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Objective: To investigate changes of brain functional activity in patients with 
acute unilateral vestibulopathy (AUVP) using functional magnetic resonance 
imaging (fMRI).

Methods: We studied 32 AUVP patients and 30 healthy controls (HC) who 
received resting-state fMRI scanning. Methods of voxel-based amplitude of low-
frequency fluctuation (ALFF) and seed-based functional connectivity (FC) were 
adopted to compare the difference in brain function between the two groups. 
In addition, we  evaluated the associations between abnormal neuroimaging 
results and clinical data in AUVP patients.

Results: Compared with HC, patients with AUVP showed lower ALFF in brain 
regions of bilateral insular, right precentral gyrus, left inferior frontal gyrus and 
right middle frontal gyrus, as well as higher ALFF in left cerebellar anterior lobe. 
Using these abnormal brain areas as seeds, we observed decreased FC between 
left insular and left precuneus in AUVP patients. Furthermore, AUVP patients 
showed increased FC between left insular and left supplementary motor area. 
Results of correlation analysis indicated that ALFF value (z-value) in left insular 
was negatively correlated with the canal paresis value (p = 0.005, r = −0.483), 
and the FC (z-value) between left insular and left precuneus was negatively 
correlated with dizziness handicap inventory score (p = 0.012, r = −0.438) in 
patients with AUVP.

Conclusion: Patients with AUVP during acute period showed altered functional 
activity and connectivity in brain regions mainly involved in motor control and 
vestibular information processing. These changes in brain functional activity and 
connectivity were potentially attributed to decreased vestibular input resulting 
from unilateral peripheral vestibular impairment.
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Introduction

Acute unilateral vestibulopathy (AUVP), also previously known 
as vestibular neuritis (VN), is an acute vestibular syndrome. It mainly 
presents with acute or sub-acute vertigo and instability following acute 
impairment of vestibular function on one side, accompanied by 
nausea and vomiting, without hearing loss or central nervous system 
defects (1, 2). The annual incidence of AUVP has been reported to 
be 3.5–15.5 cases per 100,000 people (3, 4). AUVP is considered the 
sixth most common cause of vertigo/dizziness and the third most 
common cause of peripheral vestibular diseases second only to benign 
paroxysmal positional vertigo and Meniere’s disease (5). The usual age 
of onset of AUVP is 30–60 years old, and the peak age of onset is 
distributed between 40–50 years old (3, 4).

In clinical practice, AUVP patients often suffer from static and 
dynamic symptoms. At the same time, the body carries out static and 
dynamic compensation accordingly. The relief of static symptoms 
mainly depends on static compensation, which is believed to be related 
to the rebalance of electrical activity between the bilateral vestibular 
nuclei (6). Whereas, the full recovery of dynamic symptoms requires 
complex dynamic compensatory strategies that involve different brain 
regions (6). Recently, with the development of imaging techniques, an 
increasing number of studies have focused on the application of 
neuroimaging techniques to explore the brain metabolic, functional, 
and structural changes after unilateral peripheral vestibular damage 
(UPVD). Using 18F-fluorodeoxyglucose (18-FDG) positron emission 
tomography (PET) in VN patients during acute stage, Bense and 
colleagues reported increased regional cerebral glucose metabolism 
(rCGM) in multi-sensory vestibular cortical and sub-cortical regions, 
as well as decreased rCGM in visual, somatosensory and auditory 
cortices (7). Another 18-FDG PET study suggested that the 
mechanism of central compensation in AUVP was based on a shift of 
the dominant ascending vestibular input from the ipsilateral to the 
contralateral pathways (8).

In recent years, the application of functional magnetic resonance 
imaging (fMRI) and structural MRI provides new methods to explore 
the functional and structural alterations of the brain areas involved in 
patients with UPVD. In VN patients during chronic stage (more than 
6 months’ post-onset), a task-state fMRI (visual and vestibular 
stimulation) study observed decreased activation in the primary visual 
cortex (V1) between patients and controls (9). The authors suggested 
that central compensation in patients with VN were partly mediated 
by adaptive mechanisms associated with the early visual cortex (9). In 
a resting-state fMRI study without any task or stimuli, patients with 
VN during acute phase displayed decreased functional activity in the 
contralateral intraparietal sulcus. Interestingly, the functional activity 
of this brain region increased 3 months later (10). These results 
indicated powerful compensatory cortical changes in resting-state 
activity in patients with VN (10). Another resting-state fMRI study 
indicated that the disturbed functional connectivity of default mode 
network provided some insights into mechanisms of central 
compensation in acute VN patients (11). A structural MRI study in 
acute VN patients using method of voxel-based morphometry (VBM) 
analysis demonstrated increased grey matter volume (GMV) in 
regions of vestibular cortex, bilateral hippocampus, visual cortex and 
the cerebellum, as well as decreased GMV in vermis and the prefrontal 
cortex (12). Another VBM study found increased GMV in acute VN 
patients’ multi-sensory vestibular cortices, cerebellum and the middle 

temporal area (motion-sensitive areas), as well as decreased GMV in 
the midline pontomedullary junction (13). In chronic stage VN 
patients (an average 2.5 years after onset of VN), a VBM study 
observed signal intensity increases for gray matter in the medial 
vestibular nuclei and the right gracile nucleus and for white matter in 
the area of the pontine commissural vestibular fibers (14).

Thus it can be seen, previous studies using neuroimaging methods 
such as 18-FDG PET, task-state fMRI, resting-state fMRI, and high-
resolution T1-weighted images to investigate brain metabolic, 
functional, and structural changes in patients with AUVP have shown 
that multiple brain regions were altered following UPVD. Undeniably, 
these neuroimaging studies have significantly contributed to 
elucidating the complex central alterations associated with 
UPVD. However, the consistency and reproducibility of these studies 
are often lacking. This may be attributed to several factors, including 
relatively small sample sizes, clinical heterogeneity among participants, 
variations in imaging devices and scanning parameters, as well as 
diverse imaging analytical methods employed in previous studies. 
Furthermore, from a neuroimaging perspective, there is currently no 
specific theoretical model addressing central alterations in patients 
with AUVP. Therefore, using resting-state fMRI, we further explored 
the functional alterations in patients with AUVP. One notable feature 
of the current study is that patients with AUVP were diagnosed 
according to the diagnostic criteria established by the committee for 
the classification of vestibular disorders of the Bárány Society in 2022 
(15). Unlike most previous research utilizing fMRI to investigate 
functional changes in patients with AUVP, the present study employed 
voxel-based amplitude of low-frequency fluctuation (ALFF) in 
conjunction with seed-based functional connectivity (FC) methods. 
Furthermore, we  assessed the relationship between neuroimaging 
findings and the clinical characteristics of the patients. 
We  hypothesized that patients with AUVP may exhibit altered 
functional activity and connectivity in brain regions associated with 
motor control and vestibular information processing.

Materials and methods

Subjects

We included 36 right-handed AUVP patients who were 
hospitalized in the Second Affiliated Hospital of Xuzhou Medical 
University. AUVP was diagnosed based on the criteria published by 
the Bárány Society in 2022 (15). All patients received routine 
neurological and neuro-otological evaluation, including demographic 
information, history of present illness, past medical history, 
neurological and vertigo bedside examination, conventional MRI 
(T1WI + T2WI + FLAIR+DWI), vestibular laboratory examinations 
(videonystagmograph (VNG), video head impulse test (vHIT), 
vestibular-evoked myogenic potentials (VEMPs) and rotatory chair 
test), audiogram and otoscopy. In addition, each patient underwent 
resting-state fMRI, as well as assessments of Montreal Cognitive 
Assessment scale (MoCA), Hamilton Anxiety Scale (HAMA), 
Hamilton Depression Scale (HAMD), Vertigo Visual Analogue Scale 
(VVAS; 0, no vertigo; 10, worst vertigo) and Dizziness handicap 
inventory (DHI). Patients with neurological, neuro-otological, mental 
or systemic diseases were excluded. Patients with a history of AUVP, 
drug or alcohol abuse were excluded. Patients were not allowed to take 
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vestibular function inhibitors within 2 days prior to assessments of 
vestibular function and fMRI. No patient showed evidence for central 
neurological signs and symptoms. No patient had hearing impairment, 
tinnitus or otalgia. Patients with mild vestibular dysfunctions 
unrelated to AUVP were not included in the present study. To control 
for laterality, all patients suffered damage to the right side. All patients 
showed spontaneous peripheral vestibular nystagmus on 
VNG. Vestibular function examinations showed that all patients had 
reduced vestibulo-ocular reflex (VOR) function on the opposite 
direction of the fast phase of the spontaneous nystagmus (VOR gain 
less than 0.7 with saccades for vHIT, or canal paresis more than 25% 
for rotatory chair test).

Thirty-two right-handed volunteers served as healthy controls 
(HC). They had no history of dizziness or vertigo. None of them had 
a history of neurological, neuro-otological, psychological, or systemic 
disorders. Volunteers with history of drug or alcohol abuse were 
excluded. All HC received conventional MRI and resting-state fMRI, 
as well as assessments of MoCA, HAMA and HAMD. This study was 
approved by the Ethics Committee of the Second Affiliated Hospital 
of Xuzhou Medical University. All participants signed informed 
consent before entering the study.

Imaging acquisition

The fMRI examinations were carried out on a 3.0 T GE MRI 
scanner (GE Medical Systems) at the medical image center of the 
Second Affiliated Hospital of Xuzhou Medical University. Participants 
were instructed to close their eyes, lie flat and still and remain awake 
during scanning. We  adopted a 3D-BRAVO sequence to acquire 
T1-weighted images with the following scanning parameters: 
repetition time (TR) = 2,500 ms, echo time (TE) = 3.5 ms, flip angle 
(FA) = 8°, matrix size =256 × 256, field of view 
(FOV) = 250 mm × 250 mm, thickness/gap = 1/0 mm, slice 
number = 156. In addition, we used a fast field echo-planar imaging 
(EPI) sequence to obtain the fMRI images (TR = 2000 ms, TE = 30 ms, 
FA = 90°, FOV = 200 × 200 mm, matrix size = 64 × 64, thickness/
gap = 3.6/0 mm, the total scan time was 7 min).

The fMRI data preprocessing

The fMRI data were processed using CONN toolbox (version 
18b)1 and Statistical Parametric Mapping 12 (SPM12)2 working on 
MATLAB R2023a platform (MathWorks, Inc., Natick, MA, USA). 
After images format conversion (DICOM to NIFTI), the first 10 time 
points were removed, the remaining 200 functional volumes of each 
subject were preprocessed with the following procedures: (1) to 
reduce the difference in the acquisition time of each layer during 
scanning, slice-timing correction was performed; (2) realignment 
(subject motion estimation and correction): the threshold of subject-
motion was 2 mm; (3) functional outlier detection: Artifact Detection 
Tools (ART)-based identification of outlier scans for scrubbing was 

1 http://www.Nitrc.org/projects/conn

2 http://www.fil.ion.ucl.ac.uk/spm/software/spm12

performed to remove the aberrant time points (a global-signal z-value 
threshold of 9); (4) to reduce the inconsistency of structural center 
caused by manual positioning by MR technicians during each scan, 
structural center to (0, 0, 0) coordinates was performed; (5) 
segmentation and normalization (DARTEL): the DARTEL method 
was adopted to register the structural space and functional space to 
realize the conversion from a single space to the standard Montreal 
Neurological Institute (MNI) space, and then all images were 
resampled to 3 × 3 × 3 mm3; (6) smoothing was performed based on 
a Gaussian kernel of 6 mm full-width at half maximum to improve 
the normality of the images; (7) band-pass filter: the spatially 
normalized images were passed through band-pass filter (0.01–
0.08 Hz); (8) linear regression of confounding effects: white matter, 
cerebrospinal fluid, global mean signal and motion realignment 
parameters were regressed out. Four patients and two HC were 
excluded due to large head-motion or poor normalization. Finally, 32 
patients with AUVP and 30 HC were included in the 
following analysis.

ALFF calculation

The power spectrum was obtained by transforming the filtered 
time series into frequency-domain data using the fast Fourier 
transform (FFT). The mean square root of the power spectrum in the 
range of 0.01 to 0.08 Hz was calculated as the ALFF value. Then the 
ALFF value for each subject was converted to a z-score for further 
between-groups comparison.

FC calculation

A seed-based method was used to calculate the FC between seeds 
and the rest of the brain voxels. Six brain regions that showed 
significant group differences in ALFF values were chosen as seeds. 
Seed 1: left insular [coordinates (−38, −7, 9)]; Seed 2: right precentral 
gyrus (PreCG) [coordinates (27, −3, 45)]; Seed 3: left inferior frontal 
gyrus (IFG) [coordinates (−51, 12, 9)]; Seed 4: right insular 
[coordinates (45, −9, 3)]; Seed 5: right middle frontal gyrus (MFG) 
[coordinates (51, 48, 3)]; Seed 6: left cerebellar anterior lobe (CAL) 
[coordinates (−20, −87, −24)]. The seed area was made with the above 
six spatial coordinates and a radius of 5 mm. We extracted the mean 
time series for each seed from the smoothed images. Then, Pearson 
correlation coefficients (r) between each seed and the remaining of the 
brain voxels were calculated and converted to z-scores by Fisher 
r-to-z transformation.

Statistical analysis

Analysis of demography and clinical 
characteristics

The Statistical Package for the Social Sciences (SPSS Institute Inc., 
Chicago, IL, USA, v22.0) for Windows was used to analyse data of 
demography and clinical characteristics. We  adopted two-sample 
t-tests to compare the group differences in age, years of education, 
score of HAMA, HADM, and MoCA. The chi-square test was applied 
for the analysis of gender. The significance level was set to p < 0.05.
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Analysis of differences in ALFF and FC
Differences in ALFF and FC between patients with AUVP and HC 

were evaluated using two-sample t-tests, with age, gender, educational 
years, scores of HAMA, HADM, and MoCA as covariates considering 
their confounding effects. The significance threshold was set at voxel-
level threshold (p < 0.001) and cluster-level threshold (p < 0.05, false 
discovery rate (FDR) corrected, two-tailed).

Correlation analysis

For FC and ALFF (z-values) showing significant differences 
between the two groups, Pearson’s partial correlation analysis was 
used to examine the relationship between neuroimaging results and 
clinical features in patients with AUVP, controlling for age, gender, 
year of education, scores of MoCA, HAMA and HAMD. A significant 
correlation was defined as a p < 0.05.

Results

Demographic and clinical features

The demographic and clinical characteristics of the two groups 
were summarized in Table 1. There was no significant difference in 
age, gender, education level, scores of HAMA, HAMD and MoCA 
between patients with AUVP and HC (all p > 0.05). All AUVP 
patients we enrolled showed normal cognitive function, with no 
obvious symptoms of anxiety or depression. Patients suffered from 
moderate to severe vertigo which resulted in moderate dizziness 
handicap in this study. The duration of AUVP ranged from 1 to 
6 days (2.8 ± 1.4 days). 9 (28.1%) patients had a clear history of 
upper respiratory infection before onset. All patients (32, 100%) 
had right peripheral vestibular lesions. All patients (32, 100%) 
showed peripheral spontaneous nystagmus, abnormal vHIT and 
canal paresis (CP, 60.6 ± 20.0%). Ocular VEMP (oVEMP) was 
abnormal in 25 cases (78.1%) and cervical VEMP (cVEMP) was 
abnormal in 10 cases (31.2%).

ALFF differences between groups

As showing in Table  2 and Figure  1, compared with HC, 
patients with AUVP showed lower ALFF in brain regions of 
bilateral insular, right PreCG, left IFG and right MFG, as well as 
higher ALFF in left CAL (threshold was set at voxel-level threshold 
(p < 0.001) and cluster-level threshold (p < 0.05), FDR corrected, 
two-tailed).

FC differences between groups

The FC differences between the two groups were displayed in 
Table 3 and Figure 2. Compared with HC, patients with AUVP showed 
decreased FC between the left insular and the left precuneus, as well 
as increased FC between the left supplementary motor area (SMA) 
and the left insular (voxel-level threshold p < 0.001; cluster-level 
threshold p < 0.05, FDR corrected, two-tailed).

Correlation results

Results of correlation analysis showed that ALFF value (z-value) 
in the left insular was negatively correlated with the CP value 
(p = 0.005, r = −0.483) and FC (z-value) between left insular and left 
precuneus was negatively correlated with DHI score (p = 0.012, 
r = −0.438) in patients with AUVP (Figure 3).

Discussion

Using methods of ALFF and FC, the current study 
investigated the changes of brain functional activity and 
connectivity in patients with AUVP during acute state. We found 
that compared with HC, the resting-state brain functional activity 
and connectivity of AUVP patients were altered, and these 
alterations were closely related to certain clinical characteristics 
of the patients.

TABLE 1 Demographic information and clinical characteristics of the participants.

AUVP (n = 32) HC (n = 30) p-value

Age (years) 44.6 ± 11.5 42.0 ± 6.7 0.286

Sex (male/female) 13/19 15/15 0.459

Education (years) 14.9 ± 2.9 16.2 ± 3.5 0.125

MoCA scores 27.1 ± 1.7 27.6 ± 1.4 0.153

HAMA scores 8.3 ± 2.3 7.4 ± 2.0 0.084

HAMD scores 9.7 ± 2.8 8.7 ± 2.2 0.115

VVAS scores 6.7 ± 2.0 N/A N/A

DHI scores 59.7 ± 18.3 N/A N/A

Duration of AUVP (days) 2.8 ± 1.4 N/A N/A

CP (%) 66.7 ± 18.7% N/A N/A

Spn-SPV (°/s) 13.6 ± 11.9°/s N/A N/A

AUVP, Acute unilateral vestibulopathy; HC, healthy control; MoCA, Montreal cognitive assessment scale; HAMA, Hamilton anxiety scale; HAMD, Hamilton depression scale; VVAS, Vertigo 
visual analogue scale; DHI, Dizziness handicap inventory; CP, Canal paresis; Spn-SPV, Slow-phase velocity of spontaneous nystagmus; N/A, Not applicable.
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Altered ALFF in AUVP patients

Compared with HC, the ALFF values of bilateral insula in 
AUVP patients were significantly lower, suggesting a decline in 

functional activity of the bilateral insula. Studies have demonstrated 
that the parieto-insular vestibular cortex (PIVC) is the primary 
vestibular cortex of human, in which the insula is an important 
part and plays a crucial role in the processing of vestibular 

TABLE 2 Brain regions with significant differences in ALFF between patients with AUVP and HC.

Regions Cluster size Peak MNI coordinates 
(x, y, z)

t-value AAL BA

L-insular 105 −38 −07 09 −6.20 Insula_L 13

R-PreCG 77 27 –03 45 −6.01 Precentral_R 6

L-IFG 65 −51 12 09 −5.89 Frontal_Inf_Oper_L 44

R-insular 38 45 –09 03 −5.23 Insula_R 13

R-MFG 36 51 48 03 −4.94 Frontal_Mid_R 46

L-CAL 34 −20 −87 −24 4.89 Cerebellum crus1_L 18

Threshold was set at voxel-level threshold (p < 0.001) and cluster-level threshold (p < 0.05, FDR corrected, two-tailed). FDR, False discovery rate; ALFF, Amplitude of low-frequency 
fluctuation; AUVP, Acute unilateral vestibulopathy; HC, Healthy controls; MNI, Montreal neurological institute; AAL, Anatomical automatic labeling; BA, Brodmann area; L, Left; R, Right; 
PreCG, Precentral gyrus; IFG, Inferior frontal gyrus; MFG, Middle frontal gyrus; CAL, Cerebellar anterior lobe.

FIGURE 1

Brain regions with significant differences in ALFF between patients with AUVP and HC. Threshold was set at voxel-level threshold (p < 0.001) and 
cluster-level threshold (p < 0.05, FDR corrected, two-tailed). The blue and purple regions represent the brain regions where the ALFF value of acute 
unilateral vestibulopathy (AUVP) patients is significantly decreased compared with the healthy controls (HC), and the red and yellow regions refer to the 
brain areas where the ALFF value of AUVP patients is significantly increased. The left side of the picture is the left side of the human brain. FDR, False 
discovery rate; ALFF, Amplitude of low-frequency fluctuation.
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information (16–19). The insular cortex was significantly activated 
during vestibular stimulation (9, 20). A previous paper suggested 
that vestibular dysfunction in patients with AUVP is not limited to 
the peripheral vestibular apparatus and vestibular nucleus, but also 
involves the central vestibular cortex (21). It has also been reported 
that patients with AUVP exhibit abnormal cortical activation, 
characterized by alterations in local glucose metabolism within the 
insular vestibular cortex on the lesion side. These changes reflect 
variations in the functional activity of the insular cortex during the 
resting state (7). A VBM study found that the GMV of the multi-
sensory vestibular cortex in patients with chronic AUVP was 
significantly increased compared to healthy controls, particularly 
in the insula. This finding suggests a structural compensation in 
the insular cortical region among chronic AUVP patients (13). 
Alterations in insular cortical functional activity were also seen in 
patients with other vestibular disorders, such as persistent 

postural-perceptual dizziness (PPPD) and vestibular migraine (22, 
23). In our study, patients with AUVP exhibited abnormal bilateral 
insular cortical functional activity, indicating decreased central 
vestibular processing during the acute stage. Additionally, 
we  found that the functional activity in the left insula was 
correlated with the CP value of the AUVP patients. Therefore, 
we propose that the altered functional activity in the insular cortex 
may be closely associated with the vertigo symptoms experienced 
by AUVP patients.

We also found decreased ALFF value in the right MFG in 
patients with AUVP. The MFG receives vestibular information and 
is believed to be the origin of the direct fibers of the vestibular 
nucleus (24). Task-state fMRI studies have demonstrated that the 
MFG is significantly activated in response to electrical or caloric 
stimulation, suggesting that the MFG plays a crucial role in the 
vestibular cortex circuit (25, 26). Consequently, the decreased 

TABLE 3 Abnormal functional connectivity of left insular in AUVP patients compared with HC.

Regions Cluster size Peak MNI coordinates 
(x, y, z)

t-value AAL BA

L-PCUN 188 −9 −72 36 −5.7085 Precuneus_L 7

L-SMA 73 0 –3 54 4.5662 Supp_Motor_Area_L 6

Threshold was set at voxel-level threshold (p < 0.001) and cluster-level threshold (p < 0.05, FDR corrected, two-tailed). FDR, False discovery rate; AUVP, Acute unilateral vestibulopathy; HC, 
Healthy controls; MNI, Montreal neurological institute; AAL, Anatomical automatic labeling; BA, Brodmann area; L, Left; PCUN, Precuneus; SMA, Supplementary motor area.

FIGURE 2

Abnormal functional connectivity of left insular in patients with acute unilateral vestibulopathy (AUVP) compared with healthy controls (HC). Threshold 
was set at voxel-level threshold (p < 0.001) and cluster-level threshold (p < 0.05, FDR corrected, two-tailed). FDR, False discovery rate; L, Left; PCUN, 
Precuneus; SMA, Supplementary motor area.
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functional activity observed in the right MFG in our study may 
indicate a reduction in vestibular information processing in 
patients with AUVP.

The PreCG is the primary motor cortex of the human body, 
receiving information from the cerebellum and basal ganglia via 
the sensory area of the parietal lobe and the projection from the 
thalamo-cortex. It plays a crucial role in motion control and gait 
balance. Previous functional neuroimaging studies have found that 
caloric or electrical stimulation of the peripheral vestibular area 
can generate symptoms of vertigo. At the same time, the PreCG 
was significantly activated (27, 28). It has been reported that 
patients with PPPD showed reduced GMV in the PreCG (29). In 
the present study, we  observed a significant reduction in the 
functional activity of the right PreCG in patients with 
AUVP. We hypothesize that this decrease in functional activity may 
be associated with the directional imbalance of bilateral vestibular 
tension resulting from acute unilateral vestibular injury, which in 
turn contributes to balance disorders and instability in 
AUVP patients.

We also observed decreased ALFF value in the left IFG in patients 
with AUVP. The left IFG (BA44/45/47) was proved by a meta-analysis 
to be involved in motor control (30). It was also suggested that the left 
IFG participated in motion perception and in the evaluation of action 
intentions (30). Therefore, we believed that the decreased functional 
activity in left IFG was also related to the impaired motion control in 
patients with AUVP.

The projection of the vestibular nucleus extends into the 
cerebellum, which plays an important role in maintaining balance 
and coordination during goal-oriented movement (31, 32). The 
cerebellum is closely related to vertigo, and stroke accompanied by 
cerebellar injury is one of the most common causes of vascular 
vertigo (33). The CAL (cerebellum crus1 in our study) has been 
reported to be  associated with spatial cognition and plays an 
important role in spatial navigation and positioning (34, 35). The 
current study identified an increased ALFF value in the left CAL, 
which may reflect impairments in balance and spatial cognition in 
AUVP patients.

Altered FC in AUVP patients

In seed-based FC analysis, we found decreased FC between left 
insular and left precuneus in AUVP patients. The precuneus is a 
crucial part of posterior default mode network (pDMN), which is 
believed to be involved in attention monitoring and self-centered 
cognition (36, 37). A psychologist suggested that the precuneus 
might be involved in human emotional processing (38). Although 
vertigo is often accompanied by anxiety or depression, the subjects 
included in our study showed no obvious moderate–severe 
emotional disorders. Thus, the altered functional activity in bilateral 
precuneus might have less to do with emotion. A previous fMRI 
study indicated that the preceneus was engaged in visual 
information processing as they observed increased precuneus 
activation during optokinetic stimulation (39). Additionally, it has 
been reported that electrical stimulation of the precuneus can 
induce symptoms of vertigo, indicating that the precuneus may play 
a crucial role in processing vestibular information (40, 41). 
We  propose that the precuneus is part of the multi-sensory 
vestibular cortex, and the decreased functional connectivity 
between the insula and precuneus may reflect abnormal functional 
activity within the multi-sensory vestibular cortex in patients 
with AUVP.

Furthermore, increased FC between the left insular and the left 
SMA was observed in AUVP patients. The SMA was reported to 
be involved in self-initiated and triggered movements (42, 43). The 
enhanced FC between the contralesional insula and SMA is likely to 
be a result of relative contralesional activation leading to increased 
transmission of vestibular information from the contralesional side to 
posture-regulating areas.

Limitations

There are some limitations in the present study. Firstly, the sample 
size was relatively small, so this study was not representative of the 
entire AUVP population. Future studies should consider larger, more 

FIGURE 3

Significant correlations between neuroimaging changes and clinical features in patients with acute unilateral vestibulopathy. (A) Amplitude of low-
frequency fluctuation (ALFF) value in left insular was negatively correlated with the canal paresis value (p = 0.005, r = −0.483). (B) Functional 
connectivity (FC) between left insular and left precuneus was negatively correlated with dizziness handicap inventory (DHI) score (p = 0.012, 
r = −0.438).
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diverse patient populations to enhance the generalizability of the 
results. Secondly, lesion side and the handedness of the subjects had a 
complex interplay on brain functional changes after AUVP (8). To 
control for this, only right-handed subjects with right sided AUVP 
were included in this study. However, we  did not compare the 
differences in brain functional changes between patients with left and 
right lesions. The third potential limitation was that we did not follow 
up patients with AUVP to observe changes in brain functional activity 
after 3 months to further verify the results of this study. Finally, future 
studies should integrate additional imaging analysis techniques to 
further investigate the brain functional changes in patients with 
AUVP. Examples of such methods include independent component 
analysis (ICA), functional network connectivity (FNC), and dynamic 
functional network connectivity (dFNC).

Conclusion

Patients with AUVP during acute period showed altered 
functional activity and connectivity in brain regions mainly involved 
in motor control and vestibular information processing. These 
changes in brain functional activity and connectivity were potentially 
attributed to decreased vestibular input resulting from unilateral 
peripheral vestibular impairment. Our findings offer novel insights 
into the brain functional changes following acute unilateral peripheral 
vestibular impairment.
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