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Introduction: Despite improvements in the treatment of acute ischemic stroke 
(AIS), some patients still suffer from functional impairments, indicating the 
poor understanding of pathophysiologic process of AIS. Inflammation plays an 
important role in the pathophysiology of AIS. The purpose of the study was to 
investigate the peripheral inflammation in different subtypes of AIS.

Methods: Here, retrospective data from AIS with large vessel occlusion (LVO) and 
small vessel occlusion (SVO), and healthy controls, were initially analyzed. Then, 
flow cytometry was performed to evaluate the levels of peripheral naïve and 
memory T-cells. Finally, we characterized the T cell receptors (TCR) repertoire 
using high-throughput sequencing.

Results: Elevated levels of leukocytes, neutrophils, and neutrophil-to-
lymphocyte ratio (NLR), and decreased levels of lymphocytes were found in 
LVO group than that in SVO group, which were correlated with the severity of 
LVO. In addition, higher percentages of both effector memory (Tem) and central 
memory (Tcm) T cells, and lower percentage of naïve T cells in CD4+ and CD8+ 
T cells, were found in LVO group than that in SVO and healthy groups. Moreover, 
impaired TCR diversity, and different abundances of V-J gene combinations and 
amino acid sequences, were found in LVO as compared with healthy group, 
which would be potential biomarkers for LVO diagnosis.

Discussion: In conclusion, AIS with LVO can rapidly induce peripheral immune 
response, which provides new insight into the understanding of pathophysiology 
of AIS.

KEYWORDS

acute ischemic stroke, large vessel occlusion, T cell receptors repertoire, CD45, T cell

Introduction

Acute ischemic stroke (AIS) is one of the leading causes of mortality and disability 
worldwide (1). It occurs due to brain ischemia resulting from the thrombosis of cerebral blood 
vessels (2), which can be mainly caused by large artery atherosclerosis (LAA) and small artery 
occlusion (SAO) according to the Trial of Org 10,172 in Acute Stroke Treatment (TOAST) 
classification (3). Although the outcomes of AIS have dramatically improved due to the 
effectiveness of endovascular therapy, these treatments are highly time-dependent and only a 
few patients with AIS could receive effective treatment in time (4). Most importantly, several 
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strategies with regarding to AIS therapy have not been successfully 
translated into clinical application to date (5). These indicate that the 
pathological and physiological process contributing to neurological 
injury following AIS have not yet been fully understood.

Increasing evidence confirms that the activation of immune 
response is a crucial contributor to the pathophysiology of AIS (6, 7). 
Peripheral immune cells, such as neutrophils, lymphocytes, and 
monocytes, play important roles in the progression of AIS (8). In 
addition, the high neutrophil-to-lymphocyte ratio (NLR) is a potential 
predictor of poor functional outcome in patients with AIS (9). 
However, the changes of the peripheral components in different 
subtypes of AIS remains unclear.

The levels of lymphocytes were confirmed to be correlated with the 
outcome of AIS. Decreased number of lymphocytes was associated with 
worse pathological complete response rate of stroke (10), while increased 
proportion of lymphocytes had beneficial effects in AIS (11, 12). Among 
all the lymphocytes, T cells have been extensively studied because of their 
potency in both innate and adaptive immune responses (13). They are 
divided into CD4+ helper T cells, CD8+ toxic T cells, and regulatory T 
cells (Tregs) according to the different surface markers (14, 15), which 
play different regulatory roles in the pathophysiological process of AIS 
depending on their functional characteristics. The reduction of CD4+ or 
CD8+ T cells within 24 h after AIS leads to a decrease in the infarct size. 
In contrast, Tregs have protective effect on lowering infarct area and 
improving neurological function (16, 17). In addition, studies have 
shown that T cells could promote the deterioration of functional damage 
in the early stage but improve prognosis in the later stage of AIS, 
suggesting the different roles of T cell subsets in AIS (18, 19). Moreover, 
immune cell infiltration analysis suggested that T cell subsets with 
relevant genes can be identified as the diagnostic biomarkers in AIS (20). 
Therefore, it is essential to investigate the functions of different T cell 
subsets in AIS, which will provide new insights into the 
pathophysiological mechanisms of AIS. Recent years, a new group of T 
cells with CD45 surface markers has been discovered, which can 
be  divided into two new subgroups: CD45RA+ naïve T cells and 
CD45RO+ memory T cells (21). Previous studies have confirmed the 
involvement of CD45 subsets in different diseases, such as sepsis and 
T-cell lymphoma (21, 22). However, it is still unknown whether 
CD45RA+ and CD45RO+ T cells are involved in the progression of AIS.

T cells initiate their major functions through T cell receptors 
(TCRs), which are produced by somatic DNA recombination of 
multiple gene segments (23). The diversity is generated by the random 
rearrangement of the variable (V), diversity (D), and joining (J) 
segments of TCR genes, which are central components of the adaptive 
immune system. TCR sequences are individual and have complex 
genetics due to VDJ recombination (24). Analysis of the TCR 
repertoire can provide a better understand of immune-mediated 
responses to infections, malignancies, and immunological disorders, 
including neuroinflammatory diseases. Based on technological 
advances in high-throughput sequencing (HTS), millions of TCR 
sequences can be used to assess clonal expansion and diversity in the 
peripheral blood of the multiple sclerosis (MS) patients (25, 26). The 
unique sequences will be valuable biomarkers for immune-mediated 
disease diagnosis, prognosis, and treatment response. Although a few 
studies have focused on TCR or characteristics of TCR repertoires in 
brain or peripheral blood of AIS (27–29), these studies did not 
distinguish the changes of TCR characteristic in the subtypes of AIS.

In the present study, we initially analyzed the circulating data 
retrospectively in patients with AIS, which were divided into 

large-vessel occlusion (LVO) and small-vessel occlusion (SVO) by 
imaging methods. Then, peripheral blood samples of patients with 
LVO and SVO were collected to detect proportional changes of 
CD45RA+ and CD45RO+ T cells. Finally, the TCR repertoire was 
analyzed to identify the unique immune response in AIS 
with LVO.

Materials and methods

Research ethics

The study was conducted according to the guidelines of the 
Declaration of Helsinki, and approved by the Ethics Committee of 
Jinan Central Hospital Affiliated to Shandong First Medical University 
(No. SZR2021-006-01) and The Second Hospital of Shandong 
University (No. KYLL-2021 (KJ)P-0300).

Study population

Retrospective data from 368 patients with AIS (≥18 years old), 
recruited from both Central Hospital Affiliated to Shandong First 
Medical University (n = 312) and The Second Hospital of Shandong 
University (n = 56) between September 2022 to December 2023, were 
analyzed for peripheral clinical characteristics. The AIS patients were 
divided into large vessel occlusion (LVO, n = 161) and small vessel 
occlusion (SVO, n = 207) using magnetic resonance imaging (MRI), 
computed tomography angiography (CTA), brain magnetic resonance 
angiography (MRA), and/or digital subtraction angiography (DSA) 
(30). Exclusion criteria: (1) only received MRI without further brain 
imaging; (2) had severe other disease, such as liver or kidney 
dysfunction, cardiac impairment; (3) had severe inflammatory 
conditions. The age- and sex-matched healthy participations (n = 167), 
which were confirmed to have no cerebrovascular disease or other 
sever conditions in the physical Examination Department of The 
Second Hospital of Shandong University over the same period, were 
included as the control group.

Clinical data collection

Venous blood samples were collected within the first 24 h of 
stroke onset. Blood glucose, low-density lipoprotein (LDL) cholesterol, 
high-density lipoprotein (HDL) cholesterol, triglyceride (TG), and 
counts of leukocyte, neutrophile, and lymphocyte as well as the 
proportion of neutrophile and lymphocyte, were analyzed. The NLR 
was calculated as the ratio of the absolute neutrophile counts to the 
absolute lymphocyte counts. The stroke severity at onset was evaluated 
using National Institutes of Health Stroke Scale (NIHSS) (31).

Flow cytometry analysis

To determine the phenotype of T cells, 18 patients with LVO 
and 17 patients with SVO, aged from 32 to 82 years, were recruited 
from both Central Hospital Affiliated to Shandong First Medical 
University (LVO, n = 8) and The Second Hospital of Shandong 
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University (SVO, n = 17; LVO, n = 10) from May to December 2023. 
Peripheral anticoagulant blood samples from patients were obtained 
within 24 h of AIS onset at the Department of Clinical Laboratory. 
The samples of 22 healthy controls were collected at the same time. 
The whole blood of each sample was mixed gently and transferred 
into five groups (100 μL/tube): (1) labeled with APC-conjugated 
mouse anti-human CD3 (#317318, Biolegend, San Diego, CA, 
United  States) and FITC-conjugated mouse anti-human CD56 
(#304604, Biolegend) antibody; (2) labeled with APC-conjugated 
mouse anti-human CD3, FITC-conjugated mouse anti-human CD4 
(#300506, Biolegend), and PE-conjugated mouse anti-human CD8 
(#344706, Biolegend) antibody; (3) labeled with PE-conjugated 
mouse anti-human CD4 (#300508, Biolegend), PerCP-conjugated 
mouse anti-human CD45RA (#304156, Biolegend), FITC-
conjugated mouse anti-human CD45RO (#304204, Biolegend), and 
APC-conjugated mouse anti-human CCR7 (#353214, Biolegend) 
antibody; (4) labeled with PE-conjugated mouse anti-human CD8, 
PerCP-conjugated mouse anti-human CD45RA, FITC-conjugated 
mouse anti-human CD45RO, and APC-conjugated mouse anti-
human CCR7 antibody; (5) the isotype control tube labeled with 
APC/FITC/PE/PerCP rat anti-human IgG antibody (#410712, 
#410720, #410707, #410710, Biolegend). Five microliter of each 
antibody was added into the corresponding tube and incubated for 
20 min. Then, 1 mL erythrocyte lysing buffer (#555899, BD 
Biosciences, San Jose, CA, United States) was added and incubated 
at 37°C for 5 min. After centrifugation for 5 min, the cells were 
resuspended and washed with 1 mL phosphate buffer solution 
(PBS). Finally, after being suspended with 0.5 mL PBS, the cells 
were detected by flow cytometry (FACS Aria III; BD Biosciences). 
The gating strategy applied for the enumeration of T cells is shown 
in Supplementary Figure S1. Peripheral whole blood cells, including 
neutrophils, lymphocytes, monocytes, and red blood cells, can 
be  divided into different populations based on cell size and 
granularity, as measured by forward scatter (FSC) and side scatter 
(SSC) characteristics, respectively. Lymphocyte were gated on the 
basis of FSC and SSC characteristics for the following research. The 
cells were analyzed by using FlowJo VX10 software (TreeStar, 
Ashland, OR, United States).

HTS of TCR repertoire

Peripheral blood samples were collected into EDTA vacutainer 
tubes at volumes more than 2 mL. Peripheral blood mononuclear cells 
(PBMCs) were isolated from whole blood samples using Ficoll 
density-gradient separation lysis (LTS1077-1, TBD, Tianjin, China) 
according to the instructor. Total RNA was extracted from PBMCs 
using RNAsimple Total RNA Kit (#DP419, Tiangen Biotech, Beijing, 
China). RNA concentration was evaluated using a NanoDrop 
ND-2000 spectrophotometer (Thermo Scientific, United Kingdom). 
cDNA synthesis and multiplex PCR amplification of the 
complementary-determining region 3 (CDR3) in the TCR β-chain 
were performed together using the Immune Repertoire Library 
Preparation Kit (Geneway, Jinan, China) following a protocol 
described in a previous study (32). TCR libraries were sequenced on 
DNBSEQ-T7 platform (MGI, Shenzhen, China), generating 
paired-end short reads with 150 bp in length.

Sequencing data preprocessing

The sequencing data were stored in FASTQ format, in which raw 
reads were demultiplexed according to the sequences of index primers 
corresponding to different samples. The low-quality sequences were 
discarded for quality control. The remainders were mapped into V, D, 
and J gene segments of TCR β-chain using the MiXCR software 
(version 3.0.6) with default parameters for sequencing alignment and 
clonotype assembly (33). TCR reference gene data were downloaded 
from the IMGT database1. The frequency of each TCR β-clonotype 
was further converted into rpm (reads per million) for standardization. 
The diversity of samples was evaluated based on D50 Diversity index 
and UT index. The diversity from the cumulative 50% of the total 
CDR3 detected in the sample was measured using the D50 index (34). 
The UT index was ranged from 0 to 1, and it was calculated based on 
the previous study (35).

Statistical analyses

Data were analyzed using GraphPad Prism software (Version VIII, 
La Jolla, CA, United States) or R software (version 4.0.2). Continuous 
data were presented as means ± standard deviation (SD). In contrast, 
categorical variables were presented as numbers and percentages. In 
the analysis of retrospective data and flow cytometry, the one-way 
analysis of variance (ANOVA) or Kruskal–Wallis test was used for 
comparisons between more than two groups based on data distribution 
and homogeneity. One-way ANOVA followed by Tukey test was used 
when the data showed normal distribution and variance homogeneity, 
otherwise Kruskal–Wallis test was applied. For continuous variables in 
the TCR repertoire, Student’s t-test was used for comparison between 
two groups, and the correlation between NIHSS and levels of peripheral 
blood cells, or between NIHSS and TCR clonotypes expression, was 
assessed using Pearson’s test. The Chi-Square test or Fisher’s exact test 
was used to analyze categorical variables. p < 0.05 was considered the 
threshold for statistical significance.

Results

Participation clinical characteristics

To determine the peripheral immune responses in different 
subtypes of AIS, we  initially analyzed the retrospective data from 
patients with LVO, SVO, and healthy controls. The baseline 
demographic and clinical characteristics are shown in Table 1 and 
Supplementary File 1. No significant differences were found among 
the three groups in baseline characteristics including age and gender. 
As risk factors of AIS, lower levels of HDL cholesterol, and high levels 
of both blood glucose and triglyceride were found in patients with 
LVO and SVO groups than in healthy controls (p < 0.0001). No 
significant change was found in levels of low-density lipoprotein 
(LDL) cholesterol after AIS.

1 https://www.imgt.org/IMGTrepertoire/LocusGenes/genetable/human/

geneNumber.html#TRtotal
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The laboratory parameters in patients with LVO and SVO were 
significantly different from those of healthy controls (Figure 1 and 
Supplementary File 1). The leukocyte count in the patients’ groups was 
higher than that in the healthy control group (Figure 1A, p < 0.0001), 
which was mainly due to an elevated neutrophile count (Figure 1B, 
p < 0.0001). In contrast, the lymphocyte count decreased in patients 
with AIS compared to the healthy control group (Figure  1C, 
p  < 0.0001). An increased ratio of neutrophile to leukocyte and a 
decreased ratio of lymphocyte to leukocyte were also observed in 
patients with AIS (Figures  1D,E, p  < 0.0001). As NLR has been 
reported to be a useful marker of inflammation, we also compared 
NLR in the three groups. Consistent with the previous study, NLR was 
higher in patients than that in healthy controls (Figure 1F, p < 0.0001). 
Interestingly, we  found higher counts of leukocyte (Figure  1A, 
p < 0.0001) and neutrophile (Figure 1B, p < 0.0001), and elevated ratio 
of neutrophile to leukocyte (Figure  1D, p  < 0.0001) and NLR 
(Figure 1F, p < 0.0001) in LVO group than that in SVO group. In 
contrast, lymphocyte count (Figure  1C, p  = 0.0003) and ratio of 
lymphocyte to leukocyte (Figure 1E, p < 0.0001) in LVO group were 
decreased as compared with that in SVO group. These results suggest 
that AIS with LVO can rapidly induce more severe immune response 
in the peripheral blood.

Correlation between peripheral blood cells 
and NIHSS

To determine whether there was a relationship between the 
expression levels of peripheral blood cells and the severity of AIS, 
we analyzed the correlation between the peripheral laboratory data 
and NIHSS in LVO group and SVO group, respectively. As shown in 
Figure  2 and Supplementary File 1, the counts of leukocytes 
(Figure  2A, r = 0.1686, p = 0.0331) and neutrophiles (Figure  2B, 
r = 0.2236, p = 0.0045), and the percentage of neutrophiles (Figure 2D, 
r = 0.2979, p = 0.0001) as well as NLR (Figure  2F, r = 0.2286, 
p = 0.0036) were positively correlated with NIHSS in the LVO group. 
In contrast, both the count and percentage of lymphocytes were 
inversely correlated with NIHSS in the LVO group (Figure  2C, 
r = −0.2207, p = 0.005; Figure 2E, r = −0.2592, p = 0.0009). However, 
no relationship was found between the levels of peripheral blood cells 
and NIHSS in the SVO group (data not shown). These results suggest 
that the expression levels of peripheral immune cells can more 
specifically reflect the severity of patients with AIS caused by LVO.

Phenotype analysis of peripheral T cells

T cells play essential roles in immune response. To detect the 
peripheral phenotype of T cells in AIS with different subtypes, flow 
cytometry analysis was performed. As shown in Figure  3 and 
Supplementary File 2, although the total number of peripheral 
lymphocytes was significantly reduced in patients with AIS, the 
proportion of CD4+ T cells was higher in the LVO group than in the 
SVO and healthy control groups (Figure 3A, p < 0.001). In contrast, the 
proportion of NK cells decreased in the LVO group as compared with 
the SVO group (Figure 3B, p < 0.05) and control group (Figure 3B, 
p < 0.001). No significant difference was found between the SVO group 
and control group. These results indicate that AIS with LVO can rapidly 
enhance the adaptive immune response mediated by T cells.

To further analyze the immune response after AIS, naïve, effector 
memory T (Tem), and central memory T (Tcm) of CD4+ and CD8+ T 
cells were, respectively, detected in LVO and SVO subtypes. As shown 
in Figure  4 and Supplementary File 2, the percentage of 
CD45RA+CCR7+ in CD4+ (naïve CD4+) T cells decreased (Figure 4A, 
p < 0.01), while the percentage of CD45RO+CCR7+ (Tcm, Figure 4B, 
p < 0.001) and CD45RO+CCR7− (Tem, Figure 4B, p < 0.001) in CD4+ 
T cells increased in LVO group as compared with SVO and control 
groups, suggesting a decrease in naïve CD4+ T cells and an increase in 
Tcm and Tem CD4+ T cells after AIS with LVO. Although no 
significant difference was found in the percentage of total CD8+ T 
cells, similar changes were found in CD45RA+CCR7+ (Figure 5A, 
p  < 0.01, Supplementary File 2), CD45RO+CCR7+ (Figure  5B, 
p < 0.001), and CD45RO+CCR7− (Figure 5B, p < 0.01) in CD8+ T cells, 
as in CD4+ T cells of patients with LVO. No significant difference was 
found between the SVO and healthy control groups in naive, Tcm, and 
Tem cells. These results suggest that only AIS with LVO can stimulate 
the transformation of T cells into memory T cells.

The characteristics of TCR repertoires in 
AIS patients with LVO

Given the changes of T cells above, we sought to further determine 
the T cells’ characteristics of LVO. As no changes were found in T cells 
between SVO group and healthy control group, PBMCs were isolated 
from peripheral blood and TCR repertoire sequencing analysis were 
performed in AIS patients with LVO and healthy controls. We assessed 
TCR sequences and identified V-J combinations at the transcription 
level. The results showed that the number of V-J combinations 

TABLE 1 Baseline and clinical characteristics of patients with AIS and healthy controls.

Valuables LVO (n = 161) SVO (n = 207) Healthy (n = 167) p-value

Gender, male, n (%) 103 (63.98) 125 (60.39) 102 (61.08) 0.7668

Age, years (mean ± SD) 66.09 ± 12.29 65.11 ± 10.4 63.87 ± 7.986 0.1496

Glucose, mmol/L (mean ± SD) 7.527 ± 3.314 7.31 ± 2.703 5.175 ± 0.6554 <0.0001

HDL, mmol/L (mean ± SD) 1.105 ± 0.2735 1.108 ± 0.4093 1.407 ± 0.2397 <0.0001

LDL, mmol/L (mean ± SD) 2.429 ± 0.8143 2.67 ± 0.7394 2.596 ± 0.5713 0.0512

Triglycerides, mmol/L 

(mean ± SD)
1.295 ± 0.7852 1.573 ± 1.204 0.964 ± 0.4057 <0.0001

HDL, high density lipoprotein; LDL, low density lipoprotein.
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FIGURE 1

Participation characteristics. Leukocyte (A), neutrophile (B), and lymphocyte (C) counts in the peripheral blood of AIS with LVO and SVO, and healthy 
controls. The ratio of neutrophiles (D) and lymphocytes (E) to leukocytes in the peripheral blood of AIS with LVO and SVO, and healthy controls. (F) The 
ratio of neutrophile to lymphocyte in the peripheral blood of AIS with LVO and SVO, and healthy controls. (***p < 0.001, ****p < 0.0001).
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FIGURE 2

Correlation between NIHSS and circulating blood cells in patients of AIS with LVO. The correlation between NIHSS and leukocyte (A), neutrophile (B), 
and lymphocyte (C) counts. The correlation between NIHSS and the ratio of neutrophiles (D) and lymphocytes (E) to leukocytes. (F) The correlation 
between NIHSS and the ratio of neutrophile to lymphocyte.
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FIGURE 3

Changes in T-cell subtypes. (A) The percentage of CD4+ T cells was determined by flow cytometry. (B) The percentage of NK cells was determined 
using flow cytometry (*p < 0.05, ***p < 0.001).

https://doi.org/10.3389/fneur.2024.1512720
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Ma et al. 10.3389/fneur.2024.1512720

Frontiers in Neurology 08 frontiersin.org

(Figure 6A, p = 0.0028) and the TCR sequences in CDR3 (Figure 6B, 
p = 0.0018, Supplementary File 3) were more abundant in AIS with LVO 
group than in control group. Notably, consistent with the increased 
memory T cells, these results indicate a dramatic increase in 
immunological activity in the number of immunological items during 
the pathological process of AIS with LVO.

In addition, we  performed a Principal Component Analysis 
(PCA) on the V-J combination frequency profile. As shown in the 
Figure 6C and Supplementary File 3, there was a significant difference 
between AIS patients with LVO and healthy controls in the sample 
cluster. In summary, we  constructed a phenotype of LVO with 
immunological tendencies compared to healthy controls. TCR 
expression profiles were subsequently analyzed to assess the systemic 
immune responses mediated by T cells.

Next, we estimated the diversity of TCR clonotypes in each sample 
by calculating the D50 Diversity and UT index, irrelevant to the 
variation of sample sequencing depth. A lower D50 Diversity index 
was observed in AIS patients with LVO than in healthy controls 
(Figure 6D, p = 0.0498). In contrast, the UT index was higher in AIS 
patients with LVO than in healthy controls (Figure  6E, p  = 0.02, 
Supplementary File 3), indicating that AIS with LVO could decrease 
the diversity of TCR profiles as compared with healthy controls.

Diversity of TCR repertoires and usage 
frequency of V-J gene combinations in AIS 
patients with LVO

We further performed a characteristic analysis to reveal the 
specificity of TCR sequence abundance in AIS patients with LVO and 
healthy controls. As shown in Figures  7A,B, the whole tree-map 
represented the average immune status of samples based on the 
abundance of CDR3 sequences. Each chip represented one CDR3 
sequence’s abundance. The larger of the color chip, the higher 
abundance of this sequence. Meanwhile, large color chips led to a 
decrease in the quantity of chips, which indicated the reduction of 
diversity. We found more large-colored chips in AIS patients with LVO 
(Figure 7A) than in controls (Figure 7B and Supplementary File 4), 
which also illustrated the high-abundance sequences and poor TCR 
diversity in LVO patients.

As the most variable components of TCR sequence, V and J 
segments play a crucial role in targeting a wide range of pathogenic 
process and the combination of V-J segments are the primary focus of 
many TCR-related studies. The comparison of V-J segments could reveal 
their contributions to the progression of AIS, and help to explain the 
differences in immune status between different groups. Furthermore, 
Circos plots was used to show the usage of V-J gene combinations. In the 
Circos plots, the length of the sectors represents the relative usage 
frequency of the V or J genes, while the width of the links connecting the 
V and J genes represents the relative usage frequency of the V-J 
combinations. Nevertheless, patients with LVO (Figure 7C) showed the 
similar average frequency of the use of V-J gene combinations as healthy 
controls (Figure 7D and Supplementary File 4). These results further 
indicated that the TCR diversities in AIS patients with LVO were 
induced by the high abundance of VDR3 sequences.

Different abundances of V-J gene 
combinations in AIS patients with LVO

We then determined the different abundance of V-J gene 
combinations in AIS patients with LVO from healthy controls. A total 
of 63V and 14J gene segments were identified in all samples. 
Compared with the control group, a significantly lower percentage of 
TRBV4-1 and TRBV5-1, and a higher percentage of TRBV5-3, 
TRBV5-6, TRBV6-1, TRBV7-3, TRBV10-1, TRBV12-1, TRBV12-4, 
TRBV13, TRBV23-1, and TRBV25-1 were found in the AIS with LVO 
group (Figure 8A, p < 0.05, p < 0.01). Moreover, a significantly lower 
percentage of TRBJ1-2 and TRBJ2-2, but a higher percentage of 
TRBJ1-4, TRBJ2-1, and TRBJ2-6 were found in the AIS with LVO 
group than the healthy group (Figure  8B, p  < 0.05, p < 0.01, 
Supplementary File 5). These results indicated that LVO induced 
different abundance of V-J gene combinations.

We further analyzed the abundance of CDR3 sequences between 
AIS with LVO and healthy groups. There were 734 upregulated and 49 
downregulated amino acid clonotypes between the AIS with LVO and 
healthy group (Figures 8C,D). In addition, 30 differentially expressed 
amino acid clonotypes, were found in at least 10 samples (Figure 8E). 
Among these clonotypes, the expression levels of one amino acid 
clonotypes (CASRGQNTEAFF) was found to be positively correlated 
with NIHSS (Figure 8F, r = 0.6133, p = 0.0068), suggesting that the 
expression level of this amino acid clonotypes was related to the 
severity of AIS with LVO.

The prediction model for AIS with LVO

As the different abundance of TCR sequences between the AIS 
with LVO group and healthy group, we next want to build a diagnostic 
model to predict AIS with LVO. We  firstly aligned the top  50 
abundant CDR3 sequences with the indicated length to create a motif 
diagram. The results showed a significant difference in the motifs 
between the AIS with LVO group (Figure 9A) and the healthy group 
(Figure  9B). This suggests that selecting a suitable amino acid 
sequence can distinguish AIS patients with LVO from 
healthy controls.

Then, we created a model using the random forest method to 
predict AIS with LVO based on differences in TCR repertoire 
characteristics. We changed the settings from 0.2 to 0.3 to improve 
the accuracy, while lowering the fault tolerance rate to stabilize 
the classification function of the model. We then evaluated the 
model classification effect in predicting AIS patients with 
LVO. The results showed that the distribution of the ROC curve 
was relatively smooth, and the leave-one-out cross-validation 
produced an area under the curve (AUC, 95%CI: 0.519–0.981, 
Figure 9C). Additionally, we evaluated the V-J combinations that 
affected the model assessment effect and discovered 10 
combinations that made the largest contributions to the model 
(Figure 9D). These results indicate that the model can distinguish 
between patients with LVO and healthy controls, which provides 
the possibility of developing TCR biomarkers for the early 
diagnosis of AIS with LVO.
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FIGURE 4

Changes in naïve, Tcm, and Tem CD4+ T cells. (A) The percentage of naïve CD4+ T cells was determined by detecting CD45RA+CCR7+ cells among the 
CD4+ T cells. (B) The percentage of Tcm CD4+ T cells was investigated by detecting CD45RO+CCR7+ cells among the CD4+ T cells. The percentage of 
Tem CD4+ T cells was investigated by detecting CD45RO+CCR7− cells in CD4+ T cells. (*p < 0.05, **p < 0.01, ***p < 0.001).
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FIGURE 5

Changes in naïve, Tcm, and Tem levels in CD8+ T cells. (A) The percentage of naïve CD8+ T cells was investigated by detecting CD45RA+CCR7+ cells 
among CD8+ T cells. (B) The percentage of Tcm CD8+ T cells was investigated by detecting CD45RO+CCR7+ cells among CD8+ T cells. The percentage 
of Tem CD8+ T cells was investigated by detecting CD45RO+CCR7− cells in CD8+ T cells. (**p < 0.01, ***p < 0.001).
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Discussion

Although endovascular therapy is effective for AIS, some patients 
still suffer from permanent disability. From the retrospective data, 
we  firstly found that the changes of peripheral blood cells were 

correlated with the severity of AIS with LVO but not SVO. Using flow 
cytometry, we  found that AIS with LVO enhanced the peripheral 
adaptive immune response by increasing the percentage of Tcm and 
Tem cells. Furthermore, TCR repertoire sequencing analysis showed 
that TCR diversity was impaired in patients with LVO, although the 

FIGURE 6

Quantity and diversity of the TCR repertoire: the number of unique V-J combinations (A) and counts of unique CDR3 sequences (B) were determined. 
(C) Principal component analysis of the AIS with LVO (red) and healthy groups (green). X-axis and Y-axis represent principal component 1 (PC1) and 
principal component 2 (PC2), respectively. The D50 Diversity Index (D) and UT Index (E) show the diversity of the TCR repertoire in the AIS with LVO 
and healthy groups. The violin chart and box plot show the data distribution with the minimum, first quartile, median, third quartile, and maximum 
(*p < 0.05).
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number of V-J combinations and CDR3 sequences increased. Together 
with the flow cytometry results, these findings suggest that AIS with 
LVO could induce an adaptive immune response, accompanied by a 
lack of comprehensive immunological activity, owing to the specific 
immune response to disease. Importantly, we  found different 
abundances of V-J gene combinations and amino acid clonotypes 
between the AIS with LVO and control groups, which could be used 
as diagnostic biomarkers for AIS. This study will provide new insights 
into the pathophysiological process of AIS.

Human and animal studies have confirmed that AIS can lead to 
immediate activation of local immune cells and prompt mobilization 
of peripheral immune cells in the first hours and up to days after 
stroke (8, 36). Although studies have confirmed that the peripheral 
neutrophiles and NLR are closely related to the prognosis of AIS, few 
studies have focused on their roles on different subtypes of AIS. Our 
results confirmed that the changes of peripheral immune cells were 
more obvious in the LVO group than that in SVO group. In addition, 
these changes have a correlation with NIHSS in the LVO but not SVO 

FIGURE 7

Samples’ immunological characteristics. (A,B) TCR sequence abundance and usage frequency of V-J combinations in patients with LVO. Tree-map of 
module CDR3 sequence abundance in samples from the AIS with LVO group (A) and healthy group (B). (C,D) Circos plots of the V-J gene combination 
usage frequency in samples from the AIS with LVO group (C) and healthy group (D). The left half-circle indicates the J gene and the right half-circle 
indicates the V gene. The length of sectors represents the relative usage frequency of the V genes or the J genes.

https://doi.org/10.3389/fneur.2024.1512720
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Ma et al. 10.3389/fneur.2024.1512720

Frontiers in Neurology 13 frontiersin.org

FIGURE 8

Differential abundances of the V and J gene segments and CDR3 sequences between the AIS with LVO and healthy groups. The relative abundance of 
V gene (A) and J gene (B) in the two groups. (C) Scatter plot showing differential abundance of CDR3 sequences in LVO and healthy groups (red, 
different CDR3 sequences; blue, CDR3 sequences with no significant difference). The X- and Y-axis represents the log-transformed mean of the 
relative abundance of the healthy and LVO group, respectively. (D) The volcano map shows the different clones between the LVO and healthy groups 
(yellow with increased abundance and blue with decreased abundance). The X- and Y-axes represent the log transformed p-value and fold changes, 
respectively. (E) Thirty differentially expressed amino acid clonotypes are shown as a heatmap. The X- and Y-axis represent samples and expression 
levels of CDR3 sequences, respectively. (F) The correlation between NIHSS and the unique amino acid clonotype (*p < 0.05, **p < 0.01).
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group, suggesting that the peripheral immune changes can more 
specifically related to the severity of AIS patients with LVO. To our 
knowledge, this is the first study showing the relationship between the 
peripheral components and different AIS subtypes, which will 
be useful for the understanding of the roles of peripheral immune 
response in different AIS subtypes.

Studies have shown that innate immune cells were initially 
activated, followed by T cells activation after AIS (37). In addition, the 
relative levels of CD45RA+ and CD45RO+ T cells can reveal the 
systematic immune response and are associated with the 
pathophysiology and prognosis of multiple disease, such as pancreatic 
and non-small cell lung cancer (21, 38). In our study, although the 
lymphocyte count decreased in patients with AIS, the reduced ratio of 
CD45RA+CCR7+ (naïve) T cells, and increased ratio of 
CD45RO+CCR7+ T (Tcm) and CD45+CCR7− T (Tem) cells, further 
confirmed that the adaptive immune response could be  rapidly 

stimulated in patients with LVO by stimulating the transformation of 
T cells into memory T cells. Together with the high NLR, the 
percentage of naïve, Tcm, and Tem can more specifically reflect the 
immunological condition after AIS with LVO. This is the first study to 
evaluate naïve, Tcm, and Tem of CD4+ and CD8+ T cells in peripheral 
blood of patients with different AIS subtypes.

Considering the critical roles of the immune response, 
we performed an analysis to quantify and compare the TCR repertoire 
in PBMCs samples. Analysis of TCR repertoire has been used to 
characterize various diseases. For instance, the impaired TCR diversity 
and significant differences in V-J segments in systemic lupus 
erythematosus (SLE) make the TCR repertoire profile a potential 
biomarker of SLE (32, 39). Here, we clearly demonstrated that AIS 
with LVO induced rapid impairment of TCR diversity and the 
enrichment or reduction of specific V-J combinations in the PBMCs. 
As the TCR repertoire investigates CDR3, and each CDR3 sequence 

FIGURE 9

The motif specificity of TCR repertoires and prediction model system for AIS with LVO. (A) Motif diagram of the CDR3 sequences in AIS with LVO 
group. (B) Motif diagram of the CDR3 sequences in the healthy group. (C) ROC curve showing the classification effect of the LVO prediction model. 
The ordinate is the true-positive rate (sensitivity), and the abscissa is the false-positive rate (1-specificity). (D) The top 10 segments of V-J combinations 
that influenced the model effect. The mean decrease in accuracy is a rating index, and its value positively correlates with the effect on the model.
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is a unique label, it can track T cell composition (40). Together with 
the varied percentage of T cell subsets, the decreased percentage of 
naïve T cells and segments of TRBV4-1, TRBV5-1, TRBJ1-2, and 
TRBJ2-2 sequences, as well as the increased percentage of Tcm and 
Tem cells and segments of TRBV5-3, TRBV6-1, TRBV7-3, TRBV10-1, 
TRBV13, TRBV23-1, TRBV25-1, TRBJ2-1, and TRBJ2-6 might 
indicate changes in these sequences in the relevant T cell subsets. In 
addition, we also found the correlation between amino acid sequence 
and the severity of AIS with LVO. The combined application of the 
percentage of Tcm/Tem cells with different abundances of V-J gene 
combinations and specific amino acid clonotypes could better reflect 
the body’s immune status in the patients with LVO.

We also found a range of amino acid clonotypes which can be used 
as a signature for the trained prediction model due to the altered TCR 
profile. Despite the limited sample size, our model efficiently 
discriminated AIS patients with LVO from healthy controls, indicating 
its potential as a biomarker for the diagnosis of AIS with LVO. Currently, 
the diagnosis of AIS relies mainly on the evaluations of clinical and 
neuroimaging features, including computed tomography (CT), MRI, 
and digital DSA (41). However, in the early stage of infarction, mild or 
no abnormal changes can be found on CT and MRI, because of the low 
sensitivity of these imaging modalities (42). Although DSA is the gold 
standard for diagnosing AIS, the expensive cost and invasive operation 
make its universal application impossible. In addition, all the 
examinations above require radiation exposure and are not feasible for 
patients with special circumstances, such as those with a pacemaker or 
emotional instability. Most importantly, these treatments take a long 
time and can easily delay the optimal treatment time. Therefore, several 
studies have been conducted to investigate the rapid diagnostic 
biomarkers of AIS, including glucose, iron, ferritin, homocysteine, 
insulin, P-selectin, matrix metalloproteinase-9, high-density 
lipoprotein cholesterol, platelets, glial fibrillary acidic protein, TNF-α, 
and proenkephalin-A (43–48). However, these biomarkers are not 
widely used for diagnosing AIS, because of significant individual 
differences. Moreover, the inflammation-related biomarkers, such as 
C-reactive protein and interleukin (IL)-6, play a crucial role in 
predicting AIS (49). Still, they were limited to be used as diagnostic 
tools because of their similar changes in other inflammatory and 
infectious processes (50). Taken together, as the rapid changes of TCR 
repertoire sequences in AIS patients with LVO and the correlation 
between the CDR3 sequence and LVO severity, our study will provide 
important assistance for the diagnosis of AIS with LVO. These changes 
of unique amino acids may be the potential biomarkers for the rapid 
diagnosis of AIS with LVO.

Conclusion

In this study, we provided evidence of a change in the peripheral 
blood cells, the percentage of Tcm/Tem cells, and a predictive role of 
the TCR repertoire in the AIS with LVO. We found that the LVO 
group had increased leukocytes, neutrophils and NLR, and decreased 
lymphocytes as compared to the SVO group, which correlated with 
the severity of LVO. TCR diversity was impaired in the LVO group, 
with unique V-J gene combinations, indicating potential biomarkers 
for LVO diagnosis. Overall, AIS with LVO rapidly triggers a peripheral 
immune response and our findings will help further understanding of 
the pathophysiological mechanism of AIS with LVO.
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