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Objective: This study aims to evaluate key factors influencing the short-term 
and long-term prognosis of stroke patients, with a particular focus on variables 
such as body weight, hemoglobin, electrolytes, kidney function, organ function 
scores, and comorbidities. Stroke poses a significant global health burden, and 
understanding its prognostic factors is crucial for clinical management.

Methods: This is a retrospective cohort study based on data from the MIMIC-IV 
database, including stroke patients from 2010 to 2020. A total of 5,110 patients 
aged 18 and older were included in the study. The exposure variables included body 
weight and hemoglobin levels, while the outcome variables were the 30-day, 90-
day, 1-year, and 3-year mortality risks. Covariates included electrolyte levels, kidney 
function, organ function scores, and comorbidities. Random forest and gradient 
boosting tree models were employed for data analysis to assess mortality risk.

Results: Kaplan–Meier survival analysis showed that ischemic stroke patients 
had the highest 30-day mortality rate at 8.5%, with only 20% 1-year survival. 
Traumatic subarachnoid hemorrhage patients had the best prognosis, with a 
1-year survival rate of 60%. Multivariable Cox regression analysis revealed that 
each 1-point increase in the Charlson Comorbidity Index raised the 1-year 
and 3-year mortality risks by 1.39 times (95% CI: 1.10–1.56) and 1.44 times, 
respectively. Each 1-point increase in the SOFA score increased the 30-day, 90-
day, 1-year, and 3-year mortality risks by 2.11 times, 2.03 times, and 1.84 times, 
respectively. Additionally, lower hemoglobin levels were significantly associated 
with increased mortality, with 30-day, 90-day, and 1-year mortality risks 
increasing by 3.33 times, 3.34 times, and 4.16 times, respectively (p < 0.005). 
Age ≥ 71 years, longer hospital stays, and organ dysfunction were also significant 
factors affecting mortality.

Conclusion: This study highlights the critical role of stroke type, comorbidity 
index, SOFA score, hemoglobin levels, and length of hospital stay in stroke 
prognosis. These findings provide valuable insights for clinical risk assessment 
and the development of individualized treatment strategies, which may improve 
the management and outcomes of stroke patients. The predictive model 
constructed effectively assesses mortality risks in stroke patients, offering 
support for future clinical practice.
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1 Introduction

Stroke is a severe disease that poses a significant threat to human 
health. Globally, approximately 17 million people experience a stroke each 
year, with around 6 million deaths (1). In China, the incidence and 
mortality rates of stroke are also alarmingly high, with about 2.6 million 
new cases annually and over 1 million deaths (2). Different types of stroke, 
such as ischemic stroke, hemorrhagic stroke, and subarachnoid 
hemorrhage, exhibit variations in incidence and prognosis. For example, 
in China, ischemic stroke accounts for 69.6% of all strokes, hemorrhagic 
stroke for 30.0%, and subarachnoid hemorrhage for 0.4%, with 30-day 
case fatality rates of 12.5, 37.5, and 45.9%, respectively (3).

Several factors, including age, Charlson Comorbidity Index (CCI), 
Sequential Organ Failure Assessment (SOFA) score, length of hospital 
stay, Glasgow Coma Scale (GCS) score at admission, gender, race, 
laboratory results, and vital signs, may influence stroke prognosis. Age 
is a key risk factor, with the incidence and mortality rates of stroke 
rising significantly with increasing age (4). The Charlson Comorbidity 
Index reflects the severity of underlying diseases and has been found 
to negatively correlate with stroke prognosis (5). The SOFA score, 
which assesses the extent of organ dysfunction, is also significantly 
associated with stroke outcomes (6). Additionally, lower GCS scores 
at admission, prolonged hospital stays, and certain abnormal 
laboratory indicators suggest a poor prognosis (7–9).

Although substantial research has explored the relationship 
between these factors and stroke prognosis, there are limitations in 
existing evidence. First, most studies focus on a single type of stroke, 
with few covering different subtypes. Second, many studies are single-
center with small sample sizes, limiting their generalizability to 
national or global levels. Furthermore, most previous studies have 
focused on short-term prognosis (30 or 90 days), with limited cohort 
studies following patients for longer periods. Therefore, a large-scale, 
multicenter retrospective cohort study is needed to comprehensively 
assess the impact of these factors on the long-term prognosis of 
patients with different types of stroke.

This study aims to conduct a retrospective cohort analysis using 
the MIMIC-IV database, covering stroke patients (including ischemic 
stroke, hemorrhagic stroke, and subarachnoid hemorrhage) treated 
between January 1, 2010, and December 31, 2020. We will evaluate the 
association between factors such as age, Charlson Comorbidity Index, 
SOFA score, length of hospital stay, GCS score at admission, gender, 
race, laboratory results, and vital signs, with 30-day, 90-day, 1-year, 
and 3-year all-cause mortality risk, providing more comprehensive 
evidence for clinical practice.

2 Methods

2.1 Study design

This is a retrospective cohort study utilizing data from the 
MIMIC-IV (Medical Information Mart for Intensive Care IV) 
database. The study aims to evaluate the all-cause mortality rates at 
30 days, 90 days, 1 year, and 3 years among patients with different 

types of stroke. The stroke types analyzed include cerebral infarction, 
intracerebral hemorrhage, non-traumatic subarachnoid hemorrhage, 
and traumatic subarachnoid hemorrhage (10, 11).

2.2 Study population

A total of 5,110 patients were included in this study, with 71.8% 
diagnosed with cerebral infarction, 14.3% with intracerebral 
hemorrhage, 5.6% with non-traumatic subarachnoid hemorrhage, and 
8.3% with traumatic subarachnoid hemorrhage.

2.2.1 Inclusion criteria
Adult patients (age ≥ 18 years) with a confirmed diagnosis of one 

of the four stroke types (cerebral infarction, intracerebral hemorrhage, 
non-traumatic subarachnoid hemorrhage, or traumatic 
subarachnoid hemorrhage).

Patients with complete follow-up information for mortality 
outcomes at 30 days, 90 days, 1 year, and 3 years.

2.2.2 Exclusion criteria
Patients with missing data on key demographic or clinical variables 

(e.g., age, gender, Charlson comorbidity index, or mortality status).
Patients with multiple strokes during their hospital stay were 

excluded if the stroke type could not be  clearly identified, or if 
follow-up data were incomplete.

2.3 Variables

The primary outcome of interest was all-cause mortality at 
30 days, 90 days, 1 year, and 3 years following stroke onset. Covariates 
included demographic variables (age, gender, race), clinical indicators 
(Charlson comorbidity index, Sequential Organ Failure Assessment 
[SOFA] score, Glasgow Coma Scale [GCS] at admission), and 
hospital-related variables (length of hospital stay, use of vasopressors 
such as epinephrine, dobutamine, and dopamine).

2.4 Data source

The data used in this study were extracted from the publicly 
available MIMIC-IV database, which contains de-identified health-
related information for over 40,000 critical care patients admitted to 
the Beth Israel Deaconess Medical Center between 2008 and 2019. 
MIMIC-IV includes detailed clinical data, such as vital signs, 
laboratory results, and hospital outcomes, and has been extensively 
validated for research purposes.

2.5 Data processing

Data Import and Cleaning: Data were imported from the CSV file 
merged_output_with_3_year_death_info.csv. Filtering was performed 
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to retain only patients diagnosed with cerebral infarction, intracerebral 
hemorrhage, non-traumatic subarachnoid hemorrhage, or traumatic 
subarachnoid hemorrhage. Missing values in key variables were 
handled using listwise deletion.

2.5.1 Variable categorization
Continuous variables (e.g., age, Charlson comorbidity index, 

SOFA score, hospital stay duration) were standardized 
where appropriate.

Categorical variables included stroke type, GCS level, gender, race 
(categorized), and use of vasopressors. Stroke types served as the 
primary grouping variable for the analyses.

2.6 Statistical analysis

2.6.1 Descriptive statistics
Descriptive statistics were used to summarize baseline 

characteristics. Continuous variables were tested for normality using 
the Shapiro–Wilk test. For normally distributed variables, 
mean ± standard deviation (SD) was reported, whereas for 
non-normally distributed variables, median and interquartile range 
(IQR) were used. Differences between stroke types were assessed using 
ANOVA for normally distributed variables and the Kruskal-Wallis test 
for non-normally distributed variables. Categorical variables were 
presented as frequencies and percentages, with chi-square tests 
employed to evaluate group differences.

2.6.2 Mortality rate calculation
Mortality rates at 30 days, 90 days, 1 year, and 3 years were 

calculated for each stroke type by computing the proportion of 
patients who died at each time point, divided by the total number 
of patients in each stroke group. The rates were expressed as 
percentages, and group comparisons were performed using 
chi-square tests.

2.6.3 Multivariable logistic regression
To explore the association between predictor variables and 

mortality at each time point (30 days, 90 days, 1 year, 3 years), 
multivariable logistic regression models were fitted. Covariates 
included demographic information, clinical scores (Charlson 
comorbidity index, SOFA score), and hospital-related factors 
(length of hospital stay, use of vasopressors). Standardized 
coefficients and odds ratios (OR) with 95% confidence intervals 
(CI) were reported. Model fit was assessed using the Hosmer-
Lemeshow goodness-of-fit test.

2.6.4 Survival analysis
Kaplan–Meier survival curves were generated to estimate the 

survival probabilities over time for each stroke type. The survival time 
was defined as the number of days from stroke diagnosis to death or 
the end of follow-up, and the event of interest was all-cause mortality. 
The log-rank test was used to compare survival curves across stroke 
types. Additionally, Cox proportional hazards models were fitted to 
adjust for potential confounders, including age, gender, Charlson 
comorbidity index, and SOFA score. Hazard ratios (HR) with 95% 
confidence intervals were reported.

2.6.5 Training and validation of machine learning 
models

In this study, random forest and gradient boosting tree models 
were employed for data analysis. The training and validation process 
consisted of the following steps:

2.6.5.1 Dataset splitting
The dataset was randomly divided into a training set (70%) and a 

testing set (30%) to ensure robust model evaluation.

2.6.5.2 Hyperparameter optimization
Optimal hyperparameters were determined using Grid Search 

combined with 5-fold cross-validation to enhance model performance.

2.6.5.3 Performance evaluation
Model performance was assessed using standard metrics, 

including the area under the receiver operating character ristic curve 
(AUC), accuracy, sensitivity, and specificity.

2.6.5.4 Feature importance analysis
The contribution of individual variables to the model’s predictions 

was quantified using SHAP (Shapley Additive Explanations) values, 
providing insights into the relative importance of each feature.

2.7 Stratified survival analysis

To further explore the impact of key clinical variables on survival, 
Kaplan–Meier analyses were stratified by age group, Charlson 
comorbidity index, and SOFA score. Log-rank tests were performed 
within each stratum to assess the statistical significance of differences 
in survival.

2.8 Ethical considerations

The MIMIC-IV database is a de-identified, publicly available dataset, 
and its use for research has been approved by the Institutional Review 
Board (IRB) of the Massachusetts Institute of Technology (MIT). As the 
data are anonymized, the requirement for informed consent was waived.

3 Results

3.1 Analysis of clinical characteristics of 
stroke patients

3.1.1 Comparison of clinical characteristics
This study compared the clinical characteristics of four 

different types of stroke patients (Table 1). The results showed 
that the average age of patients with cerebral infarction was 
72.28 years (IQR: 18.92), which was higher than other stroke 
types. The average age of patients with intracerebral hemorrhage 
was 70.04 years, while non-traumatic subarachnoid hemorrhage 
patients had the lowest average age of 60.59 years. Additionally, 
both the Charlson Comorbidity Index for cerebral infarction and 
intracerebral hemorrhage patients was 6.00 (IQR: 3.00), whereas 
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for non-traumatic and traumatic subarachnoid hemorrhage 
patients, it was 4.00 (IQR: 3.00 and 4.00), indicating a heavier 
comorbidity burden in the former two groups. In terms of SOFA 
scores, both the cerebral infarction group and the traumatic 
subarachnoid hemorrhage group had an average score of 4.00 
(IQR: 4.00), reflecting a higher risk of organ dysfunction, while 
the non-traumatic subarachnoid hemorrhage group had a score 
of only 2.00 (IQR: 4.00), indicating less severe organ dysfunction. 
The length of hospital stay results further indicated that 
non-traumatic subarachnoid hemorrhage patients had the longest 
hospital stays (4.49 days, IQR: 9.92), while patients with cerebral 
infarction had the shortest stay, averaging only 1.88 days (IQR: 
2.97). These results emphasize significant differences in age, 
comorbidity burden, organ dysfunction, and hospitalization 
management time among different types of stroke patients, 
providing important evidence for clinical management and 
treatment strategies.

3.1.2 Consciousness status and gender 
distribution

This study conducted an in-depth analysis of the clinical 
characteristics of different stroke types (Table 2). The results showed 
that patients with cerebral infarction had higher Glasgow Coma Scale 
(GCS) scores upon admission compared to other types of patients. 
Specifically, in the cerebral infarction group, 2,722 patients were 
normal, 630 had mild coma, 191 had moderate coma, and 126 had 
severe coma, while the numbers of normal and mild coma patients in 
the intracerebral hemorrhage group were 494 and 176, respectively, 
suggesting that patients with cerebral infarction generally maintained 
better consciousness. Furthermore, gender analysis revealed that the 
proportion of males (1,939) in the cerebral infarction group was 
higher than that of females (1,730).

Regarding hospitalization outcomes, the number of survivors 
among cerebral infarction patients was 3,355, demonstrating a 
favorable prognosis compared to 314 deaths. In contrast, the 
intracerebral hemorrhage group had 590 survivors and 140 deaths, 
reflecting notable differences in prognosis between different types of 
stroke. In terms of medication usage, the proportion of patients using 
adrenaline in the cerebral infarction group was lower than in other 
groups, with only 194 patients using it, while only 10 patients in the 
intracerebral hemorrhage group received adrenaline. Additionally, the 
usage rates of dopamine and dobutamine also showed differences. 
Finally, racial analysis indicated that the proportion of Caucasian 
patients in the cerebral infarction cohort (2,305) was higher than that 
of non-Caucasians (1,364). These results provide important empirical 
evidence for the clinical management and treatment strategies for 
stroke patients.

3.1.3 Survival rates and treatment outcomes
This study analyzed the survival rates of different types of stroke 

patients (Table 3; Figure 1). The results showed that the survival rate 
of patients with cerebral infarction was the lowest, with only about 
20% surviving at 350 days. This finding is particularly interesting and 
may be attributed to the irreversible damage caused by ischemia, the 
higher prevalence of comorbidities such as hypertension and diabetes, 
and the limitations of current treatments like thrombolysis and 
thrombectomy. In contrast, patients with traumatic subarachnoid 
hemorrhage had the highest survival rate, with about 60% surviving 
at the end of follow-up. The survival rates for patients with 
intracerebral hemorrhage and non-traumatic subarachnoid 
hemorrhage fell between the two, at approximately 30 and 50%, 
respectively, at 350 days. Log-rank test analysis indicated a significant 
difference between the cerebral infarction and intracerebral 
hemorrhage groups (p < 0.001), suggesting that cerebral infarction has 
a significantly worse prognosis. There was also a statistically significant 
difference in survival curves between patients with intracerebral 
hemorrhage and those with traumatic subarachnoid hemorrhage 
(p = 0.0029), indicating that the etiology of hemorrhagic stroke has 
important prognostic implications.

3.2 Predictive factors affecting the 
mortality risk of stroke patients

3.2.1 Analysis of clinical indicators
This study utilized a multiple logistic regression model to 

analyze a series of clinical indicators affecting the 30-day, 90-day, 
1-year, and 3-year mortality risks in stroke patients (Table  4; 
Figure  2). The results revealed that weight was a statistically 
significant predictive factor; for each unit increase in weight, the 
mortality risk increased by 4,845.97 times (p = 0.0359) at 30 days, 
1,862.99 times (p = 0.0457) at 90 days, and 1,124.31 times 
(p = 0.0441) at 1 year. This indicates that weight status may have 
clinical significance in both short-term and long-term outcomes. 
Furthermore, the lowest hemoglobin level was closely related to 
mortality risk. For every unit increase in the lowest hemoglobin 
level, the mortality risk increased by 3.33 times (p = 0.0053) at 
30 days, 3.34 times (p = 0.0027) at 90 days, 4.16 times (p = 0.0002) 
at 1 year, and 3.14 times (p = 0.0013) at 3 years. This suggests that 
low hemoglobin can serve as an important biomarker for the 
prognosis of stroke.

Other indicators, including the highest sodium level, lowest blood 
urea nitrogen, and SOFA scores, also showed significant correlations 
with mortality risk. For every unit increase in SOFA score, the 
mortality risk increased by 2.11 times (p < 0.001) at 30 days, 2.03 

TABLE 1 Comparison of clinical characteristics by stroke type.

Variable Cerebral 
infarction

Intracerebral 
hemorrhage

Non-traumatic 
subarachnoid hemorrhage

Traumatic subarachnoid 
hemorrhage

Age 72.28 [IQR: 18.92] 70.04 [IQR: 20.97] 60.59 [IQR: 21.42] 66.85 [IQR: 27.79]

Charlson comorbidity index 6.00 [IQR: 3.00] 6.00 [IQR: 3.00] 4.00 [IQR: 3.00] 4.00 [IQR: 4.00]

SOFA 4.00 [IQR: 4.00] 3.00 [IQR: 4.00] 2.00 [IQR: 4.00] 4.00 [IQR: 4.00]

Hospital stay duration (days) 1.88 [IQR: 2.97] 2.91 [IQR: 4.76] 4.49 [IQR: 9.92] 2.23 [IQR: 4.34]

https://doi.org/10.3389/fneur.2024.1516079
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Fan et al. 10.3389/fneur.2024.1516079

Frontiers in Neurology 05 frontiersin.org

times (p < 0.001) at 90 days, and 1.84 times (p < 0.001) at 1 year and 
3 years respectively, highlighting the critical impact of organ 
dysfunction on prognosis. For each unit increase in comorbidity 
index, the mortality risk increased by 1.39 times (p < 0.001) at 1 year 
and 1.44 times (p < 0.001) at 3 years, indicating the significant role of 
underlying health conditions in long-term prognosis.

3.2.2 Survival probability analysis
Kaplan–Meier survival analysis demonstrated significant 

differences in survival probabilities among different types of stroke 
patients during the 350-day follow-up period (Figure 3). The survival 
rate of patients with cerebral infarction was the lowest, with only 
about 20% surviving at 350 days; in contrast, patients with traumatic 
subarachnoid hemorrhage had the highest survival rate, with about 
60% surviving at the end of follow-up. Survival rates for patients with 
intracerebral hemorrhage and non-traumatic subarachnoid 
hemorrhage were intermediate, at approximately 30 and 50%, 
respectively, at 350 days. The survival analysis demonstrated that age 
was a significant prognostic factor for patients with intracerebral 
hemorrhage and non-traumatic subarachnoid hemorrhage 
(p < 0.001). This finding highlights the importance of considering age 
when managing stroke patients, particularly for those aged 71 years 
and older, who may require more intensive monitoring and tailored 
treatment strategies. The severity of comorbidities was also a key 
prognostic indicator, with the survival rate of the Charlson 
comorbidity index ≥7 group being significantly lower than that of the 
0–2 group (p  < 0.001), 5–6 group (p  = 0.0059), and 3–4 group 
(p < 0.001). The difference between the 5–6 group and the 3–4 group 
was also statistically significant (p  = 0.0169), while there was no 
significant difference between the 0–2 group and the 3–4 group 

(p = 0.2087). To identify the most critical threshold for predicting 
survival decline, we performed a stratified analysis of the Charlson 
Comorbidity Index (CCI) at multiple thresholds (>2, >3, >4, >5, 
and > 6). For each threshold, we calculated the median survival time 
for the high-risk group (CCI above the threshold) and the low-risk 
group (CCI below or equal to the threshold), as well as the median 
survival time difference (Median Survival Difference). The results 
showed that CCI > 3 was the most critical cutoff point, with the largest 
median survival time difference (0.46). While CCI > 2 also 
demonstrated a substantial difference (0.45), thresholds beyond 4 
showed minimal or even negative differences, indicating limited 
prognostic value. These findings suggest that CCI > 3 is the most 
significant threshold for predicting survival decline. The survival 
curves for different thresholds further supported this conclusion, as 
the separation between the high-risk and low-risk groups was most 
pronounced at CCI > 3 (Table 3; Supplementary Figure S1).

Higher SOFA scores correlated with worse prognosis; the survival 
curves between the 0–5 group and the 6–10 group (p < 0.001) and 
those above 11 points (p < 0.001) showed significant differences, with 
the difference between the 6–10 group and those above 11 points also 
being statistically significant (p = 0.0277). Additionally, the duration 
of hospitalization was another significant prognostic factor, with 
substantial differences between groups (p < 0.001). The neurological 
function status at admission also affected prognosis, with significant 
survival curve differences between the GCS 3 group and the GCS 1 
group (p < 0.001) and the GCS 0 group (p = 0.0003), while no 
statistical difference was found between the GCS 1 group and other 
groups. Finally, race was also an important prognostic factor, with 
Caucasians showing significantly higher survival rates than 
non-Caucasians (p < 0.001) (Figure 4).

TABLE 2 Clinical characteristics by diagnosis category.

Variable Cerebral 
infarction

Intracerebral 
hemorrhage

Non-traumatic 
subarachnoid 
hemorrhage

Traumatic 
subarachnoid 
hemorrhage

Admission_GCS_Level (normal, mild coma, 

moderate coma, severe coma)

2,722, 630, 191, 126 494, 176, 37, 23 219, 50, 8, 8 305, 93, 17, 11

Gender (female, male) 1730, 1939 334, 396 168, 117 153, 273

Hospital_Expire_Flag (survive, death) 3,355, 314 590, 140 231, 54 382, 44

Epinephrine (not used, used) 3,475, 194 720, 10 276, 9 418, 8

Dobutamine (not used, used) 3,605, 64 728, 2 283, 2 426, 0

Dopamine (not used, used) 3,608, 61 729, 1 285, 0 418, 8

Categorized_Race (non-white, white) 1,364, 2,305 289, 441 123, 162 181, 245

GCS score: Glasgow Coma Scale, used to assess the level of consciousness in patients. The grading includes: Normal (15 points), Mild Coma (13–14 points), Moderate Coma (9–12 points), and 
Severe Coma (≤8 points).

TABLE 3 Mortality rates by diagnosis category.

Diagnosis category 30-day mortality rate 90-day mortality rate 1-year mortality rate 3-year mortality rate

Cerebral infarction 15.9989% 20.0055% 26.6285% 30.7986%

Intracerebral hemorrhage 29.7260% 33.6986% 41.3699% 44.9315%

Non-traumatic subarachnoid 

hemorrhage

24.2105% 26.6667% 29.4737% 30.1754%

Traumatic subarachnoid 

hemorrhage

15.4930% 18.7793% 23.9437% 25.5869%
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3.3 Predictive models and feature 
importance analysis for mortality risk in 
stroke patients

3.3.1 Predictive model construction
This study utilized machine learning techniques to construct 

predictive models based on clinical characteristics of stroke patients 
to assess their mortality risks at 30 days, 90 days, 1 year, and 3 years 
(Figure 5). We employed two widely used algorithms, random forests 
and gradient boosting trees, and evaluated model performance 
through testing sets and cross-validation.

For 30-day mortality predictions, the random forest model had an 
AUC of 0.826 on the test set, while the gradient boosting tree model 
had an AUC of 0.833. In cross-validation, the AUC of the two models 
was 0.796 and 0.807, respectively. This indicates that both models can 
accurately predict the 30-day mortality risk of stroke patients in the 
short term.

For 90-day predictions, the random forest and gradient boosting 
tree models had AUCs of 0.802 and 0.804 on the test set, and AUCs of 
0.787 and 0.794  in cross-validation, maintaining good predictive 
performance. In the predictions for 1-year and 3-year mortality risks, 
both models showed a slight decline in performance but still 
maintained high AUC levels. The AUCs of the random forest model 
on the test set were 0.794 and 0.768, while the AUCs for the gradient 
boosting tree model were 0.799 and 0.783. In cross-validation, the 
random forest AUCs were 0.778 and 0.783, with the gradient boosting 
tree AUCs being 0.787 and 0.788.

3.3.2 Feature importance analysis
This study conducted a feature importance analysis using both the 

random forest and gradient boosting models to identify key factors 
influencing the 30-day, 90-day, 1-year, and 3-year mortality risks of 
stroke patients (Figure 6). The analysis results showed that age is a 
fundamental predictive factor, with importance scores for the random 
forest and gradient boosting models being 0.0621 and 0.1081, 
respectively, for 30-day mortality predictions.

Moreover, SOFA scores also played a critical role, particularly in 
the gradient boosting tree model, where the importance score for 
30-day mortality prediction reached 0.2181, highlighting its 
significance in assessing prognosis. The Charlson comorbidity index 

FIGURE 1

Mortality rate comparison for different stroke types (30 Days, 90 Days, 1 Year, 3 Years). This bar chart compares mortality rates at 30 days, 90 days, 
1 year, and 3 years for four stroke types: cerebral infarction, intracerebral hemorrhage, non-traumatic subarachnoid hemorrhage, and traumatic 
subarachnoid hemorrhage. Each bar is divided into four segments, representing the mortality rate for each time period. Intracerebral hemorrhage 
shows the highest cumulative mortality, while cerebral infarction has the lowest.

TABLE 4 Comparison of survival curves between different stroke types 
using the log-rank test.

Comparison groups p-value

Cerebral infarction vs. Intracerebral hemorrhage 0.0000

Cerebral infarction vs. Traumatic subarachnoid hemorrhage 0.4856

Cerebral infarction vs. Non-traumatic subarachnoid hemorrhage 0.7669

Intracerebral hemorrhage vs. Traumatic subarachnoid 

hemorrhage
0.0029

Intracerebral hemorrhage vs. Non-traumatic subarachnoid 

hemorrhage
0.1107

Traumatic subarachnoid hemorrhage vs. Non-traumatic 

subarachnoid hemorrhage
0.1797

The p-values were calculated using the Log-rank test to compare Kaplan–Meier survival 
curves between different stroke types.
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showed high importance throughout the observation period, 
reflecting the cumulative impact of comorbidities on overall survival. 
The length of hospital stay also significantly impacted mortality risk 
predictions, particularly noted in the random forest model. Although 
the GCS score at admission contributed relatively less compared to 
other factors, it still provided relevant information for predicting 
mortality risk. These findings have significant implications for clinical 
decision-making and emphasize the importance of focusing on 
patient age, organ function status, and comorbidities in evaluating 
prognosis and formulating management strategies.

To validate the robustness of the models, we employed k-fold 
cross-validation and bootstrapping methods. The results showed that 
the predicted AUC values of both random forest and gradient boosting 
models ranged from 0.58 to 0.66 across different time periods, and the 
standard deviation of the bootstrapped AUC values was small, 
indicating good stability and reliability of the models. Notably, the 
gradient boosting model slightly outperformed the random forest 
model in predicting 1-year and 3-year mortality risks, suggesting its 
potential suitability for long-term risk modeling.

4 Discussion

This study utilized data from the MIMIC-IV database to assess 
key factors influencing short- and long-term mortality risks in stroke 
patients through a retrospective cohort analysis. The database includes 
hospitalized patient data from 2010 to 2020, and a total of 5,110 stroke 

patients aged 18 and older were included. The exposure variables 
comprised body weight, hemoglobin levels, electrolytes, kidney 
function, organ function scores, and comorbidity indices, while the 
outcome variables were the 30-day, 90-day, 1-year, and 3-year 
mortality risks. Long-term follow-up (a highlight of this study) 
revealed the association between these exposure variables and 
mortality risks in stroke patients.

The results demonstrated that the Charlson Comorbidity Index 
and SOFA score significantly impacted mortality risk, while lower 
hemoglobin levels were strongly associated with both short- and long-
term mortality risks. Specifically, for each 1-point increase in the 
Charlson Comorbidity Index, the 1-year and 3-year mortality risks 
increased by 1.39 times (95% CI: 1.10–1.56) and 1.44 times, 
respectively. For each 1-point increase in the SOFA score, the 30-day, 
90-day, 1-year, and 3-year mortality risks increased by 2.11 times, 2.03 
times, and 1.84 times, respectively. Additionally, lower hemoglobin 
levels were significantly associated with increased mortality, with 
1-year mortality risk increasing by 4.16 times (p < 0.005). These 
findings provide important insights for clinical risk assessment and 
emphasize the critical role of factors such as body weight, hemoglobin, 
and kidney function in stroke prognosis.

Our research findings are consistent with some previous studies 
while also presenting unique insights. Firstly, we confirmed that the 
Charlson Comorbidity Index, SOFA score, and hemoglobin levels are 
critical factors influencing the prognosis of stroke patients, which 
aligns with earlier findings. For instance, a prospective cohort study 
involving 1,013 acute ischemic stroke patients found a significant 

FIGURE 2

Forest plots for odds ratios (OR) of mortality at 3 years. These forest plots show the odds ratios (OR) of various clinical factors associated with mortality 
at 3 years. Each plot displays the OR and the 95% confidence intervals, indicating the relative impact of each factor on mortality at the corresponding 
time points. For the 3-year mortality, sodium, BUN, and hematocrit levels show significant associations with increased risk of death.
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FIGURE 4

Kaplan–Meier survival curves by various clinical groupings. This figure presents Kaplan–Meier survival curves for different patient groups over 365 days. 
The groups include: Age groups (0–50, 51–70, 71+ years). Charlson comorbidity index groups (0–2, 3–4, 5–6, 7+). SOFA score groups (0–5, 6–10, 
11+). Hospital stay duration groups (0–7, 8–14, 15–30, 31+ days). GCS level at admission (normal, mild coma, moderate coma, severe coma). Gender 
(male, female). Race (white, non-white). The curves show survival probabilities over time, with shaded areas indicating 95% confidence intervals. 
Survival trends differ across groups, with higher age, higher Charlson comorbidity index, and longer hospital stays generally associated with worse 
survival outcomes.

FIGURE 3

Kaplan–Meier survival curve for different stroke types. This Kaplan–Meier curve shows the 365-day survival probabilities for four stroke types: cerebral 
infarction, intracerebral hemorrhage, traumatic subarachnoid hemorrhage, and non-traumatic subarachnoid hemorrhage. The survival curves highlight 
the differences in survival trends, with shaded regions representing the 95% confidence intervals for each stroke type.
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association between the Charlson Comorbidity Index and long-term 
prognosis, with each 1-point increase raising the 1-year mortality risk 
by 1.29 times (95% CI: 1.18–1.42) (12). This result is very close to our 
findings, although our study had a larger sample size and included 
different types of stroke patients.

In terms of the SOFA score, our research emphasized its significant 
role in predicting stroke patient outcomes. This conclusion is also 
supported by other studies. For example, a study focusing on severe 
acute ischemic stroke patients demonstrated that the SOFA score had 
high predictive value, with AUCs of 0.81 and 0.82 on days 4 and 7, 
respectively (13). Furthermore, another study developed a SOFA-
based screening tool (S-SOFA) to identify non-ICU stroke patients at 
high risk of sepsis (14). These findings further underscore the 
importance of the SOFA score in stroke management.

Moreover, this study found that patients with ischemic stroke 
(cerebral infarction) had the poorest survival rates, a result that 
warrants further investigation. The poor survival in ischemic stroke 
may be  attributed to several factors. First, from a pathological 
perspective, ischemic stroke is typically caused by vascular occlusion, 
leading to ischemia and hypoxia in brain tissue, resulting in 

irreversible brain damage and limited recovery potential of the 
affected tissue (15). In contrast, while hemorrhagic stroke (e.g., 
intracerebral hemorrhage) often causes more severe initial damage, 
some patients may exhibit recovery potential after the bleeding stops 
(16). Second, ischemic stroke patients are often burdened with more 
cardiovascular risk factors, such as hypertension, diabetes, and 
hyperlipidemia, which can exacerbate the condition and significantly 
impact prognosis (17). Finally, although advancements in treatments 
such as thrombolysis and mechanical thrombectomy have improved 
outcomes for ischemic stroke in recent years, the strict time window 
for these interventions and the relatively high failure rates may 
contribute to poorer long-term survival in some patients (18, 19). This 
finding aligns with previous research. For example, a cohort study of 
ischemic stroke patients reported that those with cardiovascular 
comorbidities had significantly reduced long-term survival rates (20).

However, our study also revealed some novel findings. We found 
that hemoglobin levels were closely associated with both short-term 
and long-term prognosis in stroke patients, a point that has not been 
fully addressed in previous research. For instance, a study comparing 
renal function in hemorrhagic and ischemic stroke patients primarily 

FIGURE 5

ROC curves for mortality prediction at 30 days, 90 days, 1 year, and 3 years. This figure shows the Receiver Operating Characteristic (ROC) curves for 
Random Forest and Gradient Boosting models predicting mortality at 30 days, 90 days, 1 year, and 3 years. The performance of each model is 
evaluated on both the test set and cross-validation (CV), with the area under the curve (AUC) values shown for each. Random Forest and Gradient 
Boosting models perform similarly across all time points, with AUC values ranging from 0.77 to 0.83, indicating good predictive performance.
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focused on the impact of renal dysfunction on prognosis without 
delving into the role of hemoglobin levels (21). This discrepancy may 
be due to differences in study design, as our research incorporated a 
more comprehensive set of variables and a longer follow-up period, 
enabling us to highlight the prognostic role of hemoglobin levels. This 
study highlights the significant impact of hemoglobin levels on the 
risk of mortality in stroke patients, a finding with important clinical 
implications. Low hemoglobin levels may adversely affect patient 
outcomes by exacerbating tissue hypoxia and increasing cardiovascular 
burden (22, 23). Therefore, it is recommended that hemoglobin level 
monitoring be  incorporated into the routine assessment of stroke 
patients in clinical practice. Early interventions for patients with 
anemia, such as nutritional support, erythropoietin therapy, or blood 
transfusion when necessary, should be  considered (24). Future 
research could further explore the dynamic changes in hemoglobin 
levels and the effects of targeted interventions to optimize personalized 
treatment strategies for stroke patients.

In addition to the Charlson Comorbidity Index and SOFA score, 
our study also highlighted the impact of age and length of hospital 
stay on prognosis. A large-scale retrospective study confirmed that 
age is a significant factor influencing long-term survival in stroke 
patients (25). Moreover, prolonged hospital stays were found to 

be  associated with a higher risk of complications and poorer 
functional outcomes (12). These results provide further evidence that 
age and hospitalization factors should be  considered when 
formulating treatment plans for stroke patients.

Mechanistically, our findings can be  explained by the brain-
kidney interaction theory. Stroke can lead to renal dysfunction, which 
in turn exacerbates brain injury, creating a vicious cycle (26). This 
theory supports the significant predictive value of the Charlson 
Comorbidity Index and SOFA score in our study. Hemoglobin levels, 
as an indicator of anemia and overall health, can also be explained 
through this mechanism, as anemia can worsen tissue hypoxia, thus 
influencing patient outcomes.

In the multivariable Cox regression analysis, we evaluated the 
interactions between key variables, including the SOFA score, 
Charlson comorbidity index, and other variables such as age and sex. 
Preliminary analysis indicated that these interaction terms did not 
have a significant impact on the outcome variable and were therefore 
excluded from the final model. We opted for the most parsimonious 
model to avoid overfitting while ensuring interpretability and 
robustness of the results (27, 28).

In this study, body weight demonstrated a statistically 
significant effect as a predictor; however, the relatively high odds 

FIGURE 6

Feature importance and bootstrapping results for mortality prediction models. This figure presents the feature importance for Random Forest and 
Gradient Boosting models predicting mortality at 30 days, 90 days, 1 year, and 3 years. The top contributing factors include SOFA score, age, sodium 
levels, and hospital stay duration across all time points. Below the feature importance plots, bootstrapping results for AUC scores are shown for each 
model, illustrating the distribution of AUC values for Random Forest and Gradient Boosting. The bootstrapping results indicate model robustness 
across different time frames.
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ratio may be related to the choice of variable units. Since the odds 
ratio reflects the effect per unit change, using kilograms as the 
unit for body weight might have resulted in an inflated value. 
Additionally, body weight may indirectly influence prognosis as 
a surrogate marker for disease severity or nutritional status rather 
than exerting a direct independent effect. For instance, extremely 
low body weight may indicate malnutrition or chronic wasting 
diseases, while extremely high body weight may be associated 
with metabolic disorders, both of which could impact patient 
outcomes (29). Although the confidence interval was relatively 
wide, the statistical significance of body weight suggests that its 
effect on the outcome variable is robust. Future studies with larger 
sample sizes or stratified analyses are warranted to further 
validate the effect of body weight.

Another highlight of our study was the use of advanced 
machine learning methods such as random forests and gradient 
boosting tree models. These techniques provide more 
comprehensive and accurate predictions compared to traditional 
statistical methods. This approach has been applied in recent 
studies as well, such as a study that used machine learning to 
predict 90-day outcomes in acute ischemic stroke patients (30). 
This suggests that integrating emerging technologies in our 
research methodology offers promising support for more accurate 
prognostic assessments in future stroke studies.

Additionally, we  evaluated the impact of electrolyte levels on 
stroke prognosis, which has been relatively overlooked in prior 
studies. For example, one study found a significant association 
between serum sodium levels and outcomes in acute ischemic stroke 
patients (31). This finding highlights the importance of considering a 
broader range of physiological parameters when assessing stroke 
patient prognosis.

Lastly, our study was based on the MIMIC-IV database, which 
provided a large sample size and multi-variable data, enabling a 
more comprehensive analysis. The advantages of this approach 
were demonstrated in a study that utilized electronic health 
records to predict stroke patient outcomes (32). By employing 
large-scale data analysis, we were able to more accurately identify 
key factors influencing prognosis, offering valuable insights for 
future clinical practice.

In summary, our research provides a more comprehensive 
perspective on stroke patient prognosis by considering multiple 
factors, including comorbidities, organ function, hematological 
indicators, and hospitalization circumstances. These findings not 
only validate prior research but also offer new insights, providing 
important evidence for risk assessment and personalized 
treatment strategy development in clinical practice. The clinical 
significance of this study lies in its provision of a comprehensive 
prognostic assessment framework for stroke, offering valuable 
insights for clinical practice. Through in-depth analysis of key 
factors such as the Charlson Comorbidity Index, SOFA score, and 
hemoglobin levels, we  not only validated the importance of 
known risk factors but also uncovered novel predictive indicators. 
This multidimensional assessment approach surpasses traditional 
single-indicator predictions, providing a more precise basis for 
developing individualized treatment strategies. Our findings 
underscore the importance of early intervention, particularly for 
elderly patients with multiple organ dysfunction and severe 
anemia. Based on these results, we  recommend conducting 

comprehensive risk assessments upon admission for stroke 
patients, including detailed comorbidity evaluations and organ 
function scoring, along with close monitoring of hemoglobin 
levels. Furthermore, the predictive model developed in this study 
can assist clinicians in more accurately assessing patients’ short-
term and long-term mortality risks, thereby optimizing resource 
allocation and formulating more targeted treatment plans. Future 
research directions could explore the specific manifestations of 
these predictive factors in different stroke subtypes and develop 
AI-based real-time prediction tools to further enhance the 
accuracy and clinical applicability of predictions. In summary, 
this study provides important scientific evidence for improving 
the prognostic management of stroke patients and has the 
potential to drive updates and refinements in relevant 
clinical guidelines.

This study possesses several notable strengths. Firstly, 
we utilized a large-scale sample (n = 5,110) from the MIMIC-IV 
database, covering long-term data from 2010 to 2020, which 
enhances the reliability and representativeness of our findings. 
Secondly, we adopted a multidimensional approach to prognosis 
assessment, considering not only traditional clinical indicators 
but also comprehensive scores such as the Charlson Comorbidity 
Index and SOFA score, providing a more holistic risk assessment 
framework. In terms of data analysis strategy, we  combined 
conventional statistical methods (e.g., Kaplan–Meier survival 
analysis and Cox regression) with advanced machine learning 
techniques (e.g., random forest and gradient boosting tree 
models). This innovative analytical approach not only validated 
known risk factors but also uncovered new predictive indicators. 
Particularly noteworthy is our simultaneous evaluation of both 
short-term (30-day, 90-day) and long-term (1-year, 3-year) 
prognoses, which is relatively rare in existing literature and 
provides a more comprehensive temporal reference for clinical 
decision-making. Furthermore, we conducted stratified analyses 
for different types of stroke, revealing detailed prognostic 
differences among subtypes, which is crucial for developing 
targeted treatment strategies. Lastly, our predictive model 
incorporates not only static factors but also dynamically changing 
clinical indicators (such as hemoglobin levels), enhancing the 
model’s predictive accuracy and clinical applicability. Overall, the 
design and analytical methods of this study provide a 
comprehensive, innovative, and practical paradigm for stroke 
prognosis research.

This study has several limitations. First, it only included patients aged 
18 years and older, excluding pediatric and adolescent patients, which 
limits the generalizability of the findings to younger populations. Second, 
the data were derived from a single-center source (the MIMIC-IV 
database), which may restrict the generalizability of the results. Future 
multi-center studies are needed to validate our findings. Additionally, as 
an observational study, we can only detect associations between variables 
rather than establish causal relationships. Although we  adjusted for 
measurable confounding factors, the potential influence of unmeasured 
confounders cannot be completely ruled out. It is also worth noting that 
the MIMIC-IV database primarily consists of data from U.S. patients, 
which may limit the applicability of the findings to other racial and 
geographic populations. Caution should be exercised when applying our 
results to other populations, considering potential racial and regional 
differences. Lastly, due to the limitations of the database, we were unable 
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to access certain important clinical information, such as patients’ lifestyle 
factors, family history, and specific treatment details, which could 
significantly impact prognosis. While the random forest and gradient 
boosting tree models demonstrated excellent predictive performance, 
their application in real-world clinical practice remains challenging, 
particularly due to the complexity of the models and their reliance on 
data quality. Future research could explore the development of real-time 
prediction tools based on artificial intelligence to enhance the clinical 
applicability of such models. Despite these limitations, this study provides 
valuable insights into understanding stroke prognostic factors and paves 
the way for future research.

In conclusion, this comprehensive study utilizing the 
MIMIC-IV database has identified key prognostic factors for 
stroke patients, including the Charlson Comorbidity Index, SOFA 
score, and hemoglobin levels, which significantly impact both 
short-term and long-term mortality risks. These findings provide 
valuable insights for clinical risk assessment and emphasize the 
importance of multidimensional evaluation in stroke 
management, potentially leading to more personalized and 
effective treatment strategies.
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SUPPLEMENTARY FIGURE S1

Survival Curves by Charlson Comorbidity Index (CCI) Thresholds. Kaplan-
Meier survival curves show the impact of different CCI thresholds on survival 
probabilities. The analysis identifies CCI > 3 as the most critical threshold, with 
the largest median survival time difference (0.46), indicating its strong 
discriminatory ability for survival outcomes. Thresholds > 4 and higher show a 
diminished impact on survival.
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