of people developing dementia (11). 
Consequently, exploring the neurobiological underpinnings of 
cognitive impairments in T2DM is essential for facilitating timely 
clinical identification and targeted interventions.

In recent years, many neuroimaging studies have revealed 
alterations in local gray matter microstructure and neural activity in 
T2DM (12, 13). Common cortical morphology research methods 
mainly include voxel-based and surface-based morphology (VBM 
and SBM). Some studies have suggested that VBM and SBM should 
be used simultaneously as complementary methods for detecting 
cortical morphology changes to obtain more information (14). It has 
also been found that T2DM is associated with large-scale brain 
network abnormalities (15). The brain is a highly efficient and 
interconnected network system, and more information can 
be  discovered by constructing neural networks. Studies utilizing 
functional magnetic resonance imaging (fMRI) (16–18) and diffusion 
MRI (DTI) have revealed changes in the topological properties of 
brain networks in T2DM (15, 19).

Beyond the two types of networks mentioned, morphological 
brain networks derived from structural MRI data offer a 
complementary approach to probing human brain network 
characteristics. However, the traditional structural covariance 
network is based on the structural information (gray matter volume 
or cortical thickness, etc.) of a group of people to construct a 
network, which can only reflect the group-level brain morphological 
characteristics and neglects the inter-individual variability. This 
restricts its application to the investigation of brain structure in 
terms of individual variability, especially in identifying structural 
brain abnormalities in a single patient. The recently proposed 
individual-level morphological similarity network approach can 
effectively resolve the above limitations (20). This method employs 
Jensen–Shannon divergence-based similarity (JSDs) to quantify the 
morphological similarity between distinct brain regions (21), 

offering a personalized assessment. This approach has been widely 
applied to many disorders, including depression (22), rolandic 
epilepsy (23), attention deficit hyperactivity disorder (24), and spinal 
cerebellar ataxia (25). As far as we  all know, the application of 
structural MRI-based individual-level morphological network 
analysis for investigating brain network alterations in T2DM 
remains unreported.

In the present study, we aimed to characterize the altered brain 
cortical morphology in T2DM patients based on VBM and SBM 
analysis, to explore the topological changes in Individual-based 
morphological brain network in T2DM, to identify the key brain 
regions from them, and to investigate further these changes about 
clinical indicators and cognitive correlations.

2 Materials and methods

2.1 Participants

In this investigation, patients diagnosed with T2DM were 
enrolled in the Department of Endocrinology at the First Affiliated 
Hospital of Guangzhou University of Traditional Chinese Medicine 
between October 2021 and December 2023. The diagnosis of T2DM 
adhered to the criteria established by the American Diabetes 
Association (26). Concurrently, we selected healthy controls (HCs) 
from the community, ensuring they were age-, gender-, and 
education-level-matched to the T2DM cohort. The age range for all 
participants was confined to 35 to 70 years, and all were 
right-handed.

Exclusion criteria for all participants included (1) any other 
neurological or psychiatric disorders such as epilepsy, depression, 
and so on; (2) the presence of endocrine disorders such as 
hyperthyroidism, hypothyroidism, Cushing’s syndrome, etc.; (3) 
significant parenchymal brain lesions including cerebral hemorrhage, 
cerebral ischemic stroke, or brain tumors; (4) left-handedness; and 
(5) contraindications to MRI scanning.

Conclusively, the study enrolled 150 patients with T2DM and 130 
healthy participants. Ethical approval for the research was secured 
from the Medical Research Ethics Committee of our hospital, with all 
participants furnishing written informed consent before their 
engagement in the study protocol.

2.2 Clinical and neuropsychological 
measurements

We systematically recorded height, weight, body mass index 
(BMI), and arterial blood pressure in all subjects. In addition, 
we  recorded the duration of the disease in patients with 
T2DM. Comprehensive laboratory assessments including glycosylated 
hemoglobin (HbA1c), fasting blood glucose (FBG), fasting insulin 
(FINS), total cholesterol (TC), triglycerides (TG), and low-density 
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lipoprotein (LDL) were performed in patients with T2DM and healthy 
participants. The Homeostasis Model Assessment of Insulin Resistance 
(HOMA-IR) was calculated as HOMA-IR = [FINS (μIU/mL)] × [FBG 
(mmol/L)] / 22.5.

Furthermore, all participants underwent a battery of cognitive 
evaluations, comprising the Montreal Cognitive Assessment (MoCA) 
(27), Mini-Mental State Examination (MMSE) (28), Auditory Verbal 
Learning Test (AVLT) (29), Grooved Pegboard Test (GPT) (30), Digit 
Span Test (DST) (31), Clock Drawing Test (CDT) (32), Digit Symbol 
Substitution Test (DSST) (33), and Trailblazer Test-A (TMT) (34).

2.3 MRI data acquisition

MRI data acquisition was performed utilizing a Siemens 
MAGNETOM Prisma 3.0 Tesla MRI scanner equipped with a 
64-channel head coil. T2-weighted and T2-FLAIR imaging sequences 
were employed for the detection and exclusion of organic brain 
lesions. The 3D T1-weighted imaging (T1WI) sequence parameters 
for neuroimaging analysis were as follows: inversion time of 1,100 ms, 
repetition time of 2,530 ms, echo time of 2.98 ms, flip angle of 7°, field 
of view of 256 × 256 mm2, slice thickness of 1.0 mm, 192 slices 
acquired, and voxel dimensions of 1.0 × 1.0 × 1.0 mm3. Participants 
were directed to keep their eyes closed and remain conscious 
throughout the scanning procedure.

2.4 Data processing

Voxel-based morphometry analysis (VBM) was conducted using 
the Computational Anatomy Toolbox 12 (CAT12)1 within the 
Statistical Parametric Mapping 12 (SPM 12)2 framework. The 
analytical pipeline commenced with quality assurance of the image 
datasets, followed by spatial normalization to the Montreal 
Neurological Institute (MNI) space. Subsequently, the images were 
segmented into gray matter (GM), white matter (WM), and 
cerebrospinal fluid compartments. Jacobian modulation was applied 
to generate GM volume maps, which were subsequently smoothed 
with an isotropic Gaussian kernel (half-width at half-
maximum = 6 mm) for statistical analysis. Finally, a report was 
generated containing a weighted average rating (IQR) of the image 
quality, with an IQR score greater than 80, considering the image to 
be of good quality.

Surface-based morphological analysis (SBM) was computed on 
T1-weighted MRI data using FreeSurfer version 7.3.2.3 The main steps 
included motion correction, cranial stripping, field anisotropy 
correction, alignment in Talairach coordinate space, etc. The cortex 
was segmented into 68 brain regions using the Desikan-Killiany atlas 
(DK68), and the cortical thickness, surface area, and local gyrification 
index (LGI) were extracted and computed for each brain region of 
each subject and then smoothed using a Gaussian kernel with a full 
width at half-maximum (FWHM) of 15 mm.

1 https://www.nitrc.org/projects/cat/

2 https://www.fil.ion.ucl.ac.uk/spm/software/spm12/

3 http://surfer.nmr.mgh.harvard.edu/

2.5 Construction of an individual 
morphological brain network

Individual morphological similarity networks were constructed 
based on Matlab 2022b script files. Firstly, the brain was first 
segmented into 90 brain regions using the automated anatomical atlas 
(AAL90) (35) and each brain region was defined as a node in the 
network, the GMV values of each brain region were extracted, and 
then the similarity of the GMV distributions among the brain regions 
was calculated as the edges of the network (36). The calculation was 
performed by first calculating the probability density function of the 
90 GMV values for each subject using kernel density estimation, then 
further calculating the probability density function as a probability 
distribution function (PDF), and then quantifying the connectivity 
of the PDF morphology of the two regions using Jensen-Shannon 
divergence-based similarity (JSD) (21) to construct a 90 × 90 
similarity matrix. In addition, Kullback–Leibler divergence-based 
similarities (KLDs) (37) is another method for calculating individual 
similarity brain networks, and like JSD, both have been shown to 
be robust and sensitive methods (38), and we used the KLD method 
to test the reliability and reproducibility of the experimental results.

2.6 Network metrics

Network properties were calculated using the GRETNA toolbox4 in 
MATLAB 2022b.5 The global topological metrics encompassed the 
clustering coefficient (Cp), characteristic path length (Lp), normalized 
clustering coefficient (γ/Gamma), normalized characteristic path length 
(λ/Lambda), small-world parameters (σ/Sigma), global efficiency (Eg), 
local efficiency (Eloc). Global attributes reflect the efficiency and degree 
of integration of the network as a whole. Nodal topological metrics 
include nodal efficiency (Ne), degree centrality (DC), nodal local 
efficiency (NLe), and betweenness centrality (BC). Node attributes 
reveal the role and importance of individual nodes in the network. The 
sparsity threshold (S) is defined as the ratio of the number of available 
edges to the maximum possible number of edges. Adopting a wide 
sparsity range reduces spurious connectivity between nodes and ensures 
that the small-world index is >1.0. In our study, we set the sparsity scope 
between 0.05 and 0.4 with an interval of 0.01 (39), with a total of 36 
thresholds, and computed the area under the curve (AUC) of each 
metric within the sparsity range for subsequent statistical analyses.

2.7 Statistical analysis

The statistical analyses were performed using the Statistical 
Package for the Social Sciences (IBM SPSS 27.0) to analyze 
demographics, clinical indicators, and cognitive scale information. 
Continuous variables were tested for normality using the Shapiro–
Wilk test; parametric two-sample t-tests were used for normally 
distributed data, otherwise non-parametric tests were used. 
Categorical variables were assessed using the chi-square test, with 
statistical significance set at two-tailed p < 0.05.

4 https://www.nitrc.org/projects/gretna/

5 https://www.mathworks.com/products/new_products/release2022b.html
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Two-sample t-tests for smoothed GMV were performed using 
SPM12 with age, sex, education, and total intracranial volume 
(TIV) as covariates. The results were corrected by cluster-wise 
family-wise error (FWE) correction with p < 0.001 and cluster 
number > 521.

Statistical inferential analyses were performed using the 
FreeSurfer (7.3.2) tool and general linear modeling (GLM) was used 
for between-group comparisons. We applied a cluster-wise correction 
for multiple comparisons and Monte-Carlo simulation corrected 
cluster thresholds of p < 0.05 for bidirectional effects. Covariates 
included age, sex, and education in all models; TIV was excluded 
because it was definitively correlated with head-size scaling, but not 
with thickness (40).

A two-sample t-test based on Gretna software was used to 
compare the area under the curve (AUC) of global and nodal network 
metrics between groups, and nodal metrics were corrected using the 
false discovery rate (FDR) with a significance value of 0.05.

Finally, the partial correlation coefficient was performed to 
calculate the correlation between significant global and nodal network 
indicators, morphological changes and cognitive scores, and clinical 
indicators in the T2DM group, with age, gender, education, and TIV 
as covariates, with statistical significance indicated by p < 0.05.

3 Results

3.1 Demographic information and clinical 
characteristics

Table 1 demonstrates the demographic details, cognitive scale 
scores, and clinical profiles of 150 individuals with T2DM and 130 
healthy controls. No significant disparities in age, gender, and 
educational attainment were observed between the groups. T2DM 
patients exhibited diminished cognitive performance across the 
MoCA, MMSE, AVLT-recall, and GPT, with these differences 
attaining statistical significance (p < 0.05). Moreover, T2DM patients 
presented with elevated levels of HbA1c, FBG, TC, and FINS, all of 
which were significantly different compared to the control group 
(p < 0.05).

3.2 VBM and SBM analysis results

Gray matter volume was significantly lower in T2DM patients 
than in HCs, and these regions mainly included: the left lingual gyrus, 
the left orbitofrontal inferior gyrus, the right anterior cingulate gyrus, 
the right insula, the right orbitofrontal middle gyrus, the right rolandic 
operculum, and the cerebellar hemispheres (Table 2; Figure 1), and 
most of these brain regions were concentrated in the central control 
network. However, no regions of increased gray matter volume were 
found in patients with T2DM.

Compared with HCs, patients with T2DM showed reduced 
cortical thickness in the bilateral superior frontal gyrus, precentral 
gyrus, inferior parietal lobule, superior temporal gyrus, and right 
parietal lobule (Table  3; Figure  2). However, there were no 
statistically significant differences in cortical surface area and LGI 
between the two groups. The statistical analyses above controlled 
for age, gender, and education to minimize their impact on the 
study results.

3.3 Alterations in global profiles of 
morphological brain network

Within the defined thresholds, both T2DM and HC exhibited 
small-world topologies (γ > 1, λ ≈ 1, σ = γ/λ > 1) in the Individual-based 
morphological brain network constructed based on the JSD method. 
Compared to HC, global attributes of T2DM were significantly reduced, 
including Cp (p = 0.03), γ (p = 0.0009), σ (p = 0.02), and Eloc 
(p = 0.0009), with statistically significant between-group differences 
(p < 0.05). Although λ (p = 0.4), Eg (p = 0.0812) decreased and Lp 
(p = 0.067) increased in the T2DM group compared to HCs, the 
difference between groups was not statistically significant. The above 
details are summarized in Figure 3A. The results based on the KLD 
network are consistent with those based on the JSD network, as detailed 
in Supplementary Figure 1A for details.

3.4 Alterations in nodal profiles of 
morphological brain network

We identified several regions that showed significant differences 
in node properties (p < 0.05, FDR corrected), with increased nodal 
efficiency in the right hippocampus, slightly increased nodal local 
efficiency in the right anterior cingulate gyrus, and reduced nodal 
local efficiency in the transverse temporal gyrus in patients with 
T2DM compared to HCs, and summarized the detailed information 
in Figure  3B. However, there was no significant difference in the 
number of betweenness centrality and degree centrality between the 
groups. Compared to the JSD-based network, the KLD-based network 
found that the brain region in which the nodal local efficiency was 
reduced changed from the right transverse temporal gyrus to the left 
parahippocampal gyrus, and the remaining nodes were the same, with 
reduced node efficiency in the right hippocampus, for further details, 
please refer to Supplementary Figure 1B.

3.5 Results of correlation analysis

Gray matter volume in the right orbitofrontal middle gyrus was 
negatively correlated with disease duration (r = −0.17, p = 0.036). 
There was a significant weak correlation between glycated hemoglobin 
and the left orbitofrontal inferior gyrus (r = −0.171, p = 0.04), right 
insula (r = −0.177, p = 0.033), and right orbitofrontal middle gyrus 
gray matter volumes (r = −0.164, p = 0.048), as shown in Figure 4A.

Correlation analysis showed that nodal efficiency of the right 
hippocampal in T2DM patients was negatively correlated with DST-B 
scores (r = −0.196, p = 0.018), nodal local efficiency of the anterior 
cingulate gyrus was negatively correlated with MMSE (r = −0.194, 
p = 0.019). Transverse temporal gyrus node local efficiency correlates 
with glycated hemoglobin (r = −0.186, p = 0.025) and CDT scores 
(r = −0.186, p = 0.025). As shown in Figure  4B. No significant 
correlation was found for the other indicators.

4 Discussion

Our study is the first to use both JSD and KLD methods to 
construct individual-level gray matter morphological brain networks 
in T2DM, along with VBM, and SBM analyses, and to obtain three 
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TABLE 2 Results of gray matter volume reduction in the T2DM group.

Brain region Cluster size MNI coordinates, x, y, z Peak intensity p-value

Lingual_L 3,780 −20, −76, −12 5.364 0.000

Frontal_Inf_Orb_L 3,763 −36, 20, −14 5.437 0.000

Cerebelum_6_R 2,638 38, −57, −28 4.557 0.000

Cingulum_Ant_R 1,110 10, 45, 15 4.768 0.001

Cerebelum_9_L 842 −6, −62, −46 4.342 0.003

Insula_R 766 34, 24, 6 4.839 0.005

Frontal_Med_Orb_R 653 3, 39, −14 4.214 0.011

Rolandic_Oper_R 521 51, −21, 15 5.158 0.028

Using the anatomical automatic labeling (AAL) template; MNI, Montreal Neurological Institute; Lingual_L, left lingual gyrus; Frontal_Inf_Orb_L, left orbitofrontal inferior gyrus; Cingulum_
Ant_R, right anterior cingulate gyrus; Insula_R, right insula; Frontal_Med_Orb_R, right orbitofrontal middle gyrus; Rolandic_Oper_R, right rolandic operculum; Cerebelum_6_R, right 
cerebellar hemisphere 6; Cerebelum_9_L, left cerebellar hemisphere 9. L, left; R, right.

TABLE 1 Demographic and clinical characteristics of the participants.

Variable T2DM (n = 150) HC (n = 130) Statistics (T/Z/χ2) p-value

Age (years) 50.54 ± 8.70 51.02 ± 9.13 0.446 0.656

Gender (male/female) 88/62 70/60 0.658 0.417

Education (years) 12 (9, 14) 10 (9, 14) −1.27 0.206

Duration (years) 5 (2, 10) – – –

SBP (mmHg) 125.20 ± 14.89 127.59 ± 15.77 1.305 0.193

DBP (mmHg) 83.35 ± 10.06 83 (76.00, 89.25) −0.061 0.952

BMI (kg/m2) 24.10 ± 3.34 23.44 (21.90, 25.73) −0.569 0.569

HbA1c (%) 9.30 (8.50, 10.7) 5.70 (5.50, 5.90) −14.090 <0.001

FBG (mmol/L) 8.52 (6.88, 10.50) 5.14 (4.83, 5.44) −12.594 <0.001

FINS (μIU/mL) 5.99 (3.27, 10.94) 8.75 (6.32, 13.26) −4.532 <0.001

HOMA-IR 2.21 (1.09, 5.18) 1.83 (1.19, 3.01) −2.002 0.045

TG (mmol/L) 1.78 (1.23, 2.65) 1.27 (0.92, 1.74) −4.816 <0.001

TC (mmol/L) 4.91 ± 1.09 5.01 (4.49, 5.73) −2.288 0.022

LDL (mmol/L) 3.11 ± 0.96 3.28 (2.85, 3.88) −2.279 0.023

MoCA 26 (23, 28) 27 (27, 28) −0.431 <0.001

MMSE 28 (27, 29) 29 (27.75, 30.00) −0.328 0.001

AVLT (immediate) 21.35 ± 5.13 21.84 ± 4.95 −0.857 0.391

AVLT (5 min) 8 (6, 10) 8 (7, 10) −0.145 0.885

AVLT-delay 8 (6, 10) 8 (6, 10) −0.617 0.537

AVLT-recall 11 (10, 12) 12 (11, 12) −2.605 0.009

GPT (R) 73.04 (65, 86) 69 (60.00, 77.25) −3.500 <0.001

GPT (L) 81.50 (71.00, 93.25) 73 (65.00, 83.25) −4.430 <0.001

TMT-A 45 (35, 60) 44 (33.00, 60.25) −0.660 0.509

CDT 4 (3, 4) 4 (3, 4) −1.325 0.185

DSST 41.5 (31, 50) 40 (31.75, 51.00) −0.498 0.618

DST (forward) 8 (6, 8) 7 (6, 8) −0.081 0.936

DST (backward) 4 (3, 5) 4 (3, 5) −1.296 0.195

Data are expressed as median (Q1, Q3) and mean ± SD, gender: male/female. Comparisons between groups were made using two-sample t-tests for normally distributed data, non-parametric 
tests for non-normally distributed data, and chi-square tests for gender, with bold values representing statistically significant (p < 0.05).BMI, body mass index; SBP, systolic blood pressure; 
DBP, diastolic blood pressure; HbA1c, hemoglobin A1c; FBG, fasting blood glucose; FINS, fasting insulin; HOMA-IR, static model assessment of insulin resistance; TG, triglycerides; TC, total 
cholesterol; LDL, low-density lipoprotein; MoCA, Montreal cognitive assessment; MMSE, mini-mental state examination; AVLT, Auditory Verbal Learning Test; GPT, grooved pegboard test; 
TMT-A: trail making test-A; DSST: digit symbol substitution test; CDT, clock drawing test; DST, digit span test.
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FIGURE 2

Results of SBM analysis between groups. Brain regions showed significantly decreased cortical thickness in T2DM as compared to HCs using the 
general linear model (GLM), and we applied a cluster-wise correction for multiple comparisons and Monte-Carlo simulation corrected cluster 
thresholds of p < 0.05 for bidirectional effects. No differences were found in surface area and LGI between groups. L, left; R, right.

main findings: compared to HCs, (1) reduced gray matter volume and 
cortical thickness in T2DM patients were mainly concentrated in the 
central control network. (2) In the individual morphologic brain 

networks, we  found that the global properties of T2DM were 
significantly reduced, the integration and separation of networks were 
decreased, and the node properties were altered mainly in the right 

FIGURE 1

Results of VBM analysis between groups. Brain regions showed significantly decreased GMV in T2DM as compared to HCs using two-sample t-tests, 
and the results were corrected by cluster-wise family-wise error (FWE) correction with p < 0.001 and cluster number > 521. Brain regions without 
increased gray matter volume in T2DM. L, left.

TABLE 3 Results of cortical thickness reduction in the T2DM group.

Sphere Brain region Size(mm2) RAS coordinates, x, y, z p-value

rh Superior frontal 1123.63 13.6, 36.2, 48.1 0.002

rh Inferior parietal 475.5 37.6, −48.8, 37.5 0.010

rh Precentral 294.07 58.7, −4, 15.1 0.047

rh Superior parietal 293.21 27.1, −43.5, 57 0.047

rh Superior temporal 291.14 43.7, −34.5, 11.9 0.049

lh Superior temporal 1071.28 −52.6, −33.1, 7.1 0.002

lh Superior frontal 760.71 −7.8, 37, 50.4 0.004

lh Precentral 667.97 −54.3, 4.5, 20.1 0.006

lh Inferior parietal 549.12 −42.4, −61.1, 42.9 0.008

rh, right hemisphere; lh, left hemisphere.
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hippocampus, parahippocampal gyrus, temporal lobe, and cingulate 
gyrus. (3) Our brain morphology analyses (VBM and SBM) supported 
the results of the individual morphology network analyses, with 
overlapping brain regions, mainly in the limbic/paralimbic network, 
and correlations between some of the node attributes and cognitive 
and clinical indicators. These findings deepen our understanding of 
the large-scale neural network mechanisms of T2DM.

VBM and SBM are considered to be  two complementary 
modalities of morphological analysis, making the results more reliable 
and comprehensive (14). Our findings based on these two methods 
show extensive cortical atrophy in patients with T2DM. Although the 
atrophied brain regions have different detailed names, they are mainly 
located in the frontal lobe, temporal lobe, dorsal parietal lobe, 
cingulate gyrus, and insula, which is largely consistent with previous 
studies (41–43). These brain regions are mainly located in the central 
executive network, which plays a central role in cognitive control and 
executive function (44). Some studies have shown disrupted 
functional connectivity of the central executive network in patients 
with T2DM (45), all of which suggest that the central executive 
network is impaired in patients with T2DM and may be related to the 
development of cognitive impairment. Meanwhile, our study also 
found a negative correlation between gray matter volume and 
glycosylated hemoglobin in some brain regions, suggesting that the 
higher the blood glucose, the more severe the cortical atrophy. Long-
term hyperglycemia is an independent factor in cognitive decline in 
diabetic patients (46). Therefore, we hypothesized that cortical atrophy 
may be a mediating variable in the relationship between hyperglycemia 
and cognitive decline. Future subgroup analyses (with or without 
cognitive impairment), mediation analyses, and longitudinal analyses 
of T2DM are needed to clarify the relationship.

In JSD-based and KLD-based networks, T2DM showed lower Cp, 
σ, γ, λ, Egloc, Eg, and longer Lp compared with HCs, implying that 
normal small-world organization is disturbed, affecting brain functional 
separation and integration (47). Previous structural covariance network 
studies based on cortical thickness and white matter network studies 
have found similar topological alterations in type 2 diabetes (15, 19, 48). 
Differently, although our study showed a trend toward increased Lp 
(p = 0.065) and decreased Eg (p = 0.0812), the differences were not 
statistically significant. This could be  due to our relatively young 
participant group (mean age 50.54 years) and their short disease history 
(median duration 5 years). Overall, the topological network of T2DM 
patients is generally impaired, leading to a decrease in the speed of 
information processing and in the network’s resistance to external 
disturbances, which may be related to cognitive and memory decline. 
Notably, our study also revealed altered local efficiency of nodes in the 
anterior cingulate gyrus and the transverse temporal gyrus, as well as 
reduced gray matter volume in the anterior cingulate gyrus and cortical 
thickness in the superior temporal gyrus [the transverse temporal gyrus 
and the superior temporal gyrus are anatomically adjacent and 
functionally synergistic (49)], so we found that the results of the network 
analysis partially overlapped with the results of the morphometric 
analysis. This suggests that the anterior cingulate gyrus and temporal 
lobe play an important role in T2DM. Furthermore, we speculate that 
the altered topological network properties might be related to gray 
matter atrophy (50, 51).

The cingulate, hippocampus, and parahippocampal gyrus all 
belong to the limbic/paralimbic system, which plays a key role in long-
term memory, attention, and emotion regulation. Previous studies have 

shown that these sites are known to be associated with T2DM (52, 53), 
supporting our results. Our findings of increased nodal efficiency in 
the right hippocampus and nodal local efficiency in the anterior right 
cingulate gyrus in patients with T2DM may seem strange. However, 
there are also functional connectivity networks that show increased 
degree centrality of nodes in the hippocampus and anterior cingulate 
gyrus in patients with T2DM (18), and the classical explanation for this 
finding is a compensatory mechanism (54). Meanwhile, in our study, 
nodal efficiency in the right hippocampus was negatively correlated 
with DST-B scores reflecting working memory (31), and nodal 
localization efficiency in the anterior cingulate gyrus was negatively 
correlated with MMSE scores. We hypothesize that the brain undergoes 
compensatory changes in order to maintain normal cognition in the 
pre-disease phase, but that cognitive levels eventually decline as the 
disease progresses. Therefore, we speculate that compensatory changes 
in the properties of nodes in the topological network may be  an 
indicator for early detection of cognitive changes and that the 
hippocampus and anterior cingulate gyrus may be imaging markers for 
identifying cognitive impairment in T2DM (55).

Nodal local efficiency reflects the efficiency of information 
communication between the neighbors of the node after removing the 
node, reflecting the separation of local information and the fault 
tolerance of the sub-network. Our study found that decreased nodal 
local efficiency of the transverse temporal gyrus was associated with 
elevated glycosylated hemoglobin and reduced CDT scores. One study 
has shown that the performance of CDT in detecting cognitive 
impairment is closely related to the temporoparietal cortex (56), 
consistent with our study. The transverse temporal gyrus is primarily 
responsible for auditory processing and semantic comprehension. 
Therefore, we  suggest that in the presence of long-term chronic 
hyperglycemia, the structural network of the brain in T2DM patients 
is less fault-tolerant, which may lead to decreased auditory and 
semantic comprehension. The KLD-based network showed reduced 
nodal local efficiency in the parahippocampal gyrus, which is closely 
related to the hippocampus (57), and both parahippocampal and 
hippocampal subregions contribute uniquely to the encoding, 
consolidation, and retrieval of declarative memory. The brain insulin 
receptor signaling pathway (IRSP) is present in the parahippocampal 
gyrus (58), which helps to control processes such as synaptic plasticity, 
neuroprotection, survival, growth, and energy metabolism (59), which 
are all related to cognition. However, insulin resistance, amyloid β 
(Aβ) deposition, and hyperphosphorylation of Tau lead to disruption 
of cerebral insulin signaling (60), which may account for the higher 
risk of dementia and reduced local efficiency of the parahippocampal 
gyrus node in patients with T2DM.

There are some limitations to this study. First, the correlation 
results in our study were all weak but could suggest the existence of 
such a trend, possibly due to the relative youth of our patients and the 
relatively short duration of the disease. Second, previous studies have 
reported some effects of anti-glycemic drugs on the brain (61), and 
the effect of drugs on certain outcomes cannot be ruled out in our 
study. In addition, although we excluded some metabolic diseases 
from the exclusion criteria, we still cannot rule out the influence of 
residual or unmeasured confounders on the experimental results. 
Finally, because the present study was like a cross-sectional study and 
had a relatively small sample size that did not allow for causal 
inferences, future longitudinal studies examining alterations in 
neural networks in patients with type 2 diabetes are needed to assess 
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the relationship between abnormal brain alterations and cognition 
during disease progression.

5 Conclusion

In conclusion, our morphological analyses suggest extensive 
cortical atrophy in patients with T2DM. Individual-based 

morphological brain network analysis revealed impaired network 
integration and separation. It also identified overlapping and 
cognitively relevant key brain regions, primarily within the 
limbic/paralimbic network (especially the hippocampus and 
cingulate gyrus), which may serve as imaging markers for 
identifying cognitive deficits in T2DM. These findings deepen 
our understanding of the mechanisms of large-scale neural 
networks in T2DM and provide additional theoretical support for 

FIGURE 3

Topological changes in individual-based morphological brain network between the two groups. (A) Alterations in global profiles of the morphological 
brain network. Cp, clustering coefficient; Sigma (σ), small-world parameters; Gamma (γ), normalized clustering coefficient; Eloc, local efficiency; 
Lambda (λ), normalized characteristic path length; Lp, characteristic path length; Eg, global efficiency. (B) Alterations in nodal profiles of the 
morphological brain network. Red nodes represent nodal efficiency or nodal local efficiency increase, and blue nodes represent nodal local efficiency 
decrease, and the result is corrected using FDR. NE, nodal efficiency; NLe, nodal loca efficiency; HIP.R, right hippocampus; ACG.R, right anterior 
cingulate gyrus; HES.R, right transverse temporal gyrus; PHG.L, left parahippocampal gyrus.
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exploring the relationship between T2DM and 
cognitive impairment.
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