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In Periodic Paralysis (PP), a rare inherited condition caused by mutation in 
skeletal muscle ion channels, the phenotype changes with age, transitioning 
from the episodic attacks of weakness that give the condition its name, to a more 
degenerative phenotype of permanent progressive weakness and myopathy. This 
leads to disability and reduced quality of life. Neither the cause of this phenotype 
transition, nor why it occurs around the age of 40 is known. However, 40 is also 
the age of onset of ‘normal’ age-related physiological decline when we consider 
(a) muscle mass and strength (b) physical function at the world class level and (c) 
age-related mitochondrial dysfunction. Elevated Na+, mitochondrial dysfunction 
and sarcoplasmic Ca2+ leak via the skeletal muscle ryanodine receptor (RyR1) have 
been implicated in both periodic paralysis myopathy and skeletal muscle ageing. 
We  suggest this combination may trigger a negative spiral ultimately leading 
to progressive muscle failure. Understanding the interaction between ageing 
physiology and disease phenotype will provide a window into the healthy ageing 
process but also help understand how, and why PP phenotype changes with age. 
Understanding the mechanism underlying PP phenotype-transition and its link 
with ageing physiology, not only has the potential to identify the first disease 
modifying therapies for PP, but also to identify novel and potentially tractable 
mechanisms that contribute to sarcopenia, the pathological loss of muscle mass 
and function with age.
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Introduction

The primary periodic paralyses are rare inherited conditions caused by skeletal muscle ion 
channel mutations. These disorders are broadly divided into Hyperkalaemic Periodic Paralysis 
(HyperPP), Hypokalaemic Periodic Paralysis (HypoPP) and Andersen Tawil Syndrome (ATS). 
HyperPP and HypoPP, as their names suggest, are associated with high or low serum potassium 
levels, respectively. HyperPP is caused by mutations in the skeletal muscle voltage-gated 
sodium gene (SCN4A). HypoPP, in Caucasian populations, is most commonly caused by 
mutations in the voltage-gated calcium channel gene (CACNA1S (HypoPP I)), whilst in 
Chinese populations HypoPP secondary to mutations in SCN4A (HypoPP II) is more common 
(1). Andersen Tawil Syndrome is caused by mutations in the inwardly rectifying potassium 
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channel encoded by KCNJ2 and, in contrast to Hyper and HypoPP, has 
extra-muscular manifestations of cardiac conduction abnormalities 
and dysmorphism.

Classically, the phenotype of PP is characterized by episodic bouts 
of weakness with normal or near-normal inter-ictal muscle function 
(2). However, a consistent, yet unexplained, feature is an age-related 
transition from episodic weakness to fixed progressive weakness with 
signs of muscle degeneration (Figure 1A) (3–5). The pathophysiology 
of episodic bouts of weakness in PP is well understood (6–8), but 
neither the mechanisms that underlie the progressive, fixed weakness, 

nor the trigger for phenotype transition are known. Furthermore, 
whilst there are effective treatments to help manage episodic weakness 
in PP, disease-modifying therapies to prevent progressive, fixed 
weakness are lacking.

Based on previous reports, the average age at which patients 
transition from experiencing episodic weakness to developing 
progressive, fixed weakness is around 40 years (3–5). Notably, this age 
in the general population coincides with the onset of age-related 
physiological decline (Figure 1) when we consider (1) muscle mass 
and function, (2) decline of physical function at the world class level 

FIGURE 1

A life course approach to the effect of skeletal muscle ageing on periodic paralysis phenotype. (A) The life course of periodic paralysis Phenotype. 
(B) The life course of sarcopenia. (C) The life course of skeletal muscle function. Data plots from primary references were adjusted to match age scale 
on the x-axis and relative magnitude on the y-axis. Original data: Muscle mass (11); grip strength (9), Cytochrome C-Oxidase Negative (COX−) Fibres 
(12), Marathon finishing time (27), running economy (28). Created in BioRender, Suetterlin (2024) https://BioRender.com/q49h014.
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and (3) age-related mitochondrial dysfunction. In this mini review, 
we review what is known about PP phenotype transition with age, 
explore potential mechanisms, and discuss links to skeletal muscle 
ageing and sarcopenia.

Life course of periodic paralysis and 
skeletal muscle ageing

Life course of skeletal muscle ageing

Life course studies have shown that skeletal muscle mass and 
strength increase in early life, plateau and then decline from middle 
into old age (9–11) (Figure 1B). These studies correlate well with the 
life course of peak motor performance which also exhibits a non-linear 
course (Figure 1C).

Non-linear ageing is also evident in clinical measures where the 
physiology-pathology continuum changes with age (Figure 1C). For 
example, in those aged under 40, signs of mitochondrial dysfunction 
in the form of Cytochrome C-Oxidase (COX) deficiency on muscle 
biopsy are pathological. However, for those over 40, up to 5 COX 
negative (COX−) fibres are considered as within normal limits (12) 
(Figure  1C). This non-linearity of ageing is also seen at the 
molecular level where two periods of substantial transcriptomic, 
proteomic and metabolomic dysregulation have been described. 
These two periods occurred at approximately 44 and 60 years of age 
(13) coinciding with the reported age of phenotype transition in 
periodic paralysis. At 44 years cardiovascular disease, lipid, and 
alcohol metabolism are the major pathways affected. This is striking 
as the incidence of cardiovascular disease increases exponentially 
from the age of 40 (14).

Skeletal muscle is one of the main regulators of lipid metabolism 
in the body (15). However, it also consumes nearly 80% of available 
glucose and regulates both basal metabolic rate and whole body 
energy expenditure (16, 17) so in addition to its role enabling 
movement, skeletal muscle is a key metabolic organ. Maintenance of 
the transmembrane ion gradients necessary for action potential 
initiation and propagation and skeletal muscle contraction and 

relaxation is a major energy cost. Maintaining the transmembrane 
Na+ gradient uses 7% of skeletal muscle ATP whilst Ca2+ reuptake into 
the sarcoplasmic reticulum accounts for 35% (16). This means that 
ionic homeostasis accounts for just under half of total skeletal muscle 
ATP use (16). Given that mitochondrial dysfunction is a key hallmark 
of skeletal muscle ageing (18), this suggests that ionic homeostasis 
may be compromised in older muscle. In support of this, skeletal 
muscle sodium content, as measured by Magnetic Resonance 
Spectroscopy, increases exponentially in men over age 40 (19). A 
phenomenon is also seen in wild-type mice where skeletal muscle 
sodium is elevated from middle age and continues to increase into old 
age (20). In cardiac tissue, Na+ overload reversibly inhibits 
mitochondrial ATP synthesis and increases free radical production 
(21). If the same were true for skeletal muscle, Na+ overload would 
itself exacerbate mitochondrial dysfunction further (Figure 2).

Additional evidence of a change in ionic homeostasis and skeletal 
muscle excitability with age comes from human Muscle Velocity 
Recovery Cycles (MVRCs). MVRCs are a specialised 
electromyography technique that use post-impulse change in 
conduction velocity, known as supernormality, as an indirect measure 
of skeletal muscle excitability and ion channel function in vivo (22) 
MVRCs are sensitive enough to detect the genetic ion channel 
dysfunction associated with periodic paralysis and can distinguish 
HyperPP from HypoPP (23). Life course studies of human MVRCs in 
periodic paralysis have not been performed. However, MVRCs do 
demonstrate change with age in healthy muscle membrane properties. 
These changes consist of an increase in muscle relative refractory 
period and a decrease in supernormality that would be most consistent 
with a relative depolarisation of the resting membrane potential and/
or increased inactivation of the skeletal muscle voltage-gated sodium 
channel with age (24).

As well as altered ionic homeostasis, there is evidence that ionic 
homeostasis becomes more energy intensive with age. Whilst older 
subjects had similar ATP synthesis rates to younger subjects during 
continuous contraction, the ATP cost of intermittent contractions was 
significantly greater and correlated with dynamic single leg extensor 
peak power. This effect was attributed to the additional activity of 
Na+/K+ ATPase and Ca2+ ATPases required for intermittent, but not 

FIGURE 2

The negative spiral of mitochondrial dysfunction, sodium overload and RyR1 Leak. (1) Mitochondrial Dysfunction is a hallmark of ageing skeletal muscle 
(18) and Periodic Paralysis Myopathy (54). (2) Ionic homeostasis (e.g., Na+ extrusion/Ca2+ reuptake) is a major energy requirement of skeletal muscle 
(16). Impaired ATP synthesis would impact ionic homeostasis resulting in intracellular Na+ overload and Sarcoplasmic Reticulum Ca2+ depletion. (3) Na+ 
overload impairs mitochondrial dysfunction further (21). (4) Mitochondrial Free Radicals exacerbate Sarcoplasmic Reticulum Ca2+ depletion by inducing 
RyR1 Ca2+ leak (34). (5) Sarcoplasmic Reticulum Ca2+ depletion reduces the stimulus for Ca2+ induced ATP synthesis (30). Created in BioRender, 
Suetterlin (2024) https://BioRender.com/q49h014.
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continuous contraction given the need to repeatedly depolarise-
repolarise the membrane and contract-relax the muscle (25).

Other groups have also found an increased metabolic cost of 
muscle movement in older subjects. In fact, measures of energy cost 
show age-related deterioration with the point of inflection depending 
on the intensity of workload. For example, walking but not standing 
is associated with an increased ATP cost in older compared to younger 
subjects. Strikingly, this increase in energy expenditure/metre with age 
is an almost mirror image of the decline in gait speed with age (26). A 
similar phenomenon is apparent when comparing the timeline of 
change in marathon finishing time with age (27) and the increase in 
running energy cost with age (28) (Figure 1C). However, in this case, 
significant decline starts around the age of 40, approximately 
20 years earlier.

In skeletal muscle, energy supply and demand are linked both 
structurally and functionally as mitochondria are tethered at the triad 
in the region of RyR1 (29) and Ca2+ efflux via RyR1, as well as 
triggering muscle contraction, triggers mitochondrial ATP production 
(30). This link between energy supply and demand is disrupted with 
increasing age as RyR1 channels become oxidised, nitrosylated and 
leaky (31, 32) resulting in reduced sarcoplasmic reticulum Ca2+ 
content (32, 33) and therefore Ca2+-induced contraction force. 
Increased reactive oxygen species production as a result of 
mitochondrial dysfunction increases RyR1 leak (34) and RyR1 leak 
itself exacerbates mitochondrial dysfunction (35) setting up a potential 
negative spiral (Figure 2).

As well as the intrinsic muscle factors described above, neural 
factors play a key role in age-related muscle failure (18, 36). There is a 
decline in motor unit number, a slowing of nerve conduction velocity 
and a reduction in motor unit firing rate (18). The reduction in motor 
unit firing rate has now been linked to clinically significant weakness 
in older adults (37). There is also selective atrophy of type II, fast-
twitch fibres with age with atrophy of the motor nerves that innervate 
them. The interested reader is referred to relevant reviews (18, 36).

Life course of periodic paralysis phenotype

Symptom onset in HypoPP II due to CACNA1S mutation is 
10 ± 6 years whilst for HypoPP I  due to SCN4A mutation it is 
16 ± 5 years. This is striking as the allelic disorder HyperPP has an 
average age of onset of 2 ± 4 years (38–40), a full decade earlier than 
HypoPP. Given the disorders are caused by the same gene, this 
discrepancy cannot be  accounted for by a change in ion channel 
expression alone. This suggests that a change in muscle physiology 
occurs around puberty and increases susceptibility to HypoPP attacks 
of weakness. The majority of ATS patients report symptom onset 
before age 10. However, presentation can be  as late as the 6th 
decade (41).

The frequency and severity of both Hypo and HyperPP attacks 
change with age (38, 42, 43). This correlation is not as well established 
in ATS. Hyper PP attacks have been described as short and frequent 
in childhood becoming longer and more severe around puberty (38, 
43). An increase in attack frequency and severity with peak during 
puberty and late adolescence is also described in HypoPP (40) 
(Figure  1A). The reason for this is not known but change in sex 
hormones and/or the number of ‘indiscretions’ triggering attacks (3) 
have been suggested. Biemond described ‘indiscretions’ associated 

with HypoPP as large carbohydrate loads, especially late at night, and 
rest after exercise whilst for HyperPP rest after exercise and cold were 
the main triggers.

In approximately half of the large HyperPP kindred originally 
described, attacks reduced in frequency and severity after age 50 or 60 
to the point where attacks sometimes ceased (38). Similar findings 
were reported in a retrospective patient questionnaire (43) and in 
other case reports (42). In HypoPP, a reduction in attack frequency 
and severity starts to occur in adulthood and in many reports, episodic 
attacks cease around the age of 40 when fixed weakness develops (3–5, 
44, 45).

However, it is not clear if and how the reduction of episodic 
weakness and the onset of fixed, degenerative weakness are causally 
related as patients with no antecedent history of paralytic attack can 
still develop permanent progressive weakness (45–48) and the age of 
onset of permanent progressive weakness can vary significantly. In 
some cases very young patients can be affected whilst in other cases 
older patients remain apparently unaffected (49). Perhaps somewhat 
surprisingly, young patients exhibit muscle fat infiltration – it was 
noted in 75% of those under 40 in a recent periodic paralysis MRI 
cohort study (49). However, although present under the age of 40, 
MRI muscle fat infiltration still significantly increased with age in all 
types of PP (49). This increase in muscle fat content correlates with 
increasing disability scores (49), a finding corroborated by 25% of the 
cohort requiring walking aids. Significant morbidity with increasing 
age was also noted in a very large HypoPP pedigree where all family 
members above the age of 70 were wheel chair bound (45).

Although muscle fat infiltration was seen in all types of PP, 
patients with SCN4A mutations were found to have the most severe 
fat infiltration, suggesting that the allelic disorders HyperPP and 
HypoPP II may be  particularly susceptible to PP myopathy (49). 
Longitudinal MRI studies have demonstrated interval change in 
muscle fat infiltration over a 3 year follow up period in Hyper PP 
patients (50, 51).

As well as an increase in muscle fat infiltration, an increase in 
skeletal muscle sodium concentration as measured by 23Na+ Magnetic 
Resonance Spectroscopy techniques has been demonstrated in both 
HypoPP (52) and Hyper PP (50, 53). The 23Na+ signal increases 
reversibly during an induced attack of weakness (53). However, it is 
also elevated at baseline in HyperPP patients with fixed weakness 
where the magnitude of 23Na+ signal correlates with the severity of 
weakness (50). This Na+ elevation may itself exacerbate mitochondrial 
dysfunction (21) and thus further exacerbate ionic dyshomeostasis 
(Figure 2).

Life course of periodic paralysis 
pathophysiology

The classical features of all forms of periodic paralysis myopathy 
are vacuoles and tubular aggregates (40, 41, 54, 55). Goldflam first 
reported the characteristic vacuoles of HypoPP myopathy in 1897. 
Since then some authors report that vacuoles are formed during the 
course of an induced attack (56, 57) whilst others state they are 
unrelated to paralytic episodes (58). There has also been a case report 
describing the presence of ‘target’ fibres in an affected gastrocnemius 
muscle that resembled core-like regions (59). An increase in 
sarcoplasmic glycogen, vacuolation of mitochondria and changes in 

https://doi.org/10.3389/fneur.2024.1507485
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Suetterlin et al. 10.3389/fneur.2024.1507485

Frontiers in Neurology 05 frontiersin.org

the I band region of myofibrils are all consistent features seen in PP 
biopsy and considered secondary (54). A preferential and pathological 
reduction in size of type II fibres has also been noted (57). However, 
muscle structure may also be normal in patients with PP (40, 54) 
especially in young patients (54).

There are 4 published mouse models of periodic paralysis: one 
HypoPP I (60), one HypoPP II (61) and two HyperPP (6, 62). Life 
course studies have been performed in the Draggen mouse model of 
Hyper PP (63). Draggen mice have an autosomal dominant gain-of-
function mutation Ile582Val in SCN4A that results in myotonia and 
episodic hind-limb immobility with a median onset age of 16 weeks 
in males and 25 weeks in females. Mirroring the reports of reduced 
attack severity with age in humans, old Draggen males were 
significantly more resistant to potassium-induced weakness than 
young or middle-aged ones (63). However, surprisingly, the same 
phenomenon was seen in old wild-type mice who were also 
significantly more resistant to potassium-induced weakness when 
compared to young or middle-aged wild-type males. This suggests the 
resistance to potassium-induced weakness is the effect of intrinsic 
muscle ageing rather than related to chronic ion channel dysfunction.

At around 60 weeks of age (human equivalent of ~40 years), 
Draggen mice develop fixed weakness with histological features of PP 
myopathy such as tubular aggregates (62). Tubular aggregates are also 
seen in aged male wild-type mice where their formation can 
be prevented by exercise (64). Draggen soleus also developed core-like 
regions with age (63) similar to what has been described in human PP 
(59) previously. Cores or core-like regions represent localised absence 
of mitochondrial or sarcoplasmic reticulum membrane and are 
classically associated with RyR1 myopathy. It was striking, therefore, 
that old Draggen mice also had significantly reduced caffeine 
contracture force with age (caffeine is an RyR1 agonist) and a 
decreased energy charge (ATP:ADP:AMP) following a 2 min protocol 
of increasing frequency of electrical muscle stimulation up to 30 Hz 
(63). This suggests an inability to maintain the energy demands of 
ionic homeostasis with age in Draggen mice.

The combination of core-like regions on muscle histology with 
reduced caffeine contracture force and decreased energy charge 
implicate acquired RyR1 dysfunction either causing, or secondary to, 
mitochondrial dysfunction. A strong connection between PP, RyR1 
channels and mitochondria is suggested by the fact that RyR1 and 
mitochondrial mutations have been reported to exhibit an atypical 
periodic paralysis phenotype (65, 66) and coenzyme Q10, an electron 
carrier between respiratory chain enzymes, was effective in treating 
PP (67). Moreover, a transgenic mouse with RyR1 mutation had a 
HypoPP phenotype with core-like structures on histology and 
impaired ATP synthesis secondary to mitochondrial membrane 
depolarisation (35).

Thus, there is preclinical and clinical evidence implicating 
RyR1 and mitochondria in the episodic weakness phenotype of PP 
(35, 65–67). However, there is also new preclinical evidence linking 
RyR1 leak and mitochondrial dysfunction to the development of 
fixed progressive weakness with degenerative features (63). 
Therapies that target RyR1 leak have now completed phase I and 
are about to start phase II clinical trials (68). If RyR1 leak is 
confirmed to contribute to fixed, progressive weakness with 
degenerative features in humans with PP, RyR1 leak-targeted 
therapeutics could provide the first disease modifying treatments 
for PP. It follows that confirming the contribution of RyR1 leak to 

phenotype transition with age in patients with PP should 
be a priority.

Parallels and insights

Firstly, it is important to highlight that a non-linear ageing 
trajectory is apparent in both periodic paralysis and age-related 
muscle failure. This emphasises the importance of a life course 
approach to the study of ageing as if we simply compare young and 
old, we risk mistaking consequence for effect.

Secondly, there are striking similarities in the time course of 
changes underlying healthy ageing and the phenotype change in 
periodic paralysis (Figure 1). This suggests similar mechanisms may 
be involved. Whilst, the energetic requirements of ionic homeostasis 
are increased with age (25), they are undoubtedly increased at 
baseline in periodic paralysis as evidenced by the effect of 
micromolar ouabain, a Na+K+ATPase blocker, on HypoPP II muscle 
where it caused membrane depolarisation and weakness whilst the 
same dose in wild-type muscle had no effect (61). This raises the 
possibility that the age-related impairment in ability to maintain 
ionic homeostasis tips periodic paralysis muscle over the edge. This 
could explain the increase in 23Na+ signal seen on MR imaging in 
HyperPP patients, the magnitude of which correlates with permanent 
weakness (50).

The evidence from MVRCs of a change in excitability with age 
may also help explain the transition from episodic to fixed weakness 
as, whether due to sodium channel inactivation or depolarisation 
of resting membrane potential, this could be sufficient to tip an 
already depolarised membrane past a critical threshold, resulting in 
fixed weakness. This excess depolarisation, combined with an 
inability to meet the ATP costs required to deal with it, may set up 
the negative spiral described in healthy ageing muscle of 
mitochondrial dysfunction increasing RyR1 leak which 
consequently impairs oxidative phosphorylation increasing RyR1 
leak further (Figure 2). This negative spiral would be exacerbated 
by genetic ion channel dysfunction increasing energy requirements 
of ionic homeostasis. A proposal supported by the findings of 
impaired oxidative phosphorylation and acquired RyR1 leak in old 
Hyper PP mice (63).

What is less clear is how and why old muscle becomes resistant to 
potassium-induced weakness, and if and how this relates to the onset 
of a degenerative phenotype. One possibility is that depolarisation in 
the context of elevated intracellular Na+ triggers reverse mode of the 
Na+/Ca2+ exchanger. Reverse mode of the Na+/Ca2+ exchanger has 
been reported to protect against high-frequency fatigue in mouse 
soleus muscle (69). Thus, reverse mode of Na+/Ca2+ exchanger could 
alleviate potassium-induced weakness whilst exacerbating permanent 
progressive weakness with degenerative features by contributing to 
Ca2+ overload.

Future work needs to confirm the negative interaction between 
elevated Na+, mitochondrial dysfunction and RyR1 Ca2+ leak and 
clarify their role in both triggering and perpetuating the phenotype 
transition in PP. Understanding these mechanisms and their link with 
ageing physiology, has potential to identify the first disease modifying 
therapies for PP but also to identify potentially novel and tractable 
mechanisms that contribute to sarcopenia, the pathological loss of 
skeletal muscle mass and function with age.
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