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Objective: Neurological deterioration after mild traumatic brain injury (TBI) has 
been recognized as a poor prognostic factor. Early detection of neurological 
deterioration would allow appropriate monitoring and timely therapeutic 
interventions to improve patient outcomes. In this study, we  developed a 
machine learning model to predict the occurrence of neurological deterioration 
after mild TBI using information obtained on admission.

Methods: This was a retrospective cohort study of data from the Think FAST 
registry, a multicenter prospective observational study of elderly TBI patients 
in Japan. Patients with an admission Glasgow Coma Scale (GCS) score of 12 
or below or who underwent surgical treatment immediately upon admission 
were excluded. Neurological deterioration was defined as a decrease of 2 or 
more points from a GCS score of 13 or more within 24 h of hospital admission. 
The model predictive accuracy was judged with the area under the receiver 
operating characteristic curve (AUROC) and the area under the precision-recall 
curve (AUPRC), and the Youden index was used to determine the cutoff value.

Results: A total of 421 of 721 patients registered in the Think FAST registry 
between December 2019 and May 2021 were included in our study, among 
whom 25 demonstrated neurological deterioration. Among several machine 
learning algorithms, eXtreme Gradient Boosting (XGBoost) demonstrated the 
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highest predictive accuracy in cross-validation, with an AUROC of 0.81 (±0.07) 
and an AUPRC of 0.33 (±0.08). Through SHapley Additive exPlanations (SHAP) 
analysis, five important features (D-dimer, fibrinogen, acute subdural hematoma 
thickness, cerebral contusion size, and systolic blood pressure) were identified 
and used to construct a better performing model (cross-validation AUROC 
of 0.84 and AUPRC of 0.34; testing data AUROC of 0.77 and AUPRC of 0.19). 
At the cutoff value from the Youden index, the model showed a sensitivity, 
specificity, and positive predictive value of 60, 96, and 38%, respectively. When 
neurosurgeons attempted to predict neurological deterioration using the same 
testing data, their values were 20, 94, and 19%, respectively.

Conclusion: In this study, our predictive model showed an acceptable 
performance in detecting neurological deterioration after mild TBI. Further 
validation through prospective studies is necessary to confirm these results.

KEYWORDS

mild traumatic brain injury, neurological deterioration, machine learning, predictive 
model, XGBoost

Introduction

With population aging, the number of elderly patients with 
traumatic brain injury (TBI) continues to increase worldwide (1, 2). 
Although the causes of head injury among elderly patients with TBI, 
such as falls, are considered minor in this population, they are known 
to result in worse life and functional outcomes in elderly patients than 
in younger patients (3–6). One factor contributing to the poor 
prognosis of TBI in elderly patients is the increased incidence of 
neurological deterioration, which refers to the progression from an 
initial mild state—where patients can talk and communicate—to a 
state where consciousness impairment advances within a short period. 
Neurological deterioration has been recognized as a poor prognostic 
indicator in the management of head trauma. In particular, elderly 
patients are thought to be prone to neurological deterioration due to 
age-related brain atrophy, which may obscure the manifestations of 
intracranial hemorrhage or brain swelling in the early stages of injury, 
leading to underestimation of the initial severity of head trauma (7). 
Predicting the progression to neurological deterioration and 
subsequently initiating appropriate monitoring and interventions 
before the occurrence of deterioration may lead to improved outcomes 
for elderly patients with TBI.

Factors that have been reported to affect neurological deterioration 
include the presence of acute subdural hematoma, the use of 
anticoagulant medications (8), and elevated D-dimer levels on 
admission. However, there is no established way to assess the risk of 
neurological deterioration in each patient, possibly because the 
occurrence of neurological deterioration is relatively rare, so it is 
difficult to extract data on multiple independent factors related to this 
condition and construct predictive models via conventional 
statistical methods.

In recent years, many studies have demonstrated that machine 
learning enables the development of more accurate predictive models 
than traditional statistical methods do, such as in predicting the length 
of stay in the ICU for trauma patients or the risk of developing 
epilepsy after TBI. Although one of the weaknesses in utilizing 
machine learning analysis lies in its black-box nature, which possibly 
hinders its widespread use owing to the lack of clinical interpretability, 
recent advancements in interpreting the decisions made by machine 

learning models are expected to facilitate the application of machine 
learning in clinical settings (9).

In this study, we developed a predictive model using machine 
learning algorithms to predict the occurrence of neurological 
deterioration in elderly patients with mild TBI. Furthermore, 
we examined the clinical validity of the constructed predictive model 
by using the SHapley Additive exPlanations (SHAP) (10) explainable 
artificial intelligence (XAI) method.

Methods

Study population

This study was approved by the Medical Research Ethics 
Committee of Tokyo Medical and Dental University (M2019-210) and 
all the participating institutions. The requirement for informed 
consent was waived because of the observational nature of this study.

In this study, analysis was conducted using data from the Think 
FAST registry (11), a multicenter prospective database that contains 
data on hospitalized patients aged 65 years and older with head 
injuries. The participating institutions include Iwate Medical 
University, Sendai City Hospital, Tsuchiura Kyodo General Hospital, 
Chiba Emergency Medical Center, Teikyo University Hospital, Nippon 
Medical School Hospital, Nihon University Hospital, National Disaster 
Medical Center, St. Marianna University Hospital, Tokyo Medical and 
Dental University Hospital, Saiseikai Shiga Hospital, Hyogo Prefectural 
Kakogawa Medical Center, Kagawa University Hospital, Yamaguchi 
University Hospital, and the Japanese Red Cross Kumamoto Hospital. 
Patient registration was conducted between December 2019 and May 
2021, resulting in the inclusion of data from 721 patients. This study 
followed the Strengthening the Reporting of Observational Studies in 
Epidemiology (STROBE) reporting guidelines (12).

Definition of neurological deterioration

In this study, neurological deterioration was defined as a decrease 
of 2 or more points in the Glasgow Coma Scale (GCS) score in patients 
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whose admission GCS score was 13 points or higher and who were 
treated with conservative management on admission.

Features

The Think Fast registry contains the prospectively registered data 
of hospitalized patients aged 65 years and older with head trauma. In 
this study, the following data were extracted from the database: age, 
sex, vital signs (systolic blood pressure, heart rate), consciousness level 
(evaluated via the GCS), laboratory data (platelet count, prothrombin 
time-international normalized ratio (PT-INR), activated partial 
thromboplastin time (APTT), D-dimer level, fibrinogen level), head 
computed tomography (CT) findings [acute subdural hematoma 
thickness (mm), acute epidural hematoma thickness (mm), cerebral 
contusion diameter (mm), presence of traumatic subarachnoid 
hemorrhage, skull vault fracture, skull base fracture, midline shift 
(mm), appearance of basal cisterns (normal/compressed/
disappeared)], mechanism of injury (traffic accident/fall), time from 
injury to hospital arrival (minutes), administration of hemostatic 
agents (tranexamic acid, carbazochrome), antithrombotic drug intake 
(number of antiplatelet drugs or anticoagulants), and reversal therapy 
(vitamin K, fresh frozen plasma, four-factor prothrombin complex 
concentrate, idarucizumab, platelet transfusion). Vital signs, 
consciousness levels, and laboratory data were collected at the time of 
the patient’s arrival at the emergency room. CT findings were also 
based on examinations performed at the time of arrival, and the 
measurements were calculated from the images of each patient.

Machine learning algorithms

Prediction models, including logistic regression (13), support 
vector machine (with linear and radial basis function (RBF) kernels) 
(14), eXtreme Gradient Boosting (XGBoost) (15, 16), and random 
forest models (17, 18), were constructed via machine 
learning algorithms.

The predictive accuracy of the models was compared through 
cross-validation. The best performing algorithm was then selected, 
and SHAP (10) values were computed to visualize their relative 
importance for each feature. Furthermore, the dimensionality of the 
feature space was reduced according to the importance values, and the 
resulting features were used to create the most accurate 
prediction model.

Python version 3.9 was used to build the machine learning models 
and analyze missing values and SHAP values. Several Python modules 
were employed for this task, including numpy 1.23.2, scikit-learn 
1.4.0, matplotlib-base 3.6.3, pandas 1.5.3, XGBoost 1.7.1, pyampute 
0.0.3, and SHAP 0.41.0.

Preprocessing

Supplementary Figure  1 illustrates the percentage of missing 
values for each feature in the whole dataset. In particular, the 
proportion of missing values related to the coagulation system was 
greater than that related to other systems. Little’s missing completely 
at random (MCAR) test yielded a p value of 0.93, indicating that the 

missing values were not MCAR. Therefore, we  adopted four 
approaches to handle the missing data in this study: (1) k-nearest 
neighbors (19); (2) multiple imputation (20); (3) random forest 
regression (21); and (4) no imputation, employed only in the XGBoost 
model since only XGBoost can handle data containing missing values.

The entire dataset was randomly divided at a 3:2 ratio into training 
and validation datasets (60% of the data), which were used for model 
creation with threefold cross-validation (k = 3), and a testing dataset 
(the remaining 40% of the data), which was used to test the 
performance of the model. During cross-validation, hyperparameter 
tuning within the ranges (shown in Supplementary Table  1) was 
performed to optimize the hyperparameters of each algorithm.

As shown in Supplementary Table 2, the dataset was imbalanced 
due to the rarity of neurological deterioration (approximately 6%) 
among the patients with mild TBI. Thus, class weighting was applied 
to modify the loss function during model training to solve the 
problems associated with imbalanced data. Specifically, we assigned 
an approximately 13 times greater weight to the positive cases than to 
the negative cases, as reported previously (22).

Performance evaluation

The evaluation metrics used to compare the predictive 
performance of the machine learning algorithms included the area 
under the receiver operating characteristic curve (AUROC) and the 
area under the precision–recall curve (AUPRC). The Youden index 
was used to establish the cutoff value, and the sensitivity, specificity, 
positive predictive value, and negative predictive value were calculated.

Statistical analysis

R version 4.0.3 was used as the statistical analysis software. 
Student’s t test and Welch’s t test were applied to compare continuous 
and normally distributed variables between groups. For nonnormally 
distributed variables, the Mann–Whitney U test was used for between-
group comparisons. For categorical variables, groups were compared 
with the chi-square test.

All tests were two-sided, and a significance level of 0.05 was used. 
Bonferroni adjustment was applied to mitigate the risk of Type I errors 
arising from performing multiple comparison tests on the same data.

Results

The Think FAST registry includes data from a total of 721 head 
trauma patients aged 65 years and older, among whom 421 patients 
had an admission GCS score of 13 points or higher and were treated 
with conservative management at admission (Figure 1). Neurological 
deterioration occurred in 25 patients (6%). The distributions of each 
variable in the training and validation datasets and the testing dataset 
are presented in Table 1.

The distribution of missing values is illustrated in 
Supplementary Figure 1. High rates of missing values were observed, 
particularly in the coagulation profiles, notably the D-dimer and 
fibrinogen levels. Little’s MCAR test revealed a p value of 0.93, 
indicating that none of the missing values were MCAR. Missing values 
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were imputed via k-nearest neighbor, multiple imputation, and 
random forest regression methods.

All the data were randomly divided into a training/validation 
dataset and a testing dataset such that the proportion of data 
corresponding to patients who experienced neurological deterioration 
remained consistent across both datasets. Sixty percent of the data 
(those in the training/validation dataset) were utilized to construct the 
predictive model through cross-validation, whereas the remaining 
40% (testing dataset) were used to test the performance of the 
constructed predictive models.

Initially, predictive models were created using all available data 
extracted from the Think FAST registry. XGBoost, random forest, 
support vector machine (with a linear RBF kernel), and logistic 
regression frameworks were employed to construct the predictive 
models. XGBoost, in particular, is designed to allow the construction 
of predictive models without the need to impute missing values. 
We then compared the performance of each machine learning model 
and found that the model constructed using XGBoost without 
imputing missing values had the highest predictive performance, with 
an AUROC of 0.81 [0.07] and an AUPRC of 0.33 [0.08] (Table 2 and 
Supplementary Table 3). The mean absolute SHAP values were also 
calculated and are presented in Figure 2.

Next, variables with low mean absolute SHAP values were 
sequentially removed for dimensionality reduction. The AUROC 
trends in the training/validation dataset and testing dataset after 
reconstruction of the XGBoost model with the different sets of 
dimensionally reduced features are shown in Figure 3. Among the 
various models, the predictive model constructed using the top five 
variables identified through SHAP analysis demonstrated the highest 
AUROC during cross-validation and showed minimal differences in 
predictive accuracy in the testing data. For this model, the cross-
validation AUROC was 0.84, and the AUPRC was 0.34, whereas in the 

testing dataset, the AUROC was 0.77, and the AUPRC was 0.19 
(Figure 4 and Supplementary Figure 2). Using the bootstrap method, 
the 95% confidence interval for the AUROC in the testing dataset was 
calculated to be 0.57–0.94. This range indicates a significantly higher 
predictive accuracy of this model than that of random guessing.

The SHAP dependence plot, which illustrates the distribution 
between the numerical values of each variable and their corresponding 
SHAP values in the prediction model, is presented in Figure 5. For 
D-dimer levels, a transition in SHAP values from negative to positive 
occurred when the level surpassed 30 μg/mL, indicating a tendency 
for the SHAP value to increase as the D-dimer level increased. 
Fibrinogen levels displayed a shift toward positive SHAP values when 
at levels below 200 mg/dL, at which they contributed more to 
neurological deterioration. For the acute subdural hematoma (ASDH) 
thickness, a transition from negative to positive SHAP values occurred 
at a thickness of 5 mm, whereas a cerebral contusion exceeding 10 mm 
in size showed a similar trend toward neurological deterioration 
(Figure 6).

At the cutoff value for this model determined via the Youden 
index, the sensitivity was 60%, the specificity was 96%, the positive 
predictive value was 37.5%, and the negative predictive value was 90%. 
When three neurosurgeons reviewed the data for each variable in the 
test dataset to predict the occurrence of neurological deterioration, the 
sensitivity was 20%, the specificity was 94%, the positive predictive 
value was 19%, and the negative predictive value was 94% (Table 3).

Discussion

In this study, we constructed a machine learning model to predict 
neurological deterioration among patients with mild TBI via data 
from the Think FAST registry database, which comprises data 

FIGURE 1

The whole study design. XGBoost, eXtreme Gradient Boosting; SHAP, the SHapley Additive exPlanations.
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TABLE 1 Baseline features of the study cohort.

Feature/variable Entire cohort N = 417 Training and validation 
cohort N = 250

Testing cohort N = 167

Age, mean (SD) 79.2 (7.6) 79.1 (7.4) 79.3 (7.8)

Sex

Men, No. (%) 244 (59) 155 (62) 89 (53)

Women, No. (%) 173 (41) 95 (38) 78 (47)

Injury mechanism

Traffic accident, No. (%) 88 (21) 51 (20) 37 (22)

Fall, No. (%) 73 (18) 48 (19) 25 (15)

Tumble, No. (%) 236 (57) 109 (44) 95 (57)

Time from injury to hospitalization 

(min), median (range)

66.5 (5–10,991) 67.0 (5–8,184) 66.0 (14–10,991)

Vital signs

sBP (mmHg), mean (SD) 150 (28) 151 (28) 151 (29)

HR (beats/min), mean (SD) 84 (16) 84 (15) 83 (17)

Glasgow Coma Scale on admission

Eye open

4, No. (%) 344 (82) 205 (82) 139 (83)

3, No. (%) 73 (18) 45 (18) 28 (17)

Verbal reaction

5, No. (%) 240 (58) 139 (56) 101 (60)

4, No. (%) 167 (40) 103 (41) 64 (38)

3, No. (%) 10 (2) 8 (3) 2 (1)

Movement

6, No. (%) 416 (99.8) 249 (99.6) 167 (100)

5, No. (%) 1 (0.2) 1 (0.4)

Paresis

Yes, No. (%) 14 (3) 6 (2) 8 (5)

No, No. (%) 403 (97) 244 (98) 159 (95)

Alcohol intake

Yes, No. (%) 31 (7) 16 (6) 15 (9)

No, No. (%) 386 (93) 234 (94) 152 (91)

Antithrombotic agents

Number of antiplatelet drugs

Zero, No. (%) 319 (77) 183 (74) 136 (81)

One, No. (%) 83 (20) 56 (23) 27 (16)

Two, No. (%) 12 (3) 8 (3) 4 (3)

Anticoagulant drug

Warfarin, No. (%) 22 (5) 12 (5) 10 (6)

DOAC, No. (%) 38 (9) 22 (9) 16 (10)

None, No. (%) 357 (86) 216 (86) 141 (84)

Reversal therapy for antithrombotic agents

Vitamin K, No. (%) 14 (3) 8 (3) 6 (4)

Fresh Frozen Plasma, No. (%) 5 (1) 4 (2) 1 (1)

Four Factor Prothrombin Complex 

Concentrate, No. (%)

9 (2) 7 (3) 2 (1)

(Continued)
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TABLE 1 (Continued)

Feature/variable Entire cohort N = 417 Training and validation 
cohort N = 250

Testing cohort N = 167

Idarucizumab, No. (%) 1 (0.2) 1 (0.4) 0 (0)

Platelet transfusion, No. (%) 3 (1) 2 (1) 1 (1)

Hemostatic agent

Tranexamic acid administration

Yes, No. (%) 119 (41) 101 (40) 71 (43)

No, No. (%) 298 (59) 149 (60) 96 (57)

Carbazochrome administration

Yes, No. (%) 172 (29) 71 (28) 48 (29)

No, No. (%) 245 (71) 179 (72) 119 (71)

Laboratory data

Platelet counts, mean (SD) 19.5 (7.5) 19.7 (7.9) 19.2 (6.8)

PT-INR, mean (SD) 1.17 (0.8) 1.15 (0.74) 1.20 (0.92)

APTT, mean (SD) 27.3 (5.4) 28.0 (4.3) 27.4 (6.7)

D-dimer (μg/ml), median (SD) 10.8 (47.7) 10.7 (50.3) 11.0 (41)

Fibrinogen (mg/dL) 318 (102) 321 (113) 314 (86)

Head CT findings

ASDH

Yes, No. (%) 208 (50) 127 (51) 81 (48)

No, No. (%) 209 (50) 123 (49) 86 (52)

Thickness in positive cases (mm), mean 

(SD)

5.4 (4.0) 5.3 (3.8) 5.6 (4.5)

EDH

Yes, No. (%) 19 (5) 11 (4) 8 (5)

No, No. (%) 398 (95) 239 (96) 159 (95)

Thickness in positive cases (mm), mean 

(SD)

12.3 (9.1) 11.7 (7.2) 13.2 (11.7)

Cerebral contusion

Yes, No. (%) 81 (19) 48 (19) 33 (20)

No, No. (%) 336 (81) 202 (81) 134 (80)

Diameter in positive cases (mm), mean 

(SD)

15.3 (14) 13.4 (10.5) 17.9 (18.1)

SAH

Yes, No. (%) 227 (56) 136 (56) 91 (55)

No, No. (%) 190 (44) 109 (44) 73 (45)

Basal cistern appearance

Disappear, No. (%) 2 (0.5) 0 2 (1)

Compressed, No. (%) 12 (3) 7 (3) 5 (3)

Normal, No. (%) 403 (96.5) 243 (97) 160 (96)

Midline shift

Yes, No. (%) 23 (9) 19 (8) 10 (6)

No, No. (%) 242 (91) 231 (92) 157 (94)

Shift in positive cases (mm), mean (SD) 4.5 (2.5) 4.0 (2.4) 5.5 (2.0)

Skull fracture

Yes, No. (%) 64 (16) 41 (17) 23 (14)

(Continued)
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prospectively collected from multiple facilities, particularly from 
patients aged 65 years and older. Among several machine learning 
models constructed with one of several imputation methods, the 
model constructed via the XGBoost framework without imputation 
showed comparatively better predictive performance than the other 
models did, with an AUROC of 0.81 according to cross-validation. 
Furthermore, by conducting feature dimension reduction on the basis 
of the feature SHAP values, we built a predictive model using XGBoost 
that could predict neurological deterioration with an AUROC of 
0.84 in cross-validation and an AUROC of 0.77 in the testing dataset.

Neurological deterioration after mild TBI has long been 
recognized; patients with this condition are said to “talk and 
deteriorate” or “talk and die” (23–25). Marshal et al.’s study published 
in 1984 (26) reported a TBI incidence of approximately 10% in head 
trauma patients, with over half of them dying or being left comatose. 
According to the report by Lobato et al. (27), among patients with 
severe TBI, approximately 25% were able to converse before 

deteriorating to a severe state, with 32% of these patients ultimately 
dying. Therefore, neurological deterioration has been acknowledged 
as a condition that emerges in some patients with TBI and results in a 
poor prognosis, posing a clinical challenge to differentiate patients 
who experience neurological deterioration from those who do not. 
Recent meta-analyses have indicated that neurological deterioration 
occurs in approximately 12% of patients with mild TBI; however, 
statistically significant prognostic factors for neurological 
deterioration have not been identified (28). Moreover, to our 
knowledge, methods for stratifying the risk of neurological 
deterioration remain elusive. In this study, the best predictive model 
we constructed achieved good predictive accuracy, with an AUROC 
of 0.77 for predicting neurological deterioration in the testing dataset. 
This performance indicates a predictive accuracy superior to that of 
random guessing and suggests the potential for better sensitivity and 
a greater positive predictive value than predictions made 
by neurosurgeons.

TABLE 1 (Continued)

Feature/variable Entire cohort N = 417 Training and validation 
cohort N = 250

Testing cohort N = 167

No, No. (%) 343 (84) 203 (83) 140 (86)

Skull base fracture

Yes, No. (%) 19 (5) 16 (7) 3 (2)

No, No. (%) 389 (95) 229 (93) 160 (98)

SD, standard deviation; sBP, systolic blood pressure; HR, heart rate; DOAC, direct oral anticoagulant; PT-INR, Prothrombin Time-International Normalized Ratio; APTT, Activated Partial 
Thromboplastin Time; ASDH, acute subdural hematoma; EDH, epidural hematoma; SAH, subarachnoid hemorrhage.

TABLE 2 Area under the receiver operating characteristics curve in each algorithm with each imputation method.

Algorithm k-nn Multiple imputation Regression imputation Without imputation

XGBoost, mean (SD) 0.73 (0.03) 0.78 (0.07) 0.78 (0.09) 0.81 (0.07)

Random Forest, mean (SD) 0.67 (0.12) 0.71 (0.10) 0.75 (0.07) N/A

Linear SVM, mean (SD) 0.61 (0.11) 0.61 (0.12) 0.61 (0.12) N/A

RBF SVM, mean (SD) 0.71 (0.04) 0.69 (0.04) 0.69 (0.04) N/A

Logistic Regression, mean (SD) 0.65 (0.12) 0.65 (0.13) 0.65 (0.13) N/A

SD, standard deviation; N/A, not applicable; RBF, radial basis function; k-nn, k-nearest neighbors.

FIGURE 2

Study flow chart.
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For this predictive model, we extracted data on variables that are 
highly correlated with neurological deterioration via SHAP analysis. The 
D-dimer level, fibrinogen level, ASDH thickness, systolic blood pressure, 
and cerebral contusion diameter were selected as the most important 
variables. The trends in the SHAP values for these variables in this study 
were consistent with the results of previous reports on the severity of TBI 
and neurological deterioration. For example, regarding the relationship 
between coagulation parameters such as D-dimer and fibrinogen levels 
and TBI, Nakae et al. reported that the D-dimer level tends to increase 
while the fibrinogen level tends to decrease early after injury (29). 
Moreover, patients with TBI and elevated D-dimer levels upon 
admission are more prone to hemorrhage progression and neurological 
deterioration, resulting in poorer outcomes for patients with elevated 
D-dimer levels than those without elevated D-dimer levels (30, 31). 
Head CT studies have revealed that ASDH thickness is a risk factor for 
subsequent exacerbation (32), and cerebral contusions measuring larger 
than 20 mm are significantly associated with hemorrhage progression 
(33). These trends align with the dependence plots shown for each 
variable, indicating the consistency of these results. In this study, we not 

only focused on these individual factors but also analyzed their complex 
interrelationships via machine learning techniques to construct a 
prediction model to accurately predict neurological deterioration.

The number of studies using machine learning in the field of 
medicine has rapidly increased in recent years (34). In particular, 
predictive models that utilize ensemble learning or deep learning have 
been shown to demonstrate superior predictive accuracy to traditional 
logistic regression models in many studies (35). However, the black-box 
nature of the prediction process inherent in these complex models poses 
a barrier to their practical application in clinical settings. SHAP analysis 
is a method that was developed for interpreting machine learning 
models (36), allowing interpretation of the meaning of the features used 
in the construction of predictive models. In this study, by visualizing the 
trends of feature importance via dependence plots, the information 
obtained from the analysis could be used to increase the reliability of the 
machine learning model. The predictive model developed in this study 
is publicly available on the GitHub website (37) in a format that can 
be easily implemented. By utilizing our model, it may be possible to 
detect cases of deterioration at an early stage after hospitalization. This 

FIGURE 3

Relative importance of features according to their absolute SHAP values.
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could contribute to improving the prognosis of TBI by implementing 
strict monitoring and early follow-up for high-risk patients. 
Furthermore, enhancing predictive models, such as the one in this study, 
is expected to advance personalized medicine for patients with TBI.

Limitations

As the Think FAST registry used in this study contains data from 
multiple facilities collected in a prospective manner, the impact of 

domain shifts is considered relatively minimal. Although the 
predictive model we developed did not show a significant discrepancy 
in AUROC between cross-validation and testing, the overall sample 
size was too small to establish an external validation dataset. Future 
external validation studies will be necessary to confirm the validity of 
this model. In addition, since the Think FAST registry includes data 
from patients aged 65 years and older, our predictive model can only 
be applied to older patients. Since the mechanisms of injury, types of 
hemorrhage, and clinical courses of TBI may differ between younger 
and older patients, applying our present model to populations with 

FIGURE 4

The AUROC trends in the training/validation dataset and testing dataset after dimension reduction based on SHAP values. The red circle indicates the 
results of feature numbers that showed superior AUROC in cross-validation and test. AUROC, area under the receiver operating characteristic curve.

FIGURE 5

Receiver operating characteristic (ROC) curves in the threefold stratified cross-validation (A) and in the testing dataset (B). AUC, area under the curve.
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different prior probabilities could yield incorrect results. Therefore, for 
younger patients, it is necessary to develop another predictive model 
or at least validate the present model using data with a wider age range.

Furthermore, the variables used to create this model included only 
those for which data, such as clinical examination data, laboratory 
data and descriptive findings from head CT scans, are commonly 
acquired in the management of head trauma. In the future, CT images 
could be incorporated into predictive models via convolutional neural 
networks to increase the predictive accuracy of these models. 
Additionally, since this study focused solely on the progression of 
consciousness impairment after admission as the outcome, further 
investigation is needed to understand how this information could 
be  utilized in treatment decision-making and its impact on 
patient outcomes.

Conclusion

The application of machine learning models suggests the potential 
to detect the occurrence of neurological deterioration in elderly 
patients with mild TBI using only admission data. Further validation 
with an external dataset is needed in the future.
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