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Introduction: People with hypermobile Ehlers–Danlos syndrome (hEDS) experience 
multisystemic dysfunction with varying severity and unpredictability of flare occurrence. 
Cohort studies suggest that individuals with hEDS have a higher risk for autonomic 
dysfunction. The gold standard for assessing autonomic function, clinically, is the 
heart rate variability (HRV) assessment from 24-h Holter monitor electrocardiogram 
data, but this is expensive and can only be performed in short durations. Since 
their advent, biometric devices have been a non-invasive method for tracking 
HRV to assess autonomic function. This study aimed to understand the intra- and 
inter-individual variability in autonomic function and to associate this variability 
with gastrointestinal symptoms in individuals with hEDS using wearable devices.

Methods: We studied 122 days of biometric device data from 26 individuals, 
including 35 days highlighted as high gastrointestinal (GI) dysfunction and 48 
days as low GI dysfunction. Utilizing wavelet analysis to assess the frequency 
domains of heart rate signals, we compared participants’ HRV data for high, 
low, very low (VLF), and ultralow (ULF) frequency domains associated with 
physiological differences.

Results: We found a significant difference between the VLF and ULF signals on 
high-GI symptom days compared with low-symptoms days for 92 and 76% of 
the signals sampled, respectively.

Discussion: Our pilot data show a change in HRV for individuals with hEDS 
experiencing a flare day for a single-body system. Future research will focus 
on evaluating the relationship between longitudinal multisystemic symptom 
severity fluctuations and HRV.
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1 Introduction

Ehlers–Danlos syndrome (EDS) is a group of 13 inherited 
connective tissue disorders, the most common type of which is 
hypermobile Ehlers–Danlos syndrome (hEDS), which does not have 
an established genetic etiology (1). Patients with hEDS are diagnosed 
using clinical criteria comprised of an assessment of generalized 
hypermobility in nine joints plus two of the following: (a) a minimum 
of 5 of 12 objective signs; (b) a first-degree family member diagnosed 
using the 2017 criteria; and/or (c) chronic pain or recurrent joint 
instability for at least 3 months, and all other differential diagnoses, 
including other types of EDS ruled out (1, 2). Individuals who do not 
meet the generalized hypermobility or minimum objective signs 
criteria but have other differential diagnoses ruled out, are considered 
to be  on the same disease spectrum and are diagnosed with 
hypermobile spectrum disorder (HSD) (3). hEDS accounts for 
approximately 90% of all EDS diagnoses, with prevalence estimates at 
1 in 500 people (4); however, prevalence for hEDS and HSD is posited 
in as many as 1 in 100 people (3, 5).

People with hEDS experience dysfunction across multiple body 
systems resulting in a wide range of intermittent symptoms of varying 
severity, both within and across affected individuals. Signs and 
symptoms in people with hEDS include chronic pain, frequent joint 
subluxations and dislocations, sleep disturbance, fatigue, immune and 
inflammatory issues, gastrointestinal (GI) issues, and orthostatic 
dysfunction (1, 6). Two of the most prominent and interrelated patient 
complaints involve GI and orthostatic intolerance (OI) symptoms. 
This is supported by reports showing that a hEDS diagnosis increases 
the risk for autonomic dysfunction (AD) (7), including GI dysfunction 
(8, 9) and orthostatic issues (10). GI dysfunction in hEDS patients is 
frequently comorbidly reported with OI, and the absence of organic 
etiology indicates that the GI symptoms in hEDS patients are also 
attributable to AD (11).

While there are many manifestations of AD, orthostatic 
disturbances are highly studied and discussed. These are very common 
in people with hEDS, with 80–94% of people reporting orthostatic 
disturbances either through self-reported clinical symptom scales or 
as measured objective signs (12–14). Orthostatic problems are variable 
and are classified as orthostatic intolerance when signs and symptoms 
are present but do not meet the full criteria for postural orthostatic 
tachycardia syndrome (POTS). Still, for simplicity, we will refer to any 
degree of orthostatic intolerance as OI. OI is directly attributed to 
failures in the autonomic nervous system (ANS) in maintaining 
homeostasis. These ANS failures can present in multiple body systems 
and are functional, as indicated by fluctuating periods of severity 
within and between patient populations, which makes the diagnosis 
and management of AD clinically complicated (15, 16).

The exact prevalence of GI symptoms in people with hEDS is 
unknown due to the challenges inherent in diagnosing functional 
disorders (17), but one report shows that up to 62% of hEDS patients 
often receive an IBS diagnosis prior to their hEDS diagnosis (18). 
Furthermore, in another cohort study, 63% of patients had at least one 
GI symptom at the time of diagnosis (19) and one-third of all hEDS 
patients are referred to a GI clinic for management of symptoms (20). 
OI and GI symptoms are frequently comorbid in hEDS patients, and 
the absence of organic etiology for GI symptoms in hEDS patients 
presents the potential that those symptoms are attributable to AD (21, 
22). hEDS patients with POTS have an increase in GI diagnoses and 

symptoms compared to POTS-negative hEDS patients, including 
increases in IBS (59% vs. 51%) and functional gastroduodenal 
disorders (75% vs. 67%) (18). GI and OI symptoms have a high impact 
on physical quality of life and pain, leading to reduced health 
outcomes and increased psychological stress (12, 21, 23).

People diagnosed with hEDS undergo a protracted diagnostic 
odyssey consisting of evaluation by an average of 15.6 different 
provider types, with nearly all (99.8%) reporting initially receiving at 
least one alternate diagnosis with an average of 10.45 codiagnoses for 
hEDS-associated signs and symptoms. Unfortunately, the time to 
diagnosis remains high at 10.4 years, with the majority receiving the 
diagnosis from subspecialists (77%), leaving many individuals 
undiagnosed and without a pathway for diagnosis (24).

Individuals who are embroiled within this pathway or who are 
postdiagnosis but still learning how best to manage their symptoms 
struggle with managing bouts of symptom exacerbation. Like other 
chronic disease symptoms, GI dysfunction often presents as 
intermittent, recurring events (i.e., flare-ups) that are not directly tied 
to known causes such as dietary or hormonal changes (25), making 
management of symptoms challenging for the patient (26). Reports of 
alternating bowel symptoms in hEDS patients further complicate this.

There has been a recent surge in wearable biometric devices 
marketed to the public. These provide an affordable means for self-
monitoring previously restricted to the clinical realm. The dominant 
device type allows measurement of autonomic responses, including 
heart rate variability (HRV), breathing rate, pulse, oxygen saturation, 
movement, and many more emerging metrics. Recent data 
demonstrate physician use of these types of data to facilitate 
monitoring and management of disease efficacy, which becomes 
critical in multisystemic chronic conditions with a lack of providers, 
such as hEDS (27). Furthermore, the etiology of many of the reported 
complaints in hEDS patients is unknown, and autonomic failures to 
maintain homeostasis appropriately are accepted theories (28).

Autonomic function is evaluated using analysis of heart rate 
variability (HRV). Adaptations seen as fluctuations in heart rate (HR) 
are, essentially, differences in the time between beats [respiratory rate 
(RR) interval]. Having highly variable responses is consistent with 
having a normal and functional ANS. HRV is highly individualized, 
even among healthy populations, so analysis of functionality and 
fluctuations in HRV is best tested in individuals and populations over 
time (29); more specifically, fluctuations in HRV around a mean over 
time can be  mathematically assessed to estimate the overall 
functionality of the ANS in an individual. The ANS consists of a 
system of excitatory and inhibitory signals that can interact 
synergistically or antagonistically. Thus, the RR signal can be analyzed 
as a composite of various co-occurring signals that can 
be mathematically separated or decomposed into distinct frequency 
domains representing the various ANS functions defined by the 
number of full signal cycles seen within a discrete unit of time or 
hertz (Hz).

Although identifying the contributions to symptoms flare-ups is 
difficult for the patients, identifying when the flare-up is occurring is 
easily discernible by patients and generally occurs for at least 24 h. 
Therefore, we proposed to pilot the tracking of autonomic function 
and occurrence of symptoms in hEDS patients over time using 
commercially available wearable biometric devices and daily self-
report of symptom occurrence and severity to determine whether 
there is a predictable correlation that could be  used for 
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self-management of future flares. Given the strong co-occurrence of 
OI and GI symptoms in hEDS patients, we, limited this study to 
assessing the relationship between GI symptoms and HRV patterns. 
This study aims to establish methods for generating HRV metrics in a 
sample of individuals with hEDS and determining associations with 
GI symptom fluctuations.

The gold standard for assessing autonomic function, clinically, is 
the HRV, measuring the changes in time intervals between consecutive 
heartbeats from 24-h Holter monitor electrocardiogram (ECG) data 
(30). However, this is expensive and can only be performed in short 
durations. Technological improvements in biometric devices have 
increased sampling rates and increased their viability as a proxy for 
more expensive ECG devices in health studies, including for HRV (31, 
32). Lower HRV is frequently associated with individuals with chronic 
conditions (33, 34) and studies using wearable devices to assess HRV 
have correlated decreased cognitive function, bouts of illness, and 
increased physiological stress associated with a lower HRV (35). 
However, this has had limited application in hEDS patients due to 
limitations in the exact mechanism and prevalence of AD within this 
patient population (10). Assessing overall HRV in patients with 
chronic conditions is critical for symptom management and overall 
quality of life, as lower HRV and associated AD have been associated 
with poorer mental health outcomes, increased mortality, and disease 
morbidity over time (16, 36).

HRV is described via multiple metrics, including time domains, 
frequency domains (or signal energy in frequency bands), and 
non-linear metrics (17). Frequency domains are a span of frequencies 
where the contributions to the behavior of these cyclical events, such 
as heartbeats, often referred to as a signal, can be defined as a function 
of frequency. Frequency, measured in hertz (Hz), is the number of 
occurrences of cyclical events per unit of time. One method to assess 
HRV via both time and frequency domains simultaneously is using 
wavelet transformation-based analysis. By using wavelet 
transformation methods, representations of changes in HRV can 
be utilized to correlate changes in both frequency and time domain 
features to periods of increased physiological stress, manifesting as 
increased autonomic dysfunction. Therefore, this pilot study aims to 
understand the intra- and interindividual HRV utilizing wavelet 
transformation methods in autonomic function associated with high 
and low-GI-symptom days in individuals with hEDS using wearable 
device beat-to-beat heart rate data to assess if HRV can be predictive 
of GI symptom fluctuations.

2 Materials and methods

2.1 Study participants

Thirty participants were recruited for this study through direct 
recruitment from a previous hEDS study (37) or outreach via social 
media and email listservs. Participants were eligible if they were. 
Aged 18 or older, of any sex or race, met the 2017 diagnostic criteria 
for an hEDS diagnosis, were willing to comply with all study 
measures, and were willing and able to use wearable device 
technology, including an associated smartphone application. 
Participants were excluded if they had the following conditions 
known to alter autonomic function: (1) a current medical diagnosis 
of specific conditions with significant effects on autonomic function 

such as POTS; diagnosed by tilt table test or cardiological evaluation, 
untreated sleep apnea, pregnancy, or any primary dysautonomia 
diagnosis such as neurocardiogenic syncope, familial dysautonomia, 
multiple system atrophy, or pure autonomic failure; (2) had a cardiac 
implant used for cardiac rhythm maintenance; (3) were pregnant or 
intending to become pregnant over the study period, and (4) had any 
known allergic reactions to using wearable devices. Excluding 
patients with POTS and other known diagnosed autonomic 
conditions reduced eligible participation within this pilot but tested 
the feasibility of capturing relationships between HRV that would 
be masked by autonomic failure. Eligible participants were asked to 
consent to all parts of the study, including self-reporting survey data, 
monthly check-ins, a quarterly orthostatic test, and 24-h continuous 
heart rate data from the WHOOP wearable device (38). This study 
was approved for human subject research via the University of 
Arizona Institutional Review Board as protocol 
number STUDY00000191.

2.2 Study protocol

This was a pilot study assessing autonomic function through the 
use of a wearable biometric device (WHOOP, Boston, MA, 
United States) wearable fitness tracker strap (38) or Fitbit (Fitbit is 
made by Fitbit Inc San Francisco, CA) for 12 months. Four patients 
who used Fitbit were excluded from further analyses due to differences 
in collected data. There was no predetermined sample size calculation 
as this was a pilot study, and the number of participants is in keeping 
with similar studies of wearable devices and chronic conditions (39).

We conducted an interview to gather information on baseline 
symptoms, medications, and therapies. Participants were contacted 
monthly by the study team to report any major changes in self-
management that could be used to determine anomalous data for an 
individual. For the first 6 months of the study, participants completed 
a daily, weekly, and monthly set of questionnaires measuring various 
symptoms. This study only used the daily survey for analysis and is 
described in detail in the following section.

2.2.1 Questionnaire
Participants completed daily questionnaires for 6 months that 

contained questions about sleep hygiene (time asleep, time awake, 
number of times awakened during the night, and duration of 
wakefulness). They also completed 11-point Likert scales asking about 
symptom severity from None (0) to Extreme (10) for the max value in 
the preceding 24 h for pain, fatigue, difficulty sleeping, brain fog, 
anxiety, depression, and GI symptoms. We also asked about any illness 
or menstruation present. We analyzed only the GI symptom scale in 
this study for comparison with HRV data.

2.2.2 Biometric data
Biometric data were collected from each participant wearing a 

WHOOP (Boston, MA, United States) wearable fitness tracker strap 
(38) for 1 year. Only participants using the WHOOP devices were 
included in this analysis. Data available include heart rate (HR) 
(defined as the number of heartbeats per minute) collected once per 
second, the sleep metrics [e.g., sleep latency, disruptions, rapid eye 
movement (REM) sleep, and light sleep], and activity metrics, 
including accelerometer data. This analysis only used the HR data.
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2.3 Transformations

2.3.1 Gastrointestinal symptom severity
The daily GI severity scales were standardized to Z-scores and 

used to calculate a mean GI symptom severity score. Any days with a 
GI severity Z-score that was 1.5 standard deviations (SDs) away from 
the participant mean were flagged as high- or “low-symptom days 
based on the direction of the difference. Biometric data from the low- 
and high-symptom days were analyzed individually and as 
pooled data.

2.3.2 Biometric data transformation
The RR intervals collected through WHOOP are not reported at 

consistent periods across all participants or days. Therefore, 
we manually calculated RR intervals from device-reported HR data 
on low- and high-GI-symptom days using the following 
formula (30):

 RR 60 s / HR=

2.3.3 Heart rate variability
Autonomic function is evaluated using analysis of heart rate 

variability (HRV). Adaptations seen as fluctuations in heart rate (HR) 
are essentially the differences in the time between beats (RR interval). 
Having highly variable responses is consistent with having a normal 
and functional ANS. The fluctuations in HRV can be mathematically 
assessed to estimate the overall functionality of the ANS over time in 
an individual and represent the HR fluctuations around the mean over 
time. The ANS consists of a system of excitatory and inhibitory signals 
that can interact synergistically or antagonistically. Thus, the RR signal 
can be analyzed as a composite of various co-occurring signals that 
can be  mathematically separated or decomposed into distinct 
frequency domains representing the various ANS functions defined 
by the number of full signal cycles seen within a discrete unit of time 
or hertz (Hz).

Previously, the gold standard for analyses of HRV used fast 
Fourier transform (FFT) based methods (30, 35). However, FFT 
methods do not allow for the simultaneous analyses of a signal in both 
the time and frequency domain, precluding the correlation of changes 
in specific frequency subdomains over time (40, 41). Previous 

techniques allowed us to look at the distinct frequency signals present 
within an observed composite signal, but these could not be correlated 
with the timing of symptoms. Therefore, the current approach is to 
assess HRV via time and frequency domains simultaneously using 
wavelet transformation-based analysis. Wavelet transformation 
methods can create representations of changes in HRV over time and 
correlate changes in frequency to time, such as identified periods of 
increased physiological stress or increased symptom severity.

Four recognized HRV frequencies are operating within different 
bands: ultralow frequency (ULF 0.003 Hz≤ ), very low frequency 
(0.003 <  VLF 0.04 Hz≤ ), low frequency (0.04 < LF 0.15 Hz≤ ), and 
high frequency (0.15 <HF 0.3 Hz≤ + ). In general, LF and HF are 
thought to correspond to activities of the sympathetic and 
parasympathetic nervous systems, respectively, the VLF corresponds 
to thermoregulation and vasomotor action, and the ULF is not well 
understood and is often excluded clinically due to its long duration 
but is thought to be associated with metabolic or slower endocrine 
changes (42). Table 1 describes the frequency domains and proposed 
associated biological mechanisms.

2.3.4 Signal transformations
HRV was decomposed into frequency domains using an 8-level 

wavelet packet decomposition scheme. This scheme was implemented 
in the Python 3 Python is an open source license by the Python 
Software Foundation (43, 44) to produce scalogram plots of signal 
strength as a function of time for each sampled day of each individual. 
These plots allow for an assessment of broad trends in activity at HF, 
LF, VLF, and ULF frequencies across time. In this case, the scale axis 
of the figures corresponds to 6-h time blocks over 24 h on the time 
axis to provide a sufficiently large window of data to capture lower 
frequency domains such as VLF and ULF. These scalograms were 
inspected for broad trends in the concentration of RR signal strength 
across time domains by frequency domains. Figure  2 visually 
represents the data transformations used in this analysis. Power 
density, or the strength of the RR signal per Hz, was also calculated to 
validate peaks of scalogram activity across the frequency domain. The 
transformation methods are detailed in supplemental methods. The 
ratio of normalized LF/HF power over 24 h. a high LF/HF ratio 
indicates high sympathetic activity and lower parasympathetic 
involvement, while a low LF/HF ratio indicates parasympathetic 
activity (30). Although this remains controversial in HRV analysis due 

TABLE 1 Heart rate variable frequency domain bands and associated biological processes.

Domain band Minimum recording 
intervals (25)

Contributing biological 
mechanisms

Possible reported outcomes

Ultralow-frequency (ULF) band 

(≤0.003 Hz)

24 h Slow-acting biological processes: circadian 

rhythms, core body temperature, metabolism, 

and renin-angiotensin system (57)

Psychiatric disorders and sleep dysfunction (58, 

59)

Very-low-frequency (VLF) band 

(0.003–0.04 Hz)

From 5 min to and 24 h Vasomotor tone involved in thermoregulation 

and sweating (sympathetic), physical activity, 

and innervation of the heart (60)

Inflammation, low testosterone, all-cause 

mortality, and posttraumatic stress disorder (55)

Low-frequency (LF) band (0.04–

0.15 Hz)

2 min Baroreceptor activities [sympathetic control on 

parasympathetic modulation (55)]

Synchronous fluctuations in blood pressure (61)

High-frequency (HF) band 

(0.15–0.40 Hz)

1 min Parasympathetic activity, corresponds with 

respiratory sinus arrhythmia (55)

Stress, panic, anxiety, and worry (30, 57)

Hz, hertz.
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to complexities in balances between the two systems, the impact of 
testing conditions when analyzing these frequency bands has poor 
correlation and validation (30, 45).

2.4 Analysis

2.4.1 Descriptive statistics
Proportions, means, and standard deviations were used to describe 

the study sample and the number of low- and high-symptom days of 
data included in the analysis. The frequency domains (HF, LF, VLF, and 
ULF) that were reconstructed from the wavelet packet decompositions 
of HRV include RR-mean, RR-variance ( 2)σ , and standard deviations 
of the RR interval (SDRR) for each frequency domain. The SDRR is a 
standard HRV metric that captures the RR readings distribution about 
its mean value. By computing this metric for each time domain by 
frequency domain generated from the wavelet packet decomposition 
of the HRV for each sampled date, statistical comparisons of the SDRR 
about the means for LF, VLF, and ULF subsignals were compared for 
high- vs. low-symptom days. Consequently, the frequency ranges 
responsible for the most significant contributions to overall HRV 
trends could be isolated and identified, This helps to identify periods 
of symptomatic activity, such as the increased severity of a GI symptom, 
that assist in identifying upcoming periods of increased AD by tracking 
changes in the SDRR (30).

2.4.2 Wavelet transformations
A representative example of the scalograms generated with a 

continuous wavelet transformation of an observed date’s HRV 
signal is shown in Figure  3. Visualizations for the remaining 
participant’s dates are available in the supplemental materials. The 
peaks of these scalograms were compared to the peaks in power 
density to assess where the most significant signal activity 
was occurring.

Cross-correlation was performed on R-R and time-domain 
subsignals for each individual’s high- and low-symptom days to 
calculate the lag time associated with the maximum cross-correlation 
value. Here cross-correlation measures the amount of overlap of the 
plots of two R-R signals. In maximizing the cross-correlation value, 
you are “sliding” the plot of one signal over the other until the most 
excellent fit between the two is achieved. The lag is the amount that one 
signal must be translated to achieve this fit. This is often performed to 
compare better two signals that may have similar profiles, but which 
occur at different points in time. This ensures any statistical differences 
are due to changes in the signal rather than other contributing factors 
such as effects of changes in daily sleep/wake or inactivity across the 
population. Aligned RR signals and time-domain subsignals for 
individuals’ high- and low-symptom days were then paired for 
statistical comparison.

Differences in observed signal and time-domain subsignal 
variances, or the square of the SDRR, between sampled days were 
tested for significance using an F-test. F-tests were chosen due to the 
continuous nature of the heart rate data. The test value is 
calculated by

 

2
a

a
2

b

value
b

NdofF

Ndof

σ

σ
− =

where 2
aσ  and 2

bσ  are the variances of each variable, and Ndofa and 
Ndofb are their respective degrees of freedom or individual readings 
per tested sample. Here, values from the F-test were compared against 
p > 0.01 for hypothesis testing. F-values to indicate the ratio of 
statistically significant sample means (46) were calculated for observed 
variances of high-symptom days vs. low-symptom days and 
low-symptom days vs. low-symptom days.

FIGURE 1

Wavelet packet decomposition tree showing parts of the decomposed heart rate (HR) signal used to reconstruct high (HF), low (LF), very low (VLF), and 
ultralow (ULF) time domain representations for each individual. A visual summary of the decomposition scheme for each level of wavelet 
decomposition and shows the process of reconstituting the frequency bands from each heart rate (HR) signal. Hz, hertz; a:d-filtering operations of the 
wavelet decomposition L-level of decomposition node.
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FIGURE 2

Data processing for all study data used within this analysis and the timeframe of data collection. Timeline of data collection and process of data 
transformations used for analysis within this study from both the wearable device and self-reported gastrointestinal (GI) survey data collected from 
participants.

FIGURE 3

Scalogram of time series plots for low (LF), very low (VLF), and ultralow (ULF) frequency signals and RR Intervals for (A) representative participant data 
and (B) wavelet transformed data. These time series representations show periods of increased respiratory rate (RR) levels at roughly 20,000 s from 
midnight to about 60,000 s, corresponding to conventional times of increased activity of about 6:00 a.m. to 4:00 p.m., with a decrease at about 
4:00 p.m. RR levels of greater than 1,000 ms across samples during this period in both the original signal and the ULF component, with peak variations 
in LF and VLF components at |250| ms and |500| ms, respectively.
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2.4.3 Effects of symptom severity
The results of individual F-tests were aggregated, and a 

population-wide ratio of significant F-tests of RR intervals between 
frequency domains was calculated for the total population and each 
frequency domain.

The power density calculated the total strength of the HRV signal 
in the frequency domain. The total average power density of all 
frequency domains and their SDs were calculated for high- and 
low-symptom days across the population. Here, power density 
measures the amplitude of the HRV signal at a given frequency. The 
average power density for each frequency subdomain can be viewed 
as a measure of the contribution to the overall amplitude of the HRV 
measurements of the ULF, VLF, and LF signals. The average power 
density can be then tested for any statistical differences in the changes 
in behavior in HR signals, to verify the frequency domain of the 
majority of the HR signal activity, and to assess for broad trends 
between high- and low-symptom days.

3 Results

A total of 30 participants were recruited, but 4 participants 
were excluded from the analysis due to the use of a different 
biometric device that could not be  consolidated without 
additional standardization, resulting in a sample of 26 individuals. 
These 26 individuals reported 4,615 total daily-GI-symptom days 
over the 6-month period, the majority of which were within ±1 
SD of their overall mean symptom severity score. Approximately 
5% of all collected symptom days were classified as either low or 
high. Of the 230 high- and low-symptom days, 122 days were 
sampled in the wavelet analysis. Table 2 describes our sample—
predominately women (92.3%) of non-Hispanic ethnicity (73.1%). 
The average age of our cohort was 44.6 years (20–74). Our 
cohort’s daily GI mean symptom score was 4.73 out of 10, which 
was normally distributed. High-symptom days (high-GI 
symptoms) used in this analysis had a mean GI score of 7.59 

TABLE 2 Demographics, gastrointestinal (GI) symptom severity, and heart rate variability (HRV) characteristics of study participants.

N % Mean SD p < 0.01

Age 26 100 44.6 14.5 <0.001

Gender <0.01

  Female 24 92.3

  Transgender male 2 7.7

Ethnicity <0.01

  Not Hispanic/Latino 19 73.1

  Hispanic/Latino 3 15.4

  Unreported 5 11.5

Daily symptom severity 4,615 100

  Quality sleep 3.03 0.856 <0.001

  Difficulty sleeping 4.46 2.27 <0.001

  Pain severity 5.44 1.60 <0.001

  Fatigue severity 5.84 1.64 <0.001

  Brain fog/cognition 5.07 1.94 <0.001

  Anxiety 3.91 2.52 <0.001

  Depression 3.14 2.52 <0.001

Awake occurrences 1.91 1.77 <0.001

Reported days of illness 318 6.8

GI severity 4.74 1.86 <0.001

  Low-symptom days 231 5 2.54 1.27

  High-symptom days 282 6.1 7.59 1.28

WHOOP sampled days 122 100 <0.001

  Low symptom 48 39.3

  High symptom 35 20.4

Heart sate variability

  RR Interval (ms2) 83,959 100 785.99 137.13

  ULF (ms2) 83,992 100 785.87 128.90

  VLF (ms2) 84,085 100 −0.01 40.18

  LF (ms2) 84,085 100 0.00 18.18

GI, gastrointestinal; ULF, ultralow frequency; VLF, very-low frequency; LF, low frequency; SD, standard deviation.
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(±1.28), and low-symptom days had a mean of 2.58 (±1.27). Days 
with a score of zero, representing no symptoms experienced, 
occurred on 615 (13.3%) days reported by all participants over the 
6-month survey period.

Table 2 also describes the mean and SD of each daily symptom 
domain asked in this study. The highest severity of daily symptoms 
was found in fatigue (5.84 ± 1.64), pain (5.44 ± 1.60), and brain fog 
(5.1 ± 1.94). The average awake occurrences were reported as 
1.91 ± 1.77 times a night for all individuals. Illness was reported in 
318 days (6.8%).

Table 3 provides descriptive statistics for the HRV metrics for 
the low- and high-symptom days. There was no statistical difference 
in overall HRV metrics comparing the high- and low-symptom 
days for this population within any frequency domain variance or 
in the mean between low- and high-symptom days. Only the ULF 
domain demonstrated a statistical difference in average power 
density (amplitude) between high- (562109.52 ms2) and 
low-symptom (627435.80 ms2) days. The consistency of these time-
domain subsignals reconstructed via wavelet transformations, the 
power density, and the scalogram plots suggest that this study 
verified wavelet transformations. Power spectrum density analysis 
showed that amplitudes of HF frequencies occur minimally in this 
analysis compared to the ULF and VLF due to the more significant 
time observation period. This made HF contributions to the 
composite signal minimal and not further analyzed beyond the LF/
HF ratio.

HRV is highly individualized and, therefore, it is not surprising 
that the calculated variances and means for the total RR and 
constructed frequency domains did not differ from the overall total 
between high- and low-symptom days. However, we  did find 
differences in the variance of HRV and frequency domains between 
high- and low-symptom days at the individual level. F-test statistics 
comparing sampled high- and low-symptom days in individual 
participants demonstrated statistically significant patterns at p < 0.01 
with the maximum cross-correlation values (3.94e10 ms2 high vs. low 
and 4.15e10 ms2 for low vs. low) occurring at a mean time of 0.0 
( 0.0τ = ) (Table 3).

The most significant ratio of successfully aggregated F-tests is 
found in the high-symptom vs. low-symptom sample days for the 
VLF and ULF domains at ~76 and ~92%, respectively, suggesting 
a strong correlation between changes in HRV at these frequencies 
for symptom expression (Table 3). Comparison of variances on 
low-symptom days tested against high-symptom days yields 
weakly correlated results, with the majority of the ratios for these 
tests hovering at approximately 50% across the different 
frequency bins.

The frequency domain average power density for HRV and 
ULF, VLF, and LF time domain signals are summarized in Table 3. 
Higher signal strength (power density) differences were found in 
the ULF HRV in both the low (327609.66 ± 219398.35 ms2/Hz) 
and high (302253.49 ± 204729.12 ms2/Hz) GI-symptom days, as 
compared with all other frequency domains. Statistically 
significant differences were only observed in LF (0.08) HRV. The 
LF/HF ratio was calculated for high- and low-symptom days, and 
all days were assessed via the frequency domain. High-symptom 
days reported a ratio of 5.92 ± 1.29; however, low-symptom days 
and all days assessed reported 6.64 ± 1.45 and 6.30 ± 1.42, 
respectively.

4 Discussion

Symptoms associated with AD have a disproportionate effect 
on the quality of life for individuals living with chronic illness. 
These frequently begin with complaints of OI and correlate with 
perceptions of overall health and symptom exacerbation directly. 
Specifically, AD is frequently identified in people with hEDS, and 
the overwhelming majority of people with hEDS report some 
degree of OI (7, 10, 12–14). Clinically, the standard for assessing 
autonomic function uses HRV, or the changes in time intervals 
between consecutive heartbeats, from 24-h Holter monitor ECG 
data (30), but this is costly and can only be done in short durations. 
Therefore, we  sought to determine the feasibility of using 
commercial biometric wearable devices to detect subtle changes 
in autonomic function and to seek to associate that with changes 
in subjective GI symptom severity. Our study demonstrated that 
determining HRV patterns using wearable devices in a population 
with chronic illness is feasible despite their inherent limitations 
compared with their clinical gold-standard counterparts.

Celletti et al. found that baroreceptors in people with hEDS were 
more sensitive to changes in pressure, about 30% of individuals could 
not coordinate their breathing sufficiently to complete the Valsalva 
maneuver, and none of the participants could complete the sustained 
handgrip activity (13). Baroreceptor activities are associated with the 
LF band, and our data showed a significant average difference in power 
density means between low- and high-GI-symptom days in the 
LF band.

Cross-correlation between samples is intended to remove 
contributions of external causes of variability. The minimal lag time 
between signals during cross-correlation suggests the observed 
effects are associated with physiological changes. The population 
level means of the maximum cross-correlation values for each 
individual were slightly different ( ~ 5%± ) showing differences in 
absolute signal behavior values are likely localized within the 
sampled signals or found in different sample features like variance 
and standard deviation.

The scalogram and power density calculations demonstrate the 
critical role of the ULF in shaping the overall HRV trends. The ULF 
band is less understood than the other bands of HRV primarily due 
to the previous transformation methods and shorter duration of 
HRV measurements, ~5–10 min, corresponding to the rapid 
changes initiated by the nervous system in the LF, VLF, and HF 
bands. The ULF signal cycle fluctuation could occur in an epoch as 
long as 24 h and, therefore, is thought to be  associated with 
circadian and neuroendocrine responses in homeostasis. Our data 
demonstrate that the high variability in ULF and VLF are associated 
with high-symptom days for 92 and 76% of all F-Tests but show no 
difference when differentiating low-symptom days from high-
symptom days. These domains are associated with slower, longer-
term biological responses like thermoregulation, metabolism 
homeostasis, circadian rhythms, and inflammatory processes, all of 
which are frequently reported as dysfunctional in people with hEDS 
(47). This suggests that the GI symptoms are spiking (>1.5 standard 
deviations) in symptom severity, resulting in a ULF/VLF response.

Weaker and less predictive relationships were found when 
assessing other frequency domains, particularly the VLF and the 
LF, suggesting that signals derived from VLF and LF data do not 
strongly correlate with the expression of symptoms within this 
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study. More specifically, the means of zero for both the VLF and LF 
bands suggest they only have minimal contributing hz power to the 
total frequency domain for HRV over the 24-h period. This result 
could be from the need for higher sampling rates to track these 
frequency domains, or they could correlate better with other 
symptom domains not analyzed within this study. Future studies 
will focus on increasing the sample size to assess these frequencies 
and include additional symptom domains. The LF/HF ratio also 
did not show the expected results as a higher ratio was found on 
low-symptom days compared to high-symptom days, although this 
study found a higher ratio range in all days compared to studies of 
healthy individuals where a range is expected to fall within 1–2 
(48). However, the LF/HF remains controversial and has had poor 
predictive value in other biometric device studies (49) despite 
being frequently reported in many HRV clinical analyses.

hEDS patients experience intermittent and frequent symptoms 
associated with AD that make everyday-symptom management 
difficult and contribute to poor overall quality of life (16). 

Moreover, the lived experience of people with hEDS and the overall 
impact of the condition have been associated with increased 
anxiety and depression, poor quality of life, and increased 
functional disability (50). Few self-management techniques have 
been validated for hEDS patients (45), and lack of clinical 
knowledge of hEDS and barriers in accessing the necessary clinical 
specialists have made effective symptom management challenging 
(51). OI in this population is well documented (10, 13), but no 
existing clinical or static tests predicted its occurrence (13). Disease 
burden for AD, GI, and orthostatic complaints is correlated with 
reduced perception of global health and increased reports of pain 
(12). Our cohort within this study demonstrated a high average 
daily burden of many of these other symptoms associated with AD, 
including brain fog, pain, and fatigue. These symptoms can often 
be  interrelated and cumulative but are often overlooked or 
undermanaged in clinical care (51). Therefore, identifying periods 
of increased symptom severity to mitigate bouts of increased 
functional disability is critical for this population.

TABLE 3 Descriptive statistics, total max correlation, significant F-tests, and average power density by frequency domain of total population, low-, and 
high-symptom days.

High symptom Low symptom Total assessed days

Descriptive statistics by frequency domain of total population

RR mean (ms) 773.49 135.05± 792.61 138.00± 785.99 137.13±

Ultralow frequency mean (ms) 773.39 127.08ms± 792.47 129.57± 785.87 128.90±

RR variance ( )2σ
19648.91 20887.17 20453.37

Low-frequency variance 319.55 367.24 345.39

Very-low-frequency variance 1596.03 1739.79 1683.59

Ultralow-frequency variance 17586.58 18633.12 18274.14

Total maximum correlation means (ms2)

High- vs. low-symptom days (ms2) 3.94e10

Low- vs. low-symptom days (ms2) 4.15e10

High-/low-symptom day High vs. Low symptom Total

Percentage of significant F-tests (p < 0.01) of RR interval variance between frequency domains

RR Interval 0.55 0.41 0.88

Ultralow-frequency RR component 0.92 0.41 0.89

Very-low-frequency component RR component 0.76 0.53 0.88

Low-frequency component 0.41 0.54 0.88

High symptom Power density 
integral

Low symptom Power density 
integral

Average power density means of each frequency domain

Ultralow frequency (ms2/Hz) 302253.49 ± 204729.12 1047.26244 327609.66 ± 219398.35 1141.11

Very low frequency (ms2/Hz) 16023.26 ± 20064.76 515.476423 14499.93 ± 15984.77 470.93

Low frequency (ms2/Hz) 275.99 ± 335.02 29.66543 322.27± 393.45 34.72

All frequency domains (ms2/Hz) 3773.16 ± 33092.57 1876313.03 3860.71 ± 35374.07 1912562.93

High symptom Low symptom All assessed days

LF/HF ratio

5.92 ± 1.28 6.6 ± 1.44 6.30 ± 1.42

ms, milliseconds, Hz, hertz.
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Self-management strategies for GI symptoms in hEDS patients are 
currently underdeveloped. The majority of clinical management relies 
profoundly on trial-and-error methods of symptom management, 
predominately based on dietary changes (8, 9, 62). The limited self-
management techniques and decreased quality of life associated with 
GI symptom severity may increase the naturally occurring reduction 
in HRV as a patient ages (52) and thereby increase the risk of additional 
comorbidities associated with AD. Additionally, GI symptoms are 
linked to increased anxiety, which directly relates to the severity of their 
symptoms and may prohibit patients from seeking alternative 
management techniques, increasing the severity of their symptoms and 
increasing their overall long-term AD (53). This study further  
suggests utilizing biometric devices and HRV analysis may  
provide a clinical alternative to nutrition-based patient-guided GI 
dysfunction management.

Some limitations of this study do exist. Symptom domains were 
based on the self-reported GI data from each participant. This self-
reported Likert-scale data can depend on recall bias among our 
cohort, although it is collected daily, long-term recall is not 
required. Variability of the GI symptoms within the 24-h periods 
was not assessed and may impact HRV on a shorter time scale. 
Additionally, this study only presents dysfunction in one symptom 
domain, and results may change when multiple morbidities are 
considered in relationship with HRV. Continuous ECG data 
provides more precise sampling rates than wearable devices, 
yielding a higher resolution of raw data that could then be converted 
to instantaneous reading (54); however, clinical studies rarely 
consider the ULF band. The biometric devices such as the WHOOP 
strap (38) used in this study are limited in the frequency of 
measurements but demonstrate the ability to collect sufficient 
reliable readings for longer term HRV metrics, especially in 
longitudinal studies precluding the use of ECG. Our wavelet 
analysis is still limited by a specific method of HR data generation 
and the likelihood of user-introduced error (55, 56). Suboptimal 
band placement, neglecting to charge the device, and false data 
from environmental or behaviorally induced noise, such as 
increased respiratory rates during exercise, could all potentially 
increase error. Finally, the small sample size and lack of inclusion 
of participants with POTS, while appropriate for a pilot study, will 
require study replication in a larger and more clinically 
diverse cohort.

Despite these limitations, the accessibility and relatively low cost 
of biometric devices such as the WHOOP strap allow for increased 
feasibility in research for developing self-management assessments for 
hEDS patients. AD in many hEDS patients represents a significant 
increase in functional disability, and research into models with the 
ability to predict symptom activity using biometrics may assist with 
patient self-management and increased quality of life.

5 Conclusion

This study shows a relationship between GI symptom exacerbation 
and HRV in hEDS patients, specifically in the very and ultralow 
frequency bands. Changes in HRV are associated with chronic stress, 
but few studies have attempted to define associations between 

symptomatic vs. asymptomatic periods caused by functional disease 
and changes in HRV. Identifying variations within these time domains 
should assist in creating predictive models that allow for increased self-
management by hEDS patients. To establish these predictive models, 
future studies should also include additional symptom domains that 
may impact the relationships between HRV and AD, including sleep 
disorders, fatigue, and pain. Further analyses of longer AD periods 
compared to low to non-symptom activity days within a wavelet 
frequency domain analysis will also be explored in the future studies. 
Finally, this study excluded participants with POTS and other 
individuals with known altered autonomic dysfunction to determine if 
this approach was viable in individuals with intermittent AD. Future 
studies should apply the methods we  have developed to larger 
participant groups and could compare results in people with and 
without a POTS diagnosis.
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