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Objective: Acute unilateral peripheral vestibulopathy or vestibular neuritis (AUPV/
VN) manifests as acute onset vertigo, often accompanied by nausea, vomiting, 
and moderate gait instability. It is suspected when vestibular hypofunction 
is documented on video-head impulse (video-HITs) and caloric tests in the 
presence of contralesionally beating horizontal-torsional nystagmus. Herein, 
we  report patients presenting with acute vestibular syndrome (AVS) showing 
selective otolithic dysfunction in the presence of normal caloric and video-HITs 
and abnormal enhancement of the peripheral vestibular structures on MRI.

Methods: We retrospectively reviewed the medical records of patients presenting 
with AVS between September 2019 and April 2024 at a tertiary referral hospital 
in South Korea. All patients underwent extensive neurotologic evaluation, 
including cervical and ocular vestibular-evoked myogenic potentials (cVEMP 
and oVEMP, respectively), subjective visual vertical, video-oculography, video-
HITs, caloric tests, and audiometry. Patients also underwent MRI according to a 
standard protocol for the inner ear and internal acoustic canal with an additional 
3D-fluid attenuated inversion recovery sequence acquired 4 h after intravenous 
gadolinium injection.

Results: We identified four patients with selective otolith dysfunction. Video-
HITs and caloric test results were normal in all patients, except one with a canal 
paresis on the opposite side of otolithic dysfunction. Patients usually showed 
abnormal oVEMP (n = 3) and cVEMP (n = 2) or subjective visual vertical (n = 3). 
Gadolinium enhancements were found in the vestibule (n = 3), inferior (n = 2) or 
superior (n = 1) vestibular nerves on dedicated inner ear MRI.

Discussion: Selective otolithic dysfunction can present with AVS, which can 
be easily overlooked. A thorough neurotologic evaluation and MRI dedicated 
to the inner ear can help detect selective otolithic dysfunction, expanding the 
clinical spectrum of AVS.
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Introduction

The diagnosis of vestibular neuritis (VN) or acute unilateral 
peripheral vestibulopathy (AUPV) is based on clinical features and 
neurotologic findings in the absence of other causes (1). AUPV/VN 
manifests as acute onset vertigo, often accompanied by nausea, 
vomiting, and moderate gait instability (1, 2). In addition to these 
hallmark symptoms, video-head impulse (video-HITs) and caloric 
tests can identify peripheral vestibular hypofunction in the presence 
of contralesionally beating horizontal-torsional nystagmus obeying 
Alexander’s law (1).

Selective otolith dysfunction has been identified as a cause of 
vertigo in prior studies (3–5). Patients can present with benign 
paroxysmal positional vertigo or Ménière’s disease (MD), although 
37% of patients could not be categorized into any of the established 
clinical entities (6, 7). Patients can also present with acute 
spontaneous vertigo (i.e., acute vestibular syndrome; AVS), while 
showing normal results on tests for angular vestibular-ocular reflex 
(VOR) (8, 9). In such cases, patients exhibit spontaneous nystagmus 
with horizontal-torsional components indistinguishable from AUPV/
VN (9, 10).

The primary vestibular afferent or inner ear can be visualized 
using various imaging techniques (11–13). Recent application of the 
4-h delayed imaging technique has aided in visualizing vestibular 
damage (13–18). In contrast to conventional MRI (12, 19), the 4-h 
delayed 3D imaging technique reportedly detected positive results on 
the labyrinth or nerve of approximately 50% of patients with AUPV/
VN (13, 14, 18). Although confounded by other factors, 4-h delayed 
3D fluid-attenuated inversion recovery (3D-FLAIR) images can 
reliably quantify vestibular damage in patients with AUPV/VN (13, 
14, 20). Meanwhile, MRI results of isolated otolith dysfunction have 
not been reported for now.

Herein, we report the cases of four patients with selective otolith 
dysfunction presenting with acute spontaneous vertigo. Selective 
deficits were documented solely on cervical and ocular vestibular-
evoked myogenic potentials (cVEMP and oVEMP, respectively) or 
subjective visual vertical (SVV), while showing normal results on 
caloric and video-HITs. Patients also showed positive results on the 
inner ear or primary vestibular afferents on 3D-FLAIR sequences. Our 
findings may provide more diagnostic and localization information 
on the causes of acute spontaneous vertigo that are often overlooked.

Materials and methods

Patients

We retrospectively analyzed the medical records of 77 patients 
who presented with first-ever spontaneous vertigo/dizziness and 
underwent inner ear MRI between September 2019 and November 
2024 at Korea University Medical Center. Patients with a posterior 
circulatory stroke were excluded from the study. We further excluded 
62 patients whose neurotologic findings were consistent with AUPV/
VN (1), those whose MRI scans revealed endolymphatic hydrops on 
either side of the ear with gadolinium enhancement (n = 8), and those 
with miscellaneous neurotologic findings or negative MRI results 
(n = 3). Finally, we identified four patients with positive MRI findings 
who did not fully meet the established criteria for AUPV/VN (1).

All patients were followed up at the outpatient clinic every other 
month for 6 months since symptom onset. Each patient was queried 
regarding dizziness symptoms through phone calls every 3 months as 
part of a routine protocol of the AVS registry.

Neurotologic evaluation

In addition to a standard neurologic examination, all patients 
underwent bedside evaluation and video-oculographic recording of 
spontaneous (SN), gaze-evoked, and head-shaking nystagmus (HSN; 
SLVNG, SLMED, Seoul, South Korea) (21). All patients underwent 
bedside HITs and video-HITs. Detailed methods for video-HITs have 
been previously described (22).

Patients also underwent bithermal caloric and SVV (NDI-150, 
M2S, Seoul, South Korea) tests, as well as cVEMP and oVEMP tests, as 
previously described. Briefly, oVEMPs were elicited by tapping the 
hairline at the AFz using an electric reflex hammer (Tendon hammer, 
VIASYS Healthcare, Conshohocken, PA, USA). Bilateral responses were 
recorded simultaneously following the application of the tapping 
stimuli. Up to 60 tapping stimuli were applied at a frequency of 2 Hz 
and approximately 0.45 g of force. The responses were averaged for each 
test, and the average latencies of the initial negative peak (n1) and n1–
p1 amplitudes were determined. oVEMP responses were obtained at 
least twice, from which the mean was calculated. The interaural 
difference (IAD, %) of the oVEMP amplitudes was calculated as follows: 
IAD = [100 × (ARight − ALeft)/(ARight + ALeft); A = n1–p1 amplitude].

cVEMPs were recorded with the patient lying supine on a bed 
with the head raised by approximately 30° and rotated to one side to 
contract the sternocleidomastoid muscle (SCM). A short burst of 
alternating tone (110 dB nHL, 123.5 dB SPL, 500 Hz, rise time = 2 ms, 
plateau = 3 ms, and fall time = 2 ms) was applied monoaurally at a 
frequency of 2.1 Hz via headphones. The signal was sampled (48 kHz), 
amplified, and bandpass-filtered at 30–1500 Hz. cVEMP responses 
were recorded without performing rectification or smoothing. cVEMP 
responses to up to 80 stimuli were averaged for each test. Responses 
were obtained at least twice for each ear, from which the mean values 
were calculated.

Absolute cVEMP amplitudes were normalized and divided by the 
mean tonic activation of the SCM during the recording. To compare 
the normalized p13–n23 amplitudes between the right and left sides, 
the IAD (%) was calculated. The p13 peak latency was also calculated. 
To determine the reference ranges, oVEMP and cVEMP responses of 
16 healthy participants (nine men, mean age ± standard 
deviation = 65 ± 9 years) with no history of auditory or vestibular 
disorders (reference range for oVEMP: n1 latency <8.32 ms, 
IAD < 23.9%; reference range for cVEMP: p13 latency <19.4 ms, 
normalized p13–n23 amplitude >1.1 μV, IAD < 31.0%) were used (22).

MRI

MRI was performed using 3-T MRI scanners (Magnetum Skyra, 
Magnetum Prisma, and Magnetum Vida units, Siemens, Erlangen, 
Germany) with a receive-only 64-channel phased array coil, as 
previously described (14, 15). Patients underwent a standard MRI 
protocol for the internal acoustic canal (IAC) with an additional axial 
FLAIR sequence, acquired 4 h after intravenous injection of a 
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standard dose of gadoterate meglumine (0.1 mmol/kg, 0.2 mL/kg; 
Dotarem®, Guerbet, Roissy, France) (15). Patients also underwent 
diffusion-weighted imaging spaced 48 h either before or after 
conducting IAC MRI to rule out central vestibulopathy.

Six freehand round or polygonal regions of interest (ROIs) were 
manually assigned to each neural structure, including the canalicular 
segment of the superior (4.60 mm2) and inferior vestibular nerves 
(4.60 mm2); the vestibule (20.40 mm2); and each semicircular canal 
for the horizontal (HC; 6.90–9.39 mm2), anterior (AC; 3.22–
3.68 mm2), and posterior canals (PC; 6.90–9.39 mm2). The signal 
intensity of the medulla was measured in the same manner as that for 
normalization. The normalized signal intensity on the 4-h delayed 
3D-FLAIR of the enhancing lesion was defined as the signal intensity 
of the enhanced portion divided by that of the medulla. The 
normalized intensities of each organ on the healthy side were used as 
controls. When the normalized signal intensity of the affected side 
exceeded the mean + 2 standard deviations of the signal intensity of 
each neural structure derived from the healthy side in patients with 
AUPV/VN (upper normal limit <1.49 and < 1.62 for the superior and 
inferior vestibular nerves, respectively; <0.69 for the vestibule; <0.40, 
<0.61, and < 0.63 for the HC, AC, and PC, respectively), this was 
defined as abnormal enhancement (14).

Results

Clinical characteristics

Table 1 presents the detailed clinical profiles of patients. Among 77 
patients with AUPV with inner ear imaging, four patients (4/77, 5%) 
were included in the analyses (age range, 32–74 years, two male). No 
intravenous or oral corticosteroid treatment was administered to any 
patient. All patients presented with acute spontaneous dizziness/vertigo 
associated with nausea and vomiting. Postural instability when standing 
or walking was reported, with truncal ataxia grade 1 in two patients and 
grade 2 in the other two patients. Patients also described a true whirling 
sensation (n = 2), boarding a rocking boat (n = 2), and to-and-fro 
sensation (n = 1). Patients showed no focal neurological deficits at 
presentation or during the follow-up period of at least 6 months. None 
of the patients reported new-onset headache, tinnitus, ear fullness, or 
hearing loss during the 1-year follow-up. Following treatment, symptoms 
resolved within 1 week, with no residual dizziness or recurrence.

Neurotologic findings

Neurotologic findings are summarized in Table 1. All patients 
showed spontaneous nystagmus without visual fixation, including 
horizontal-torsional nystagmus with (n = 2) or without (n = 2) 
vertical components. The nystagmus was mainly horizontal. The 
slow-phase velocity of spontaneous nystagmus ranged from 1.3 to 
4.1°/s. Spontaneous nystagmus was mostly suppressed or 
disappeared during visual fixation. None of the patients had gaze-
evoked nystagmus during lateral gaze. The results of bedside HITs 
were negative in all patients. Horizontal head shaking elicited 
nystagmus in three patients, following the horizontal direction of 
spontaneous nystagmus. Otoscopic findings were normal in 
all patients.

None of the patients showed decreased VOR gain in any canal 
during video-HITs. One patient (Patient 4) showed canal paresis 
contralateral to the side of VEMP and MRI abnormalities (Figures 1, 
2); otherwise, none of the other three patients exhibited canal paresis. 
Patient 4 was included in the analysis because canal paresis was toward 
the direction of nystagmus, which is not typical of peripheral 
vestibulopathy. oVEMP responses were abnormal in all patients, with 
three of them (Patients 1, 2, and 4) also showing decreased cVEMP 
responses on the affected side on MRI (Figure 2). The SVV was tilted 
in two patients, always on the ipsilesional side, as depicted on 
MRI. Pure tone and speech audiometry measurements were normal, 
except mild symmetric high-tone hearing impairment.

Three patients (Patients 2–4) underwent follow-up evaluation 
2 months later, showing no changes in video-HITs. Following 
treatment, spontaneous nystagmus disappeared in all patients. Canal 
paresis in Patient 4 was resolved, and all patients showed normal 
caloric test results on follow-up examination. cVEMP, oVEMP, and 
SVV results were normal (Figure 3 and Table 2).

MRI findings

Notably, 4-h delayed 3D FLAIR MRI revealed gadolinium 
enhancement in the vestibule (n = 3), followed by the inferior (n = 2) 
or superior (n = 1) vestibular nerves (Figure 1).

Discussion

The main findings of our study can be summarized as follows: 
(1) Selective otolith dysfunction abnormality can be found in 5% 
of patients presenting with AVS. (2) Patients showed impaired 
cVEMP, oVEMP, and SVV responses while showing mostly 
insignificant caloric and video-HIT findings, thereby not fulfilling 
the diagnostic criteria for AUPV/VN. (3) MRI dedicated to the 
inner ear can aid in detecting selective otolith dysfunction by 
showing gadolinium enhancement in the vestibule and 
vestibular nerves.

Possible etiology for acute vestibular 
impairment in study patients

Apart from inflammation, gadolinium enhancement may 
be attributed to other etiologies that damage the primary vestibular 
afferent or labyrinth, including MD, labyrinthitis, and vestibular 
schwannoma (20, 23–25). However, our extensive neurotologic 
evaluations excluded the possibilities of other vestibular disorders in 
our patients.

The acute symptom onset and prominent spontaneous nystagmus, 
which resolved thereafter, clearly indicated that our patients 
experienced acute and symptomatic vestibular impairment. The 
presence of perilymphatic gadolinium enhancement also supports the 
presence of acute vestibular damage, causing a breakdown of the 
blood–nerve or blood–labyrinthine barriers (26). Clinical 
characteristics and prognosis mostly resembled AUPV/VN, suggesting 
a possible inflammatory or microvascular etiology in the vestibular 
organ (27, 28).
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One plausible explanation for the negative caloric and video-HIT 
results is that vestibular damage was too subtle to be detected using 
neurotologic tests. However, this cannot explain the robust gadolinium 
enhancement observed on MRI, given that MRI positivity correlates 
with the degree of vestibular deficits (13, 14). As VOR may change 
over time owing to peripheral recovery or central adaptation (29), 
video-HITs and caloric tests may have failed to detect these vestibular 
deficits. However, both bithermal caloric and video-HIT findings 
remained normal during the follow-up evaluation. Given that canal 
paresis lasts for 1 year in most patients with AUPV/VN (30–32), its 
resolution in Patient 4 at the 2-month follow-up implied that the 
angular VOR was not affected in the first place. Hence, how can these 
findings be explained?

Selective loss of otolith function as a 
culprit of acute spontaneous vertigo

Owing to advances in neurotologic tests, the function of each 
semicircular canal and otolithic organ (utricle and saccule) can 
be thoroughly assessed. In this context, an inflammatory etiology can 
selectively damage the otolithic organs while sparing the semicircular 
canals (8). Selective otolithic dysfunction can be encountered in the 
clinical setting, presenting with acute vertigo/dizziness (9, 33–35). The 
clinical presentation can be  acute spontaneous (monophasic) or 
recurrent spontaneous vertigo (i.e., polyphasic) (6, 36). In the latter 
case, it is usually regarded as a limited form of MD (36–38). These 
patients frequently exhibit selective cVEMP abnormalities, explained 
by endolymphatic hydrops preferentially involving the saccule and 
apical turn of the cochlea in the earlier stages of MD (36, 39).

The clinical characteristics are indistinguishable from those of 
typical AUPV/VN affecting the angular VOR system (8). Accordingly, 
the patient presents with horizontal nystagmus, which obeys 
Alexander’s law. However, the function of the semicircular canal is 
preserved, and no discernible results are observed on conventional 
MRI. In such cases, the only abnormality might be decreased n1–p1 
amplitude on the opposite side of the direction of nystagmus, 
suggesting a selective utricular dysfunction origin (9). Selective otolith 
dysfunction accounts for approximately 2.7% of patients presenting 
with AVS (35), a rate similar to the 5% observed in our cohort. This 
condition is often overlooked unless a thorough neurotologic 
evaluation is accomplished. The otolithic involvement is usually 
unilateral but also can occur bilaterally (40).

Otolith dysfunction and spontaneous 
nystagmus

Can selective otolith dysfunction induce spontaneous 
nystagmus? Earlier animal studies have shown discrepant results. 
Electrical stimulation of the utricular nerve results in tonic 
deviation of the eyes but may not generate spontaneous nystagmus 
in rabbits (41). In contrast, horizontal nystagmus can be evoked 
following severance of the utricular nerve in cats (42). Alternatively, 
vigorous nystagmus can be elicited when the utricular macula is 
mechanically stimulated (41). The nystagmus usually beats toward 
the intact side, consistent with our findings (41). Other than 
horizontal nystagmus, otolith dysfunction may result in various T
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FIGURE 1

4-h delayed 3D-FLAIR images of the patients. Quantitative evaluation of a degree of the perilymphatic enhancement. The signal intensity ratios of the 
vestibular nerves and inner ear structure to that of the signal intensity of the medulla were calculated to avoid bias from patient-related artifacts.

FIGURE 2

Neurotologic findings in patient 4. (A) Video-oculography shows spontaneous nystagmus beating rightward, upward with a clockwise component. 
(B) Video head-impulse tests are normal. (C) Bithermal caloric tests reveal canal paresis of 33% in the right ear. (D) cVEMP and oVEMP show relatively 
decreased response during left ear stimulation, with 25.7 and 33.3% interaural differences, respectively. AC, anterior canal; cVEMP, cervical vestibular-
evoked myogenic potential; H, horizontal position of the right eye; HC, horizontal canal; oVEMP, ocular VEMP; PC, posterior canal; T, torsional position 
of the right eye; V, vertical position of the right eye.
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patterns of nystagmus, given that vertical ocular drift can also 
be  generated depending on the stimulus intensity or level of 
anesthesia in cats (43, 44). Horizontal nystagmus beating to the 
intact ear is frequently reported in clinical studies, while downbeat 
nystagmus has been rarely observed (40). These spontaneous 
nystagmus can be explained by the disrupted balance of neural 
activity between the vestibular nuclei on both sides (45). This is 
also theoretically plausible, as compensatory eye movement can 
be  elicited in the yaw, pitch, and roll plane, depending on the 
gravito-inertial acceleration estimated in part by the utricle.

Possible etiology causing selective otolith 
dysfunction

Otolithic dysfunction can result from inflammation that 
selectively affects the otolithic organs, similar to the mechanism 
observed in AUPV/VN, which is explained by the reactivation of type 
1 herpes simplex virus (27). Alternatively, transient ischemia, as a 
vascular etiology, may also be considered. Ischemic damage can occur 
at the microvascular level, resulting from occlusion of the end 
arterioles and hypoperfusion in the vestibular organ due to the 
formation of platelet–monocyte aggregates. A bioinformatic analysis 
has shown neutrophil activation in the sera of patients with AUPV/
VN, which can damage endothelial cells and induce thrombosis (46). 
While MRI dedicated to the inner ear can help localize the lesion, it 
cannot definitively determine the etiology, as both vascular and 
inflammatory etiologies may present similarly (47).

Additionally, vascular compromise in the inner ear can arise from 
macrovascular occlusion. The labyrinth is susceptible to ischemia due 
to its high metabolic demands, and the internal auditory artery is an 
end artery with minimal collateral circulation from the otic capsule 
(48). The superior part of the vestibular labyrinth is particularly 
vulnerable to ischemia, probably due to the small caliber of the 
anterior vestibular artery and lack of collateral supply (49). Notably, 
VEMP impairment can be  the sole heralding sign of labyrinthine 
ischemia preceding a full-blown anterior inferior cerebellar artery 
stroke (50). In this context, Patient 4 showed spontaneous nystagmus 
beating toward the direction of the canal paresis, a finding associated 
with central vestibulopathy (21).

MRI as an ancillary test for detecting 
vestibular damage

In addition to VOR gain measurement or documentation of canal 
paresis, alternative methods have been adopted for detecting vestibular 
damage. Anecdotal reports of corrective saccadic analyses have 
suggested a compatible or even higher chance of differentiating 
AUPV/VN from its mimickers (21, 51, 52). Calculating the gain 
asymmetry between the sides can also aid in differentiating posterior 
circulation stroke from AUPV/VN (53, 54). However, video-HITs 
alone cannot inherently detect all peripheral vestibulopathies, and 
caloric tests can complement in this context (55, 56). Our findings 
suggest that, combined with neurotologic tests, inner-ear imaging 
allows for the visual assessment of the damage in the primary 

FIGURE 3

Initial and follow-up neurotologic evaluation of patient 2. (A) Initially, video-oculography showed spontaneous nystagmus beating right and clockwise 
(the torsional graph is omitted since artifacts). (B) Video head-impulse tests are normal. (C) Initially, oVEMP and cVEMP responses are decreased during 
left ear stimulation. (D) These decreased cVEMP and oVEMP responses become normal 3 months later. AC, anterior canal; cVEMP, cervical vestibular-
evoked myogenic potential; H, horizontal position of the left eye; HC, horizontal canal; oVEMP, ocular VEMP; PC, posterior canal; V, vertical position of 
the left eye.
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vestibular afferents and labyrinth. MRI can supplement neurotologic 
evaluation by visually replicating the abnormality, although not 
perfectly, thereby potentiating the expansion of the clinical spectrum 
of AUPV/VN.

Nevertheless, discrepancies were observed between the imaging 
and functional studies in our patients. This inconsistency poses 
challenges in correlating imaging with clinical findings and suggests 
the need for further validation of the imaging protocol. Thus, our 
results should be  interpreted as preliminary, requiring further 
validation in larger cohorts.

Interpretation of VEMP

Various stimuli can elicit VEMP responses, including short, 
intense auditory stimuli (e.g., tone bursts or clicks), bone-conduced 
vibration, forehead taps, or galvanic stimulation. We adopted forehead 
tapping and tone-burst sounds to elicit oVEMP and cVEMP, 
respectively. The advantage of applying forehead tapping or vibration 
is that these methods are less likely to be  influenced by aging. As 
sound stimulation can often fail to evoke oVEMP responses bilaterally, 
it can show false positive responses in older patients (57). When 
oVEMP responses are recorded simultaneously in both eyes while 
tapping the forehead, IAD is estimated with reasonable test–retest 
reliability and inter-rater variation (57, 58). However, n1–p1 amplitude 
in both sides can vary depending on the exposure of inferior oblique, 
non-central stimulus location, or asymmetric convergence (58). This 
may explain the decreased n1–p1 amplitude in the contralesional side 
in Patient 4 on the follow-up test. Alternatively, it can be ascribed to 
vestibular compensation balancing the neural activity on both sides 
(59). Meanwhile, forehead tapping is not optimal for cVEMP since 
tapping the forehead midline can be technically difficult while the 
patient is rotating and flexing the neck.

MRI issues that should not be neglected

MRI may aid in the detection of selective otolith dysfunction. 
However, as diagnosing AUPV/VN requires the assessment of 
conspicuous neurotologic signs, MRI alone cannot be  used for 
detecting AUPV/VN. In our study, MRI was performed because the 
patients had spontaneous nystagmus associated with normal video-
HITs, possibly indicating central vestibulopathy. We  propose that 
inner-ear MRI may offer valuable insights into the etiology of an AVS 
of miscellaneous origin and its underlying mechanism when readily 
stratified. However, our results should be interpreted with caution. In 
general, MRI is not mandatory if neurotologic findings are 
conspicuous for AUPV/VN (1).

Dissociation of neurotologic and MRI 
findings

Despite the abnormal oVEMP, cVEMP, and SVV findings, 
gadolinium enhancement was not confined to the vestibule but was also 
detected in the inferior or superior vestibular nerves of our patients. 
Notably, in Patient 4, the direction of canal paresis was opposite to that of 
the lesion documented on MRI. The oVEMP, cVEMP, and SVV findings T
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did not correspond with the side of canal paresis in that patient, which 
cannot be fully explained by false lateralization of the caloric test resulting 
from overexcitation of the vestibular afferent or labyrinth (60). Due to the 
small sample size, whether this electrophysiologic-imaging dissociation 
is common remains unclear.

Clinical implication and caveats for future 
studies

By conducting thorough neurotologic evaluations and utilizing 
supporting imaging findings, our study confirms the presence of 
selective otolith dysfunction as a possible cause of acute vertigo. 
However, this study had some limitations. Most importantly, the 
sample size was too small to observe significant trends. As mentioned 
above, we  did not observe any correlation between the imaging 
findings and the oVEMP, cVEMP, or SVV parameters. It remains 
unclear whether any effect is present as a group of acts in a larger 
group of patients. Additionally, VEMP findings can vary depending 
on the clinical setting and cut-off values. The sensitivity and specificity 
of VEMP testing could be critical when interpreting the results. VEMP 
results can be influenced by factors such as individual muscle tone and 
the testing environment, potentially leading to variability and 
inconsistencies in outcomes (61). The small sample size and 
retrospective design also limit the generalization of the findings. 
Further evaluations are warranted to provide convincing evidence of 
an otolith dysfunction origin. For instance, conducting the head heave 
test or observing nystagmus changes during back-and-forth linear 
movements in prone or supine positions could offer additional insights.

In conclusion, selective otolith dysfunction can give rise to 
AVS. Extensive neurotologic evaluation and imaging can help broaden 
the clinical spectrum of AUPV/VN. These findings may help inform the 
development of new protocols for patients with selective 
otolith dysfunction.
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