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A great proportion of neuromuscular diseases are immune-mediated, included 
myasthenia gravis, Lambert-Eaton myasthenic syndrome, acute- and chronic-
onset autoimmune neuropathies (anti-MAG neuropathy, multifocal motor 
neuropathy, Guillain-Barré syndromes, chronic inflammatory demyelinating 
polyradiculoneuropathy, CANDA and autoimmune nodopathies), autoimmune 
neuronopathies, peripheral nerve hyperexcitability syndromes and idiopathic 
inflammatory myopathies. The detection of autoantibodies against neuromuscular 
structures has many diagnostic and therapeutic implications and, over time, allowed 
a better understanding of the physiopathology of those disorders. In this paper, 
we will review the main autoantibodies described in neuromuscular diseases and 
focus on their use in clinical practice.
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Introduction

Autoantibodies are antibodies (ab) directed against self-antigens. They may be the direct 
cause of a pathological process (through activation of the complement cascade for example) 
or be  detected as an epiphenomenon. Their main usefulness is to confirm a diagnosis 
suspicion, but some of them can also be used as severity or treatment response biomarkers. 
In neuromuscular disorders, several antibodies are highly sensitive and/or specific. In this 
review, we  will describe the main autoantibodies used in the diagnostic process of 
neuromuscular diseases.

Autoimmune neuromuscular junction disorder

Myasthenia gravis

Myasthenia gravis (MG) is the prototype of post-synaptic neuromuscular junction 
disorder. Its pathophysiology involves immunological dysregulation, with autoimmunization 
beginning in the thymus. It is a humoral-mediated disease, associated with the presence of 
antibodies directed against some epitopes of the neuromuscular junction. The most frequently 
described antibodies are directed against the nicotinic acetylcholine receptor (AChR) and the 
muscle kinase (MuSK). The disease is characterized by fluctuating muscle weakness, typically 
affecting the ocular and bulbar regions, and sometimes involving the cervical and proximal 
limb muscles.
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Anti-AChR antibodies
Serum anti-AChR-ab are of IgG1 and IgG3 subtypes and impair 

neuromuscular transmission by two main mechanisms: antigenic 
modulation by inducing endocytosis of the acetylcholine receptor and 
its lysosomal proteolysis, and its degradation by activation of the 
complement cascade and membrane attack complex (1, 2). The 
current reference method for detecting these antibodies is a 
radioimmunoassay (RIA) (3), but detection can also be performed by 
ELISA, with a lower sensitivity, reason why this method is less widely 
used routinely (4). These antibodies are detected in approximately 
85% of patients with generalized MG and 50–60% in ocular MG, with 
a very good specificity (5). In the recently published multicenter 
SCREAM study, the specificity of anti-AChR-ab was 97.8% by RIA 
and 94.8% by ELISA (6). False positives have been described in 
patients with peripheral neuropathies, Guillain-Barré syndrome, 
ophthalmoplegia externa, neuromyelitis optica spectrum disorder and 
even in healthy controls. There appears to be no correlation between 
antibody titer and clinical severity, although ocular forms tend to have 
lower titers. There is no consensus on the use of anti-AChR-ab during 
follow-up; previous studies reported conflicting results about an 
association between changes in anti-AChR-ab serum levels and 
clinical severity (7–14). Monitoring anti-AChR-ab titers is therefore 
currently not indicated. Detection of serum anti-AChR-ab has two 
therapeutic implications. First, 10–15% anti AChR+ MG are 
associated with a thymoma, which, on the contrary, has not been 
described in anti-AChR- MG patients (15). Accordingly, thymectomy 
is recommended in patients with thymoma and anti-AChR+ MG (16). 
More recently, the MGTX trial demonstrated that thymectomy was 
also beneficial in a subgroup of patients under 65 years of age with 
non-thymomatous anti-AChR+ generalized MG (17). Those results 
confirmed the strong implication of the thymus, even in the absence 
of thymoma, in the pathophysiology of anti-AChR+ MG, and have 
been integrated into the latest international consensus guidance for 
management of MG (18). Secondly, severe refractory generalized anti-
AChR+ MG may benefit from second-line therapy with complement 
inhibitors (eculizumab, ravulizumab, zilucoplan) (19–21) or 
antagonist of the neonatal Fc receptor (efgartigimod, rozanolixizumab) 
(22, 23).

“Low-affinity” anti-AChR antibodies
“Low-affinity” anti-AChR-ab can be  found in patients with 

seronegative MG. Unlike anti-AChR and MuSK antibodies, which are 
high-affinity antibodies, low-affinity anti-AChR-ab are detected only 
by cell-based assay (CBA), by binding to a high-density AChR cluster 
(24–28). This detection method is less widely available and usually 
performed only in research centers. The detection rate of these 
antibodies in patients with double seronegative MG varies between 
studies but is probably close to 20% (26, 27). Specificity seems to 
be close to 100% (25). These antibodies are IgG1 and activate the 
complement pathway. Detection of low-affinity anti-AChR-ab seems 
to be associated with a less severe phenotype and a better response to 
immunotherapy (25). Low-affinity anti-AChR+ MG should probably 
be  managed in the same way as anti-AChR+ MG, although clear 
recommendations are lacking.

Anti-MuSK antibodies
Serum anti-MuSK-ab are present in 30–60% of patients 

seronegative for anti-AChR-ab, representing 5–8% of patients with 

MG (29). These antibodies are predominantly IgG4, and induce 
functional blockade of the MuSK protein, without inducing 
antigenic modulation or activation of the complement pathway 
(30). The clinical phenotype of anti-MuSK+ MG may be different 
from anti-AChR+ forms, dominated by oculo-bulbar involvement, 
sometimes with amyotrophy and lingual fasciculations that may 
mimic amyotrophic lateral sclerosis with bulbar onset (31). The 
preferential involvement of certain muscles in anti-MuSK+ MG 
may reflect a different composition of the endplates in these 
muscles. These antibodies can be detected by RIA or ELISA, with a 
specificity close to 100% (6, 32, 33). CBA methods appear to 
be more sensitive but are not yet routinely available (34). Anti-
MuSK-ab titer may correlate with disease severity and response to 
immunotherapy (35). It is exceptional for anti-MuSK-ab to 
be  detected in the presence of anti-AChR-ab (36). Detection of 
serum anti-MuSK-ab has also significant therapeutic implications. 
In anti-MuSK+ MG patients, classical treatment options, including 
acetylcholinesterase inhibitors, corticosteroid-sparing 
immunosuppressive treatments, and intravenous immunoglobulins 
(IVIg), are usually less effective than in anti AChR+ MG (37). On 
the other hand, anti-CD20 therapy with Rituximab has shown 
efficacy in a few studies in anti-MuSK+ MG (38–41). Consequently, 
according to the latest international recommendations, Rituximab 
should be considered as an early therapeutic option in anti-MuSK+ 
MG patients, who have an unsatisfactory response to initial 
immunotherapy (18). As anti-MuSK+ MG are not related to thymus 
disorders, thymectomy is not recommended in this population (42). 
Moreover, complement inhibitors are probably not effective in anti-
MuSK+ MG, as antibodies are predominantly IgG4, unable to 
activate the complement pathway.

Anti-LRP4 antibodies
LRP4 (lipoprotein-related protein receptor 4) is an endplate 

protein that, along with MuSK, is an agrin receptor and is required 
for AChR clustering and normal neuromuscular junction 
function. Antibodies to LRP4 have been detected in 7–33% of 
patients with double seronegative MG (43). Most of these are IgG1 
antibodies, which can activate the complement pathway. Anti 
LRP4-ab are identified in 8% of patients with anti-AChR-ab, 15% 
of patients with anti-MuSK-ab, 4% of patients with other 
neurological autoimmune pathologies and in 0–4% of healthy 
controls (44, 45). Although initially considered to be relatively 
specific to MG, these antibodies were surprisingly detected in 
10–23% of patients with amyotrophic lateral sclerosis (46). Indeed, 
LRP4 antigen appears to be also expressed in motor neurons and 
muscle, which may explain the presence of this antibody in motor 
neuron diseases. In some unclear situations, anti-LRP4-ab  - 
cannot therefore distinguish reliably MG from amyotrophic lateral 
sclerosis. Anti-LRP4+ MG are usually associated with a less severe 
phenotype (ocular or mild generalized form) at disease onset, and 
a similar response to immunotherapy as anti-AChR+ MG patients 
(43). However, double positive patients (AChR/LRP4 and MuSK/
LRP4) may have a more severe phenotype at onset (43). The 
favored detection method is a CBA.

Anti-striated muscle antibodies
Other antibodies are directed against intracellular muscle 

epitopes, known as anti-striated (striational) muscle antibodies. 
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They recognize intracellular muscle proteins (titin, myosin, actin, 
ryanodine receptor or RyR); since these antibodies have no direct 
access to the antigen, they are unlikely to be pathogenic. Those 
antibodies are generally associated with anti-AChR-ab, making 
them of little diagnostic value. However, anti-titin and anti-RyR 
antibodies are present in most patients with thymoma (46). In 
particular, anti-titin was found in 80% of patients with MG and 
thymoma, especially in patients younger than 60-year-old (47). This 
good sensitivity in the presence of thymoma may therefore make 
these antibodies interesting biomarkers of thymoma, albeit with 
rather low specificity (39–70%) (48). Those antibodies are not 
specific for MG and may occur in patients with other autoimmune 
disease and in patients with thymoma without MG. Anti-titin and 
anti-RyR titers also appear to correlate with disease severity (49). 
The usefulness of anti-striated muscle antibodies testing in clinical 
practice is yet unclear.

Diagnostic workup
There are no clear international recommendations on the 

serological diagnostic approach to MG. Current consensus, underlined 
in the 2019 Italian recommendations, is to test for anti-AChR-ab and, 
if negative, for anti-MuSK-ab, in every clinical suspicion of MG (50). 
It is also recommended to repeat the assay at 6–12 months if initially 
negative (as antibodies can be  undetectable at onset and become 
positive afterwards) (50). In Ho Chan et  al., 15.2% of initially 
seronegative AChR MG patients became seropositive at 12 months 
(51). In double seronegative MG patients, clear recommendations are 
lacking. It is generally suggested to test for low affinity anti-AChR and/
or anti-MuSK antibodies by CBA (if available), then for anti-LRP4 
antibodies (50).

Testing for anti-MuSK antibodies need also to be considered in 
patients with bulbar involvement, suspect of ALS. According to Huijbers 
et  al., anti-LRP4-ab testing in ALS patients may be  considered in 
patients with prominent bulbar weakness, prolonged disease course, 
minor fluctuations and absence of upper motor neuron involvement (49).

Lambert-Eaton myasthenic syndrome

Lambert-Eaton myasthenic syndrome (LEMS) is the prototype of 
pre-synaptic neuromuscular junction disorder. The disease results 
from the production of antibodies directed against voltage-gated 
calcium channels (VGCC), and is paraneoplastic in 50–60% of cases, 
mainly associated with small-cell lung cancer (SCLC) (52). Patient 
often present with a triad of lower extremity weakness, areflexia and 
autonomic dysfunction.

P/Q-type VGCC antibodies
P/Q-type (Cav2.1) anti-VGCC-ab are present in 85–90% of 

patients with LEMS, and nearly 100% of paraneoplastic LEMS, 
associated with SCLC (53, 54). VGCC are expressed at the 
presynaptic cleft in the neuromuscular junction, and are also 
expressed by SCLC, suggesting that autoimmunization by the tumor 
is the cause of paraneoplastic LEMS (55). The subtype of VGCC 
antibodies is unknown, probably IgG1 and IgG3, capable of 
activating the complement pathway. The preferred detection 
method is RIA, with a probably good specificity. Although initially 

considered to be  very specific to LEMS, it is not the case and 
P/Q-type VGCC-ab may be  encountered in other 
neuroinflammatory diseases, such as paraneoplastic cerebellar 
degeneration (54), autoimmune encephalitis, myelopathies or 
inflammatory neuropathies (56). In one study, P/Q-type and N-type 
anti-VGCC antibodies were found in 1.7% of healthy controls and 
4% of neurologically asymptomatic patients with SCLC (57). A high 
titer of P/Q-type anti-VGCC-ab (>1 nmoL/L) seems to be strongly 
correlated with an autoimmune neurological diagnosis, while low 
titers (0.03–0.09 nmoL/L) can be  seen in other neurological 
disorders (56). The positivity of these antibodies must therefore 
be  correlated with clinical and electrophysiological data. There 
seems to be  no correlation between antibody titers and 
clinical severity.

N-type VGCC antibodies
N-type VGCC antibodies have also been reported in 33–49% of 

LEMS patients, usually in association with P/Q-type VGCC 
antibodies (54). Similarly to P/Q-type VGCC antibodies, those 
antibodies are more frequent in paraneoplastic LEMS. However, 
according to a recent study, the additional assay of N-type to P/Q 
type anti-VGCC may not significantly improve diagnostic 
performance (58). Indeed, among 93 patients with LEMS, 25 (26.9%) 
were positive for both anti-VGCC-ab type, 67 (72%) were positive for 
P/Q-type anti-VGCC-ab only and only one (1.1%) was positive for 
N-type anti-VGCC-ab only.

SOX1 antibodies
SOX protein are immunogenic antigens expressed in SCLC (59). 

They belong to the Sry-like high mobility group superfamily of 
developmental transcription factors and may be  important for 
neurogenesis (60). Antibodies against SOX proteins have been 
identified in SCLC patients. Anti-SOX1-ab are found in 64–67% of 
patients with LEMS and SCLC (60–62). These antibodies are 
specifically associated with the presence of a SCLC and are absent in 
almost all non-paraneoplastic LEMS (specificity 95–100%) (60–62). 
In Sabater et al., none of the 50 idiopathic LEMS had anti-SOX1-ab 
(61). However, anti-SOX1-ab are not specific to LEMS, and may 
be found in other paraneoplastic neurological syndromes, or in SCLC 
alone; anti-SOX1-ab are therefore a marker of paraneoplastic 
neurological syndromes (61, 63). In a patient with LEMS, the 
detection of anti-SOX1-ab should therefore imply an aggressive 
search for SCLC. Anti-SOX1-ab are generally part of onconeural 
antibodies panels, and detection is made by immunoblot, confirmed 
by indirect immunofluorescence on tissue (tissue-based assay or 
TBA). However, TBA may have a lower sensitivity to detect anti-
SOX1-ab compared to other onconeural antibodies, and confirmation 
with CBA of HEK cells expressing SOX1 is probably the gold standard 
(64). Of note however, anti-SOX1-ab CBA is only available in 
specialized centers.

Any clinical suspicion of LEMS should therefore be confirmed 
with a dedicated electrophysiological assessment and testing for 
P/Q-type anti-VGCC-ab. The usefulness of anti-SOX1-abtesting in a 
patient with confirmed LEMS has yet to be determined, but could 
imply a more aggressive search for cancer, particularly SCLC.

Characteristic of antibodies associated with neuromuscular 
junction disorders is summarized in Table 1.
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Autoimmune peripheral neuropathies

Acute-onset autoimmune neuropathies: 
Guillain-Barré syndrome and variants

Guillain-Barré syndrome (GBS) is an acute-onset and 
monophasic inflammatory polyradiculoneuropathy, which includes 
different clinical variants et electrophysiologic patterns. The most 
frequent clinical phenotype is characterized by a proximo-distal 
tetraparesis, areflexia, and sensory involvement. It is characterized 
by an autoimmune attack on myelin, nodal/paranodal or axonal 

structures of the peripheral nerves and is usually post-infectious. The 
neural antigens targeted in this autoimmune process, particularly in 
“axonal” forms of GBS, are gangliosides, proteins expressed on 
axonal membranes, Schwann cells and myelin, where they participate 
in cell signaling and cell-to-cell communication (65). The main 
gangliosides are GM1, GD1a, Gd1b, GT1a and Gq1b. GM1 antigen 
is expressed mainly in the axolemma of nodes of Ranvier, the myelin 
of motor neurons and the dorsal ganglion (66), GD1a in the nodes 
of Ranvier of motor neurons (67), GT1a in the vagus and 
glossopharyngeal nerves (68), GQ1b in oculomotor nerves, 
neuromuscular spindles and possibly brainstem reticular matter (69) 

TABLE 1 Characteristics of antibodies associated with neuromuscular junction disorders.

Disease Antibody Detection 
method

Sensitivity Specificity Indication Correlation 
titer/severity

Titer 
follow-up

MG AChR RIA

(ELISA)

85% of generalized 

MG

50–60% of ocular 

MG

RIA: 97.8%

ELISA: 94.8%

False+ in peripheral 

neuropathies, GBS, 

NMOSD, healthy 

controls

Every suspicion of 

MG.

Repeat testing at 

6–12 months if -

No No

MuSK RIA

ELISA

CBA (if available)

30–60% of AChR- 

MG

5–8% of MG

ELISA & RIA: 

99–100%

Every AChR- MG.

Repeat testing at 

6–12 months if -

Consider in ALS 

patients with 

prominent bulbar 

weakness, 

prolonged disease 

course, minor 

fluctuations, and 

absence of upper 

motor neuron 

signs

Maybe

Low affinity 

AChR

CBA 20% of double 

seronegative MG

99–100% Every double 

seronegative MG

Unknown

LRP4 CBA 7–33% of double 

seronegative MG

Probably high

False+ in other 

neurological 

diseases, especially 

in 10–23% of 

patients with ALS

Every double 

seronegative MG

LEMS P/Q type VGCC RIA 85–90% of LEMS

100% of LEMS 

with SCLC

Probably high 

(especially if 

>1.0 nmoL/L)

False+ in other AE, 

SCLC and 

sometimes healthy 

controls

Every suspicion of 

LEMS

No No

SOX1 Immunoblot then 

CBA (if available)

Immunoblot then 

TBA

64–67% of LEMS 

with SCLC

0–5% of LEMS 

without SCLC

Probably high

False+ in other AE 

or in SCLC

Unclear No No

AChR, acetylcholine receptor; AE, autoimmune encephalitis; ALS, amyotrophic lateral sclerosis; CBA, cell-based assay; ELISA, enzyme-linked immunosorbent assay; GBS, Guillain-Barré 
syndrome; LEMS, Lambert-Eaton myasthenic syndrome; LRP4, lipoprotein-related protein receptor 4; MG, myasthenia gravis; MuSK, muscle kinase; NMOSD, neuromylitis optica spectrum 
disorder; RIA, radioimmunoassay; SCLC, small cell lung cancer; SOX1, Sry-like high mobility group box; TBA, tissue-based assay; VGCC, voltage-gated calcium channel.
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and GalNAc-GD1a in the axonal membrane of motor neurons and 
the axolemma of the sural nerve (70). Antibodies against gangliosides 
are detected in more than 50% of GBS patients (71). As each 
ganglioside has a different distribution in the peripheral nervous 
system, each antibody can be  associated with a specific 
clinical phenotype.

Acute inflammatory demyelinating 
polyradiculoneuropathy

In acute inflammatory demyelinating polyradiculoneuropathy 
(AIDP), the classic form of GBS, there is no clear association with 
antiganglioside-ab, probably reflecting a rather cellular immune 
mechanism. It is therefore not recommended to test these antibodies 
in this subtype of GBS. Some studies have found anti-
galactocerebroside (Gal-C), LM1 or GD1b antibodies in AIDP 
patients, but this association is unclear (72–74). A certain proportion 
of sera from AIDP patients binds to nodal and paranodal structure of 
the peripheral nerves, suggesting that yet unidentified antibodies may 
also play a role (75).

Acute motor axonal neuropathy
“Axonal” forms of GBS (in reality, nodopathies) classically 

includes acute axonal motor neuropathy (AMAN) and acute axonal 
motor and sensory neuropathy (AMSAN). AMAN is frequently 
associated with anti-GM1 and anti-GD1a IgG antibodies. In a recent 
Japanese-Italian collaborative study, 83% of patients with AMAN 
had anti-GM1, GD1a, GalNAc-GD1a or GM1b IgG (76). 
Pathogenesis of those antibodies, particularly anti-GM1 and anti-
GD1a IgG, are the prototypic example of molecular mimicry (77). 
Almost half of patients with AMAN have a prior documented 
C. jejuni infection (78). C. jejuni contains in its lipo-oligosaccharides 
Gal(β1-3) GalNac, an epitope also present in GM1 and GD1a 
gangliosides; exposition to C. jejuni triggers an immune reaction 
with IgG1 and IgG3 production directed against gangliosides and 
causing the disease (79).

Acute ataxic neuropathies
Acute ataxic neuropathies include Miller-Fisher syndrome (MFS), 

Bickerstaff brainstem encephalitis (BBE) and acute sensory ataxic 
neuropathy (ASAN).

MFS is a variant of GBS characterized by ophtalmoparesis, ataxia 
and lower limb areflexia. Anti-GQ1b IgG antibodies were first 
described in 1992 in MFS patients (80). Few other studies confirmed 
the presence of anti-GQ1b in MFS, with a complete absence in normal 
and disease control groups, suggesting a high specificity (81). Anti-
GQ1b-ab were later also associated with BBE (an overlap with MFS 
which includes a central nervous system involvement with disturbance 
of consciousness and corticospinal signs), acute ophthalmoparesis, or 
overlap syndromes between GBS and MFS/BBE (81). A comparative 
study found these antibodies in 83% patients with MFS and 68% 
patients with BBE (82). As for AMAN and AMSAN, cross-reactivity 
of anti-GQ1b IgG antibody with surface epitope on C. jejuni strains 
supports the hypothesis of molecular mimicry mechanism (83). Anti-
GQ1b-ab cross-react with the structurally similar ganglioside GT1a.

ASAN is characterized by a sensory neuropathy with profound 
sensory ataxia and is often considered an incomplete form of MFS. It 
has been associated with anti-GD1b and, less frequently, anti-GQ1b 
IgG (84).

Pharyngeal-cervical-brachial variant
The pharyngeal-cervical-brachial (PCB) variant of GBS consists of 

an acute-onset bulbar paralysis and cervicobrachial weakness associated 
with upper limb areflexia. It is associated with anti-GT1a IgG in 50% of 
cases, some of these antibodies being able to cross-react with anti-GQ1b 
(85). Cross-reaction frequently occurs between GT1a and Gq1b-ab.

More recently, cases of severe GBS, with rapid tetraplegia, cranial 
nerve involvement, autonomic dysfunction and resistance to 
conventional treatments, have been associated with IgG1 antibodies 
to both neurofascin isoforms, known as anti-pan-neurofascin (86). 
Such antibodies, specific to the nodal regions, make these severe 
phenotypes of GBS enter the spectrum of autoimmune nodopathies, 
described in detail in the corresponding chapter.

Chronic sensory-ataxic autoimmune 
neuropathies

Anti-MAG neuropathy
Anti-MAG neuropathy is a paraproteinemic neuropathy, 

characterized by a distal predominant demyelinating polyneuropathy 
mainly affecting large sensory nerve fibers, a phenotype previously 
known as DADS (distal acquired demyelinating symmetric 
neuropathy), and is associated with an IgM monoclonal gammopathy. 
MAG is a transmembrane glycoprotein localized in the myelin of 
Schwann cells and oligodendrocytes and plays an important role in 
myelin formation and axon-myelin interaction (87). Up to 50–65% of 
patients with a “DADS phenotype” neuropathy and IgM monoclonal 
gammopathy have IgM antibodies with anti-MAG activity (88). 
Historically, these antibodies were detected by western blot, but this 
technique has now been replaced by ELISA, with an improved 
sensitivity (89). The main issue with ELISA technique is a low specificity 
in case of low antibody titers. Indeed, using the manufacturer’s 
recommended cut-off of 1,000 Bühlmann titer unit (BTU), specificity 
is imperfect, with false positives in cases of chronic inflammatory 
demyelinating polyradiculoneuropathy (CIDP) for example (89). In a 
recent study, cut-offs of >1,000 BTU, >1,500 BUT and > 7,000 BTU were 
associated with a sensitivity of 100, 100 and 92.5% respectively, and a 
specificity of 90.99, 95.5 and 100%, respectively, to diagnose anti-MAG 
neuropathy (90). There is no clear correlation between antibody titer 
and disease severity. However, there seems to be a relationship between 
antibody titer and clinical response to treatment in responders; a > 50% 
titer reduction compared with its pre-treatment value might be a good 
indicator of therapeutic response (91). In patients with a clear electro-
clinical diagnosis, anti-MAG titers can therefore be  monitored, 
targeting a > 50% reduction in antibody levels (92).

A new ELISA technique, specifically targeting the HNK1 epitope 
of the MAG protein, has recently been developed, with a diagnostic 
sensitivity of 98% and specificity of 99% (93). With this technique, 
anti-HNK1 MAG antibody titers appear to correlate with the severity 
of neuropathy (93).

Anti-MAG IgM antibodies should be tested in any patients with 
a predominantly distal demyelinating neuropathy (DADS phenotype) 
and in the presence of IgM monoclonal gammopathy. According to 
EAN/PNS 2021 recommendations for CIDP, anti-MAG-ab should 
also be tested in all patients fulfilling CIDP diagnostic criteria and in 
presence of IgM monoclonal gammopathy (90, 94). The indication for 
anti-HNK1 MAG antibodies screening has yet to be clarified.
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Chronic ataxic neuropathy with disialosyl 
antibodies

Chronic ataxic neuropathy with disialosyl antibodies (CANDA) 
is a rare syndrome characterized by a chronic sensory and ataxic, 
usually demyelinating neuropathy, occurring in the presence of an 
IgM monoclonal gammopathy reacting against gangliosides 
containing disialosyl epitopes (95). Some patients also present 
ophtalmoparesia, hence the term CANOMAD (chronic ataxic 
neuropathy with ophtalmoplegia, M-protein, cold agglutinins and 
disialosyl antibodies) (96). In CANDA/CANOMAD, IgM antibodies 
are directed against gangliosides harboring disialosyl groups, 
containing the sequence NeuNAc (α2-8)NeuNAc (α2-3)Gal, i.e., GD2, 
GD3, GD1b, GT1b, GT1a et GQ1b. The most frequently described 
antibodies are GD1b, GD3, GT1b and GQ1b, and most patients have 
antibodies reacting with multiple gangliosides (96–98). In the largest 
cohort of patients with CANDA/CANOMAD, 78% of cases had anti-
GD1b autoantibodies, while other anti-disialosyl antibodies were each 
observed in less than 51% of patients (99). Those gangliosides are 
present in the neurons of the dorsal root ganglia and in oculomotor 
nerves, which explains the clinical symptoms.

Chronic motor autoimmune neuropathies: 
multifocal motor neuropathy

Multifocal motor neuropathy (MMN) is an inflammatory 
neuropathy with a purely motor, slowly progressive and asymmetric 
involvement, generally affecting the distal limbs. One of its 
electrophysiological features is the presence of motor conduction 
blocks, distinguishing it from motor neuron disease, with which it 
shares many clinical features (100). The disease can be associated with 
the presence of specific IgM antibodies against the GM1 ganglioside 
(101). GM1 antigen is mainly expressed in the axolemma of the nodes 
of Ranvier, the myelin of motor neurons and, to a lesser extent, the 
dorsal root ganglion. It is unclear why, in MMN, the injury is restricted 
to motor nerves, even though GM1 is present is motor and sensory 
nerves. These antibodies appear to be pathogenic, firstly by inducing 
direct functional alteration of paranodal regions, and secondly 
indirectly by activating the complement cascade (102).

Anti-GM1 IgM are detected in around 50% (20–85%) of patients 
with MMN (102–104). High levels of antibodies seem to be relatively 
specific for MMN, while low levels however can be found in other 
inflammatory neuropathies, motor neuron disease or even in healthy 
controls (104). Detection of high titers of IgM anti-GM1-ab has very 
useful diagnostic implications, mainly in the differential diagnosis 
with other lower motor neuron syndromes, including amyotrophic 
lateral sclerosis, when motor conduction blocks are not present. 
However, gangliosides antibodies, including anti-GM1 IgM, have also 
rarely been described in amyotrophic lateral sclerosis, usually at low 
titers (105). There seems to be no correlations between antiganglioside 
levels and disease severity, nor necessity in monitoring antibody levels.

Chronic inflammatory demyelinating 
polyradiculoneuropathy

CIDP is the chronic form of GBS, whose pathophysiology is less 
well understood, and may involve both humoral and cellular 

immunities. The presence of immunoglobulin and complement 
deposition in sural nerve biopsies from CIDP patients and the 
response to plasma exchanges and IVIg support the role of 
autoantibodies in CIDP pathogenesis (106). To date, no specific 
antibodies have been detected in patients with CIDP, apart from those 
directed against the nodal and paranodal regions of the nodes of 
Ranvier. However, patients carrying these antibodies are no longer 
classified as suffering from CIDP, but from autoimmune 
nodopathies (94).

Chronic axonal polyradiculoneuropathies

Several neural antibodies can cause a chronic axonal 
polyradiculoneuropathy, including antibodies directed to collapsin 
response mediator protein-5 (CRMP5 [anti-CV2]), antineuronal 
nuclear antibody type 1 (ANNA-1 [anti-Hu]), amphiphysin, Purkinje 
cell cytoplasmic antibody type 2 (PCA-2 [microtubule-associated 
protein 1B (MAP1B)]) and adaptor-related protein complex 3, beta 2 
subunit (AP3B2) (107). CRMP5 and amphiphysin IgG usually cause 
an asymmetric and painful polyradiculoneuropathy, usually axonal or 
mixed axonal-demyelinating, which may mimic CIDP (108, 109). A 
coexisting myelopathy (myeloneuropathy) has also been reported in 
some patients with CRMP-5 [anti-CV-2], amphiphysin, ANNA-1 
[anti-Hu] and AP3B2 IgG (107). CRMP5 has been shown to 
be  involved in axon-Schwann cell interaction, and is expressed in 
immature Schwann cells as well as in unmyelinated Schwann cells 
(Remak cells) (110). Little is known about the expression and 
localization of other neural antigens in the peripheral nervous system.

Testing for those antibodies can be considered in suspected CIDP 
patients with unexpected poor response to treatment, severe and rapid 
evolution, prominent axonal loss and association with other 
neurological signs (110). Most of these antibodies (ANNA-1 [anti-
Hu], CRMP-5 [anti-CV-2], amphiphysin and PCA-2) are strongly 
associated with cancer (111). Testing those antibodies must 
be performed simultaneously in the serum and in the CSF to improve 
specificity (112).

Antiganglioside antibodies testing: 
limitations and indications

Antigangliosides-ab are generally tested in a panel, containing the 
main gangliosides (GM1, GM2, GD1a, GD1b, GQ1b, GT1a, GT1b). 
The detection of antiganglioside-ab is difficult for several reasons: 
gangliosides are difficult to isolate based on their molecular weight or 
charge, making detection by western-blot complicated. Moreover, 
there is no reliable CBA for their expression. Finally, several 
gangliosides share the same backbone, leading to frequent cross-
reactions. The gold standard technique for antigangliosides-ab 
detection is probably thin-layer chromatography, a technique not 
routinely available and requiring some expertise. Routinely detection 
is performed using ELISA commercial kits. Recommendations were 
published on how to best perform this ELISA (113). Immunodots or 
immunoblots are also used in certain settings, but their diagnostic 
performance is probably poorer (114).

According to the latest EAN/PNS 2023 guidelines, testing 
antigangliosides-ab is not recommended in most patient with typical 
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sensory-motor GBS, because of their moderate diagnostic sensitivity 
and delay in result obtention (115). However, testing for those 
antibodies can be useful to confirm diagnostic suspicion in variant 
and atypical cases, and to rule out other disorders. For example, in 
pharyngeal-cervical-brachial variant, testing for anti-gangliosides-ab 
may be particularly useful in partial forms of the disease (e.g., acute 
bulbar palsy), in which a positive anti-GT1a may clarify the diagnosis. 
As nerve conduction studies cannot reliably distinguish between 
demyelinating and axonal form of GBS in the early phase of the 
disease, testing for antigangliosides-ab may help to make this 
distinction. Anti-GQ1b-ab testing is strongly recommended in MFS 
spectrum patients, because of their high sensitivity and specificity, and 
is integrated in the latest guidelines (115).

In the case of a chronic motor demyelinating neuropathy with 
conduction blocks on nerve conduction studies (suspicion of MMN), 
testing of anti-GM1 IgM antibodies is also required (116). Lastly, 
antigangliosides-ab screening is also indicated in CANOMAD/
CANDA suspicion, i.e., in case of chronic ataxic sensory neuropathy 
with IgM monoclonal gammopathy, as the differential diagnosis of 
chronic sensory ataxic neuropathies are broad, including toxic, 
metabolic, mitochondrial or vitamin deficiencies (95). Testing for 
antigangliosides-ab is not recommended in CIDP (94).

Characteristics of antibodies associated with autoimmune 
neuropathies are summarized in Table 2.

Autoimmune nodopathies

The recent discovery of antibodies directed against nodes of Ranvier 
led to the definition of a new group of immune-mediated neuropathies: 
autoimmune nodopathies (117). They usually manifest as GBS or acute 
CIDP, usually in an aggressive form. Autoimmune nodopathies are 
thought to account for 5–10% of patients fulfilling diagnostic criteria for 
CIDP, and response to IVIg is usually poor. Of note, according to the 
latest EAN/PNS recommendations, patients harboring those antibodies 
are not considered having CIDP anymore (94).

In these auto-immune neuropathies, antibodies target nodal and 
paranodal cell adhesion molecules; contactin 1 (CNTN1) (118), 
contactin-associated protein 1 (Caspr1) (119), neurofascin 155 
(NF155) (120), neurofascin 140 (NF140) and 186 (NF186), also called 
pan-neurofascin when all isoforms of neurofascin are targeted 
(panNF) (121). In most cases, nodal/paranodal antibodies are 
predominantly of the IgG4 subclass, known for its non-inflammatory 
properties. This can explain why response to IVIg is poor, and 
response to plasmapheresis and B-cell-depleting therapy is better. 
More rarely, antibodies of the IgG3 subclass have been reported in 
acute-onset auto-immunes nodopathies, such as panNF neuropathy. 
IgG3 have a strong proinflammatory effect and activate the 
complement pathway. In this case, treatment with IVIg can 
be beneficial. Nerve biopsy samples from patients with autoimmune 
nodopathy show paranodal detachment, without evidence of overt 
inflammation or demyelination, confirming that this immune 
neuropathy is pathologically very different from CIDP (122). Each 
antibody is associated with a specific clinical phenotype.

Neurofascin 155
NF155 antibodies are the most common among autoimmune 

nodopathies. Patients with IgG4 antibodies against NF155 share a 

similar phenotype: younger age of onset (mean age 42.4 years), rapid 
progression, distal motor involvement, ataxia with cerebellar features 
and a prominent low-frequency tremor (123). This antibody has also 
been associated with central nervous system demyelination, in 
addition to peripheral nerve pathology; “combined central and 
peripheral demyelination” (124). Response to IVIg or steroids is 
usually poor, whereas most patients respond to Rituximab. Anti-
NF155 titers may correlate with clinical severity within the same 
patient, and anti-NF155 titers decrease in all Rituximab-treated 
patients (123).

Contactin 1
Patients with IgG4 anti-CNTN 1 also share a similar phenotype: 

an aggressive and acute neuropathy mimicking GBS, old age at onset, 
axonal features in nerve conduction studies, poor response to IVIg 
and nephrotic syndrome (125, 126). Anti-CNTN1 IgG3 antibodies 
have also been detected during the early phase and may explain why 
some patients respond initially to IVIg (127).

Caspr 1
Antibodies targeting Caspr1 or the Caspr1/contactin 1 complex 

have been less frequently reported. Patients usually presented with 
acute-CIDP, severe pain, axonal involvement in nerve conduction 
studies, a poor response to IVIg and a good response to Rituximab 
(128). The main antibody subtype is IgG4, but IgG4 antibodies were 
also detected during the early phase in a few patients with GBS.

Neurofascin 186
Nodopathy with anti-NF186 has also been rarely reported. 

Patients typically presented with a severe acute or subacute CIDP 
phenotype, characterized by predominant distal motor and sensory 
impairment, along with mostly demyelinating features in nerve 
conduction studies, without axonal loss (129). In the initial 
description, none of the patients exhibited tremors (which were 
commonly seen in NF155 nodopathy), and concomitant 
glomerulonephritis or retroperitoneal fibrosis was also noted (121). 
The main antibodies subtypes are IgG3 and IgG4, and some patients 
may respond to IVIg (130). Patient with specific NF186 antibodies 
being rare, it is debatable whether these patients should 
be characterized as a “pan neurofascin” nodopathy, with predominant 
reactivity to NF186 (130).

Pan neurofascin
Some patients with autoimmune nodopathies harbor antibodies 

interacting with all neurofascin isoforms, NF140, NF155 and NF 186; 
they are described as panNF neuropathy (86, 131). Antibodies may 
be of the IgG1, IgG3 or IgG4 subtypes, and patients usually displayed 
an aggressive and fast clinical progression. These patients exhibit a 
fulminant disease course, with a severe sensorimotor tetraplegia, 
severe cranial nerve involvement, autonomic dysfunction, often 
requiring mechanical ventilation due to severe respiratory 
insufficiency. Most patient have a monophasic course and are 
diagnosed as an “explosive GBS.” Response to IVIg is usually poor, 
whereas most patients respond to Rituximab (86).

LGI4
IgG4 antibodies targeting leucine-rich repeat LGI family member 

4 (LGI4) have been recently reported in 4 Japanese patients with a 
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subacute sensory-motor CIDP phenotype (132). Those antibodies 
need further validation.

Detection of nodal/paranodal antibodies
Detection of nodal/paranodal-ab is of clinical relevance, as it can 

identify a specific subgroup of patients who share some clinical 
characteristics and response to treatment very different from CIDP 
patients. Indeed, response to IVIg treatment is usually poor whereas 

most patients respond well to Rituximab. Antibodies to nodal/
paranodal antigens are detected in the serum. The screening and 
confirmation assays used mainly depend on the laboratory, but it is 
highly recommended to confirm the positivity of an antibody with a 
second assay, to ensure its specificity (93). According to EAN/PNS 
latest recommendations, CBA with plasmids encoding for human 
recombinant proteins, ELISA and teased-nerve immunohistochemistry 
are the recommended methods (94, 114). CBA and ELISA are good 

TABLE 2 Characteristics of antibodies associated with autoimmune neuropathies.

Onset Disease Antibody Detection 
method

Sensitivity Specificity Indication Correlation 
titer/severity

Titer 
follow-
up

Acute 

onset

AIDP ø Not 

recommended in 

classical sensory-

motor GBS

Recommended 

in variants 

(especially GQ1b 

in MFS 

spectrum) or 

atypical cases

AMAN/

AMSAN

GM1/GD1a 

IgG

Less frequently: 

GalNAc-GD1a 

and GM1b IgG

TLC

ELISA

83% in AMAN Good specificity if 

high titer (>50%)

Poor specificity if 

low titer (ALS, 

immune 

neuropathies…)

No No

MFS spectrum GQ1b IgG 83% in MFS

68% in BBE

ASAN GD1b/GQ1b 

IgG

~50%

PCB variant GT1a IgG ~50%

Chronic 

onset

Anti-MAG 

neuropathy

MAG IgM ELISA >1,000 BTU: 

99%

>1,500 BTU: 

99%

> 7,000 BTU: 

93%

>1,000 BTU: 91%

>1,500 BTU: 96%

>7,000 BTU: 

100%

Every “DADS” 

neuropathy and/

or CIDP with an 

IgM monoclonal 

gammopathy

No Yes, target 

a > 50% drop 

in antibodies 

titer after 

treatment

HNK1-MAG 

IgM

ELISA 98% 99% Unclear Maybe? Unknown

CANOMAD/

CANDA

GD1b, GD3, 

GT1b and 

GQ1b IgM

TLC

ELISA

GD1b: 78%

Other: <51%

Usually multiple 

gangliosides 

positivity

Good specificity if 

high titer (>50%)

Poor specificity if 

low titer (ALS, 

immune 

neuropathies…)

Every chronic 

ataxic sensory 

neuropathy, 

especially if IgM 

monoclonal 

gammopathy

No No

MMN GM1 IgM 20–85% Every chronic 

motor 

neuropathy with 

conduction 

blocks

No No

CIDP ø

Paraneoplastic CRMP5, 

amphiphysin

Immunoblot 

confirmed by 

TBA

Unknown Unknown CIDP with poor 

response to 

treatment, severe 

and rapid 

evolution, axonal 

loss

Unknown Unknown

AIDP, acute inflammatory demyelinating polyradiculoneuropathy; ALS, amyotrophic lateral sclerosis; AMAN, acute motor axonal neuropathy; AMSAN, acute motor and sensory axonal 
neuropathy; ANNA-1, antineuronal nuclear antibody type 1; AP3B2, adaptor-related protein complex 3, beta 2 subunit; ASAN, acute sensory ataxic neuropathy; BBE, Bickerstaff brainstem 
encephalitis; BTU, Buhlmann titer unit; CIDP, chronic inflammatory demyelinating polyradiculoneuropathy; CRMP5, collapsing response mediator protein-5; DADS, distal acquired 
demyelinating symmetric; ELISA, enzyme-linked immunosorbent assay; GBS, Guillain-Barré syndrome; HNK1, human natural killer-1; MAG, myelin associated glycoprotein; MFS, Miller-
Fisher syndrome; MMN, multifocal motor neuropathy; PCA-2, Purkinje cell cytoplasmic antibody type 2; PCB, pharyngo-cervico-brachial; TBA, tissue-based assay; TLC, thin layer 
chromatography.
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screening techniques, and teased-nerve immunohistochemistry is 
usually performed as a confirmatory test. Detection of nodal/
paranodal antibodies need to be performed in expert centers.

According to the latest EAN/PNS 2021 recommendations, testing 
for antibodies to nodal/paranodal antigens are advised in CIDP 
patients with the following features (94):

 • Resistance to standard therapy with IVIg and corticosteroids.
 • Acute or subacute aggressive onset, previous diagnosis of GBS or 

acute CIDP.
 • Low-frequency tremor, ataxia disproportionate to the sensory 

involvement or other cerebellar features or predominantly 
distal weakness.

 • Respiratory failure and cranial nerve involvement.
 • Associated nephrotic syndrome.
 • Very high CSF protein levels.

Characteristics of nodal/paranodal antibodies are summarized in 
Table 3.

Autoimmune neuronopathies

Autoimmune autonomic ganglionopathy

Autoimmune autonomic ganglionopathy (AAG) is a severe 
immune mediated autonomic failure of acute-subacute onset, 
characterized by orthostatic hypotension, xerostomia, impaired pupil 
response, urinary retention, anhidrosis and gastrointestinal 
dysmotility. The disease is associated with the presence of ganglionic 
AChR type α3-ab, present in about 50% of patients (133, 134). 
Ganglionic AChR type α3 receptors are involved in synaptic 
transmission in autonomic ganglia. Those antibodies have pathogenic 
properties resulting in deterioration of synaptic transmission in 
sympathetic, parasympathetic, and enteric ganglia (134). High 
antibody titers >1.0 nmoL/L appear to be relatively specific for AAG 
(135), with a good correlation between antibody levels and the severity 
of autonomic involvement (133, 136, 137). Intermediate antibody 
levels are quite unspecific and may be  found in cases of pure 
autonomic failure, postural orthostatic tachycardia syndrome (POTS) 
or gastrointestinal dysmotility (138). Low antibody levels 
(<0.2 nmoL/L) are non-specific and may be found in healthy controls 
(135). Three detection methods are available: RIA, Luciferase 
immunoprecipitation (LIP) and immunomodulation assay (139). RIA 
is the most widely established diagnostic method. A CBA method, 
which detects only potentially pathogenic antibodies, has recently 
been developed. In Karagiorgou et al., CBA was equally sensitive as 
the RIA, but was specific for AAG; all 15 patients with AAG and AChR 
type α3-ab were positive with CBA, and there was no false positive 
(140). This CBA assay should therefore replace RIA or LIP methods, 
but is still not yet widely available.

Autoimmune and paraneoplastic sensory 
neuronopathies

Sensory neuronopathies are characterized by degeneration of the 
dorsal root sensory ganglion, and manifests as a pure sensory 

non-length-dependent neuropathy. Acquired forms are due to a 
variety of dysimmune, toxic, paraneoplastic or idiopathic etiologies 
(141). Sjögren syndrome is the most frequent dysimmune cause of 
sensory neuronopathy, and sensory neuronopathy is the most frequent 
and typical neuropathy of Sjögren syndrome (142).

Anti-FGFR3 antibodies
In 2015, antibodies directed against the intracellular domain of 

fibroblast growth factor receptor 3 (FGFR3) have been described 
(143). In a multicenter prospective study, 15% of patients with a 
sensory neuropathy had FGFR3 antibodies; 2/3 of patients fulfilled the 
criteria for sensory neuronopathy, 17% for small-fiber neuropathy and 
19% for other sensory neuropathies, the majority (89%) being 
non-length-dependent phenotypes (144). Patients with anti-FGFR3 
sensory neuronopathy have usually a progressive disease-onset, 
symmetric involvement of 4 limbs, impairment of all sensory 
modalities with neuropathic pain, and a motor involvement in 25% of 
cases (144). IVIg are effective in 80% of cases (145). In adult rats, 
FGFR3 was expressed in small and large sensory neurons of the dorsal 
root ganglia, and activation of the receptor could play a role in 
regulation of many cell functions including survival (146). It is yet 
unknown whether those antibodies play a pathogenic role or are only 
biomarkers of a dysimmune process. However, FGFR3 antibodies 
recognize the intracellular domain of the protein, and should these 
antibodies be able to enter the neurons (which is yet unknown), they 
could interfere with signal transduction and dorsal root ganglia 
function. ELISA is used to detect those antibodies.

Anti-AGO1 antibodies
In 2021, antibodies to argonaute proteins 1 and 2 (AGO1 and 2) 

have been identified in immune diseases of the central and peripheral 
nervous systems, in particular sensory neuronopathies and limbic 
encephalitis (147). These antibodies are not specific to neuronopathies. 
The presence of these antibodies was strongly associated with an 
autoimmune context, particularly Sjögren’s syndrome. In a recent 
retrospective study, 13% of patients with sensory neuronopathy had 
anti-AGO1 antibody, which was associated with a more severe 
phenotype, but a better response to immunotherapy with IVIg (148). 
AGO are involved in degradation of RNA. The site of tissue expression 
of AGO proteins is not well known; it is unclear whether AGO 
antibodies have a pathogenic role directly in the dorsal root ganglia, 
or whether they are only a biomarker of dysimmune process (147, 
148). AGO antibodies are detected by ELISA.

Paraneoplastic forms
Sensory neuronopathies are among the most common 

paraneoplastic neurological syndromes and have been associated with 
ANNA-1 [anti-Hu], CRMP-5 [anti-CV2], PCA-2 [MAP1B] and 
amphiphysin (108). Some paraneoplastic sensory neuronopathies are 
seronegative, especially those associated with hematologic 
malignancies (149). The most frequent paraneoplastic form of sensory 
neuronopathy is Denny-Brown syndrome, which is associated with 
ANNA-1 [anti-Hu] antibodies (150, 151). Anti-Hu paraneoplastic 
syndromes can manifest with various clinical syndromes. In a series 
of 27 patients with anti-Hu syndromes, 20 (74%) had a clinical 
neuropathy (most frequently a pure sensory neuropathy) (152). 
Anti-Hu recognizes a family of RNA-binding proteins expressed in the 
nuclei of neurons and SCLC cells; in neurons, they have a role in the 
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development and maintenance of the neuronal phenotype (153). 
There is no evidence that the anti-Hu antibodies are pathogenic, they 
may rather be a marker of dysimmune reaction. Anti-Hu antibodies 
are usually identified in patients’ sera but can also be identified in the 
CSF. In patients with peripheral neuropathy, CSF anti-Hu titers are 
probably lower compared to patients with encephalomyelitis (154). 
The identification of anti-Hu antibodies strongly predicts an 
underlying cancer, most commonly a SCLC, with an estimated 
sensitivity of 82% and specificity of 99% (155). There is probably no 
correlation between Hu antibodies titers and neurological outcome; 
there is therefore no indication for monitoring antibody levels (156).

Autoimmune and paraneoplastic motor 
neuronopathies

Motor neuronopathies (or motor neuron diseases) manifest as a 
pure motor, symmetric or asymmetric, neuropathy. They are rarely of 
autoimmune origin and are frequently neurodegenerative (as in ALS) 
or, more rarely, of an infectious origin (as in poliomyelitis).

IgLON5
Ig-like cell adhesion molecule 5 (IgLON5) antibodies have been 

first described in 2014  in patients presenting with sleep apnea, 
REM-sleep or non-REM-sleep disorders (157). In 2021, 5 patients 
with a bulbar onset motor neuronopathy were found having serum 
IgLON5 antibodies, 4/5 patients having a coexisting sleep disorder 
(158). In another series, all patients had a coexisting neurologic 

finding, especially a vocal cord paresis, chorea or REM sleep behavior 
disorder (159). Most patients have IgLON5 antibodies in the serum, 
and a few also in the CSF. Anti-IgLON5 antibody testing is performed 
using a CBA (157). An early immunotherapy, prior to advanced 
neurodegeneration, seems to be efficient and associated with a better 
long-term clinical outcome (160). No paraneoplastic forms have yet 
been described.

Other antibodies
Paraneoplastic motor neuronopathies have also been rarely 

described in association with anti-Ma2 and ANNA-2 [anti-Ri] 
antibodies (161, 162). More recently, leucine zipper protein 4 (LUZP4) 
antibodies have been described in patients with neurological 
paraneoplastic syndromes, presenting as rhombencephalitis, limbic 
encephalitis, seizures and/or motor neuronopathy (163). Ma2 and 
ANNA-2 antibodies are included in screening panels for onconeuronal 
antibodies, detected usually by immunoblot, confirmed by 
TBA. LUZP4 antibodies testing is not routinely available.

Autoimmune small fiber neuropathies

Small fiber neuropathy (SFN) is characterized by isolated 
involvement of A δ and C small nerve fibers, causing neuropathic 
pain, reduced sensation to pain and temperature, and dysautonomia. 
Similarly to sensory neuropathies and neuronopathies, SFN can 
be caused by a variety of metabolic, toxic, infectious, inherited and 
dysimmune etiologies, and cryptogenic forms are frequent (164). 

TABLE 3 Characteristics of antibodies associated with autoimmune nodopathies.

Antibody Detection method Indication Clinical characteristics

NF155 ELISA or CBA as screening 

method, TBA as 

confirmatory method

CIDP patients with the following features:

 • Resistance to standard therapy with IVIg 

and corticosteroids

 • Acute or subacute aggressive onset, previous diagnosis 

of GBS or acute CIDP

 • Low-frequency tremor, ataxia disproportionate to the 

sensory involvement or other cerebellar features or 

predominantly distal weakness

 • Respiratory failure and cranial nerve involvement.

 • Associated nephrotic syndrome

 • Very high CSF protein levels

 • Young age at onset (mean 42.4 years)

 • Fast progression

 • Distal motor involvement, ataxia with cerebellar features, 

low frequency tremor

 • Combined central and peripheral demyelination

 • Poor response to IVIg and steroids, response to Rituximab

CNTN1  • Aggressive and acute progression, mimicking GBS

 • Old age at onset

 • NCS showing axonal features

 • Poor response to IVIg

 • Possible nephrotic syndrome

Caspr1  • Acute-CIDP

 • Severe pain

 • NCS showing axonal feature

 • Poor response to IVIg, response to Rituximab

NF186  • Acute to subacute CIDP

 • Distal motor and sensory involvement

 • NCS showing mainly demyelinating features

 • Some patients may respond to IVIg

PanNF  • Aggressive and acute progression (“explosive GBS”)

 • Sensorimotor tetraplegia, cranial nerve involvement, 

autonomic dysfunction, mechanical ventilation

 • Poor response to IVIg, response to Rituximab

Capsr1, contactin-associated protein 1; CBA, cell-based assay; CSF, cerebrospinal fluid; CIDP, chronic inflammatory demyelinating polyradiculoneuropathy; CNTN1, contactin1; ELISA, 
enzyme-linked immunosorbent assay; GBS, Guillain-Barré syndrome; IVIg, intravenous immunoglobulins; NCS, nerve conduction studies; NF155, neurofascin 155; PanNF, pan neurofascin; 
TBA, tissue-based assay.
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Sjögren syndrome, less frequently systemic lupus erythematosus and 
sarcoidosis, may be  responsible for autoimmune SFN (164). 
Paraneoplastic neurological syndromes with ANNA-1 [anti-Hu] and 
CRMP5 [anti-CV2] antibodies can also cause a small fiber 
involvement, but rarely isolated (109, 110). According to de Greef et 
al, up to 19% of patients with cryptogenic SFN may have underlying 
immunological abnormalities, suggesting an immune component 
(165). Diagnosing autoimmune SFN is important since 
immunotherapy may be beneficial in those patients.

Anti-FGFR3 and anti-TS-HDS antibodies

As mentioned previously, anti-FGFR3-ab have been described in 
patients with sensory neuronopathies, 17% of them fulfilling a SFN 
diagnosis (144). In a recent retrospective study, 17% of patients with 
SFN and dysautonomia had anti-FGFR3 antibodies (166). Those 
antibodies are not specific to SFN and are usually rather found 
in neuronopathies.

Trisulfated heparan disaccharide (TS-HDS) is a disaccharide 
component of the glycosylation moieties of heparan and heparan 
sulfate and is expressed in peripheral nerves surface. IgM antibodies 
binding to TS-HDS have been first described in patients with a 
painful, predominantly sensory neuropathy (167). In a recent 
retrospective cohort of cryptogenic SFN, 37% of patients had IgM 
anti-TS-HDS-ab, and 15% had IgG anti-FGFR3; the presence of anti-
TS-HDS defined a subset of female patients with acute-onset, and 
non-length dependent SFN (168). In another study, 28% of patients 
with SFN and dysautonomia had anti-TS-HDS-ab; most of these 
patients presented with dysautonomia, but 30% of them had a normal 
intraepidermal nerve density in skin biopsy (166). The specificity of 
anti-TS-HDS antibodies for autoimmune SFN is still questioned. In a 
recent real-world study, among 77 patients with TS-HDS antibodies, 
34% did not have evidence of neuropathy and 12% had another 
known cause of neuropathy (169).

Data about response to immunotherapy in TS-HDS/FGFR3+ SFN 
are conflicting. In two studies, most patients with those antibodies 
improved with immunotherapy, either IVIg or plasma exchange, with 
a significant reduction in pain scores (170, 171). In Chompoopong P 
et al. however, response to immunotherapy was observed only in 31% 
of TS-HDS positive patients and was not higher than in TS-HDS 
negative patients (169). More recently, a double-blind placebo-
controlled pilot study did not show any benefit of IVIg treatment in 
SFN patients with anti-TS-HDS and/or FGFR-3 antibodies (172). In 
conclusion, anti-FGFR3/TS-HDS antibodies may not be specific to 
SFN, and their pathogenicity in neuropathies has yet to be proven in 
animal or cell culture models. Nevertheless, detection of such 
antibodies can give a clue about a potential autoimmune etiology/
context and may prompt immunotherapy, even though response to 
immunotherapy is uncertain. Those antibodies can be detected with 
ELISA (144, 169).

Anti-plexin D1 antibodies

Anti-plexin D1 IgG are antibodies binding selectively to mouse 
unmyelinated C-fiber neuron in the dorsal root ganglia. Those 

antibodies have been initially described in a fraction of patients with 
neuropathic pain and neuroinflammatory diseases, and in patients 
with idiopathic trigeminal neuropathy (173, 174). Recently, plexin-D1 
IgG were found in 12.7% (8/63) of patients with probable SFN and in 
0% of healthy controls (175). Those antibodies seem to be pathogenic, 
according to their mechanism of action, and may be more specific to 
SFN than FGFR3 and TS-HDS antibodies. Response to 
immunotherapy of anti-plexin D1+ patients is currently unknown. 
Those antibodies can be detected with ELISA (175).

Other antibodies

Other novel antibodies have been recently described in idiopathic 
SFN; anti-MX1, anti-DBNL and anti-KRT8 (176). MX1 is an 
interferon-induced GTP-binding protein, DBNL (drebrin-like 
protein) is an adapter protein playing a role in endocytosis and 
synapse formations, and KRT8 (keratin type II cytoskeletal 8) is a 
contractile apparatus to dystrophin (176). Those antibodies need to 
be further validated and their pathogenicity is currently not known.

Peripheral hyperexcitability 
syndromes

Peripheral hyperexcitability syndromes can concern the nerve or 
rarely the muscle.

Peripheral nerve hyperexcitability 
syndromes

Peripheral nerve hyperexcitability syndromes (PNHS) are a group 
of rare pathologies characterized by spontaneous and continuous muscle 
activity, including muscle spasm, stiffness and pain. Primary forms 
include Isaacs syndrome, Morvan syndrome and cramp fasciculation 
syndrome. Cramp fasciculation syndrome is the least severe form of the 
spectrum, and is characterized by episodic cramping, fasciculations, 
stiffness and muscle pain. Morvan and Isaacs syndromes are 
characterized by relatively specific neuromyotonic discharges in needle 
myographies, but also cramps and myokymia. Morvan’s syndrome is 
also commonly associated with encephalopathy and dysautonomia.

PNHS are usually associated with anti-CASPR2-ab, more rarely 
LGI1-ab; these antibodies were historically described as targeting the 
voltage-gated potassium channels (VGKC) complex (177). They can 
be detected in the serum and the cerebrospinal fluid (CSF), but in case 
of peripheral nervous system presentation, sensitivity appears to 
be better in the serum. CASPR2/LGI1 antibodies are described in 0–24% 
of cramp fasciculation syndromes, 20–30% of Isaacs syndromes and 
60–75% of Morvan syndromes (178). However, they are not specific for 
PNHS, and can be found in limbic encephalitis, movement disorders, 
epileptic seizures, etc. (179). CASPR2 is a cell-surface adhesion molecule, 
a critical component of the VGKC complex, present in myelinated axons 
(180). In mice models, antibodies against CASPR2 were shown to 
decrease expression of VGKC in dorsal root ganglion neurons and 
juxtaparanodes, causing pain-related hypersensitivity (180). Another 
animal model showed that CASPR2 antibodies can also alter CASPR2 
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protein function in the hippocamp, explaining central nervous system 
involvement (181). LGI1 is a neuronally secreted molecule, which has 
been proven to have an essential role in central nervous system neuronal 
hyperexcitability, through action on VGKC, and in synaptic transmission 
through AMPA receptors (182). It has been shown that LGI1 is also 
highly expressed in dorsal root ganglia and spinal cord dorsal horn 
neurons in mice and human (183). A considerable proportion of patient 
with Isaac and Morvan syndrome, especially the seropositive case for 
CASPR2 antibodies, have underlying thymoma (181). These antibodies 
are included in screening panels for antineural antibodies and are 
generally detected by CBA, then confirmed by TBA.

Immune-mediated rippling muscle disease

Rippling muscle disease is a generally benign, myotonic-like 
myopathy associated with rapid rolling contractions and percussion-
induced contractions, caused by a muscle hyperexcitability. One of the 
main characteristics is that those visible contractions are electrically 
silent during an EMG recording (184). Genetic forms have been 
reported, caused by a pathogenic variant in caveolin-3 (CAV3) or less 
frequently cavin-1 (CAVIN1) genes (185). In 2022, immune-mediated 
forms of rippling muscle disease have been described, associated with 
cavin-4 IgG in 80% of the cases, most of them responding to 
immunotherapy (186). More recently, a paraneoplastic immune-
mediating rippling muscle disease has been described, associated with 
thymoma (187).

Characteristics of antibodies associated with neuronopathies, 
small fiber neuropathies, motor neuron diseases and peripheral 
hyperexcitability syndromes are summarized in Table 4. The location, 
characteristics, and mechanism of action of the main antibodies and 
their antigens involved in neuromuscular junction and peripheral 
nerve disorders are summarized in Figure 1.

Idiopathic inflammatory myopathies

Idiopathic inflammatory myopathies (IIM), also known as 
myositis, are a heterogeneous group of autoimmune diseases affecting 
multiples organs, including muscles, skin, lungs and joints (188, 189). 
Muscle involvement is typically characterized by subacute proximal 
weakness, sometimes associated with muscle pain. A major advance 
in the field of IIM is the discovery of myositis-specific autoantibodies, 
present in up to 60% of patients with IIM (190). Those antibodies are 
specific for myositis and are strongly associated with distinct clinical 
phenotypes. In addition, patients with IIM may be  positive for 
autoantibodies that are present in other autoimmune disorders 
(systemic lupus erythematosus, systemic sclerosis etc.); they are often 
named myositis-associated auto-antibodies (189). Based on a 
combination of myositis-specific autoantibodies, clinical 
presentation, muscle MRI pattern and muscle biopsy features, 
patients can be classified in five distinct subtypes; dermatomyositis, 
antisynthetase syndrome, overlap myositis, immune-mediated 
necrotizing myopathy (IMNM) and inclusion-body myositis (IBM) 
(191, 192). The old and imprecise term “polymyositis” does not 
correspond to a precise entity, since more than 90% of polymyositis 
turn out to be IBM or IMNM upon follow-up.

Dermatomyositis

Dermatomyositis (DM) is defined by the presence of characteristic 
cutaneous manifestations (heliotrope rash, V sign rash, Gottron signs 
and papules etc.) and myositis, which can be inconstantly associated 
(189). Most patients with DM (~70%) have a myositis-specific 
antibody: anti-Mi-2, anti- MDA5, anti-TIF1, anti-NXP2 or anti-SAE 
(189). Each autoantibody is associated with a distinct clinical 
phenotype, leading to a subclassification of DM according to those 
antibodies (191). These associations have important clinical impact: 
patients with anti-TIF1 and -NXP2-ab have a higher risk of oncological 
disease, whereas anti-Mi-2 present with milder myositis. Anti-MDA-5 
and -SAE are usually amyopathic but may have a dramatic course with 
severe interstitial lung disease or severe dysphagia, respectively.

Anti-synthetase syndrome

Anti-synthetase syndrome (ASyS) is a relatively homogeneous 
multisystem disease, usually classified as IIM although myositis is not 
always present. The most common manifestation is interstitial lung 
disease, which also determines the functional outcome and prognosis. 
ASyS is characterized by auto-antibodies against one of many amino-
acyl transfer RNA (tRNA). Eight auto-antibodies have been identified: 
anti-Jo1, anti-Ha/YRS, anti-Zo, anti-EJ, anti-PL-7, anti-OJ, anti-KS 
and anti-PL-12 (190, 191).

Immune-mediated necrotizing myopathy

Immune-mediated necrotizing myopathy (IMNM) are 
characterized by a proximal symmetric and axial myopathy, 
usually extremely high muscle enzyme levels, and muscle biopsy 
showing necrosis or regeneration with minimal lymphocytic 
infiltrate (193). Patients rarely have prominent systemic 
manifestations. Patients with IMNM usually (60–70%) have auto-
antibodies recognizing either 3-hydroxy-3-methylglutaryl-
coenzyme A reductase (HMGCR) or the signal recognition 
particle (SRP). According to those autoantibodies, IMNM can 
be  classified as anti-HGMCR, anti-SRP and auto-antibody-
negative IMNM, each subtype being a specific entity. Patients with 
anti-SRP usually have a more severe myopathy, extra-muscular 
manifestations (including cardiac involvement) and higher chance 
of dysphagia (194). The risk of developing anti-HMGCR IMNM is 
higher following statin exposure, and patients usually have a 
severe myopathy, without extra-muscular manifestations; the risk 
of developing cancer is higher in anti-HMGCR and seronegative 
IMNM (194).

Overlap myositis

Myositis can occur with other connective tissue disease such as 
systemic lupus erythematosus, systemic sclerosis, Sjögren syndrome 
or rheumatoid arthritis. Autoantibodies detected in overlap myositis 
include anti-U1RNP, anti-Ku, anti-PM-Scl, anti-RuvBL1, anti-
RuvBL2, anti-Ro/SSA and anti-La/SSB (189, 195).
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Inclusion-body myositis

Inclusion-body myositis (IBM) is characterized by asymmetrical 
weakness of both proximal and distal muscles that predominates on 
the quadriceps and long finger flexors, with a very slowly progressive 
course, and occurs mainly in individuals >50 years of age. As of the 
ENMC diagnostic criteria, typical clinical presentation and 

histological feature (endomysial infiltrate surrounding non necrotic 
fibers) are sufficient to make a diagnosis. In case of incomplete or 
atypical clinical picture, supportive criteria are required. These criteria 
include other histopathological features, imaging studies, and the 
positivity of autoantibodies recognizing cytosolic 5′-nucleotidase 1A 
(cN1a) antibodies (196). Anti-cN1a-ab have been described in 2013 
(197) and may be detected in 33–80% of patients with IBM (198, 199). 

TABLE 4 Characteristics of antibodies associated with neuronopathies, small fiber neuropathies, motor neuron diseases, and peripheral 
hyperexcitability syndromes.

Disease Antibody Detection method Sensitivity Specificity Indication

AAG Ganglionic AChR type 

α3

RIA, LIP and 

immunomodulation assay

CBA (not routinely available)

RIA: ~50% of AAG

CBA: probably as 

sensitive as RIA

RIA: >1.0 nmoL/L: high 

specificity

0.2–1.0 nmoL/L: moderate 

specificity

<0.2 nmoL/L: nonspecific

CBA: probably very 

specific

Subacute and severe 

autonomic failure

SNN FGFR3 ELISA ~15% of sensory 

neuropathies

Probably specific to 

sensory neuropathies (and 

not neuronopathies)

Subacute SNN with 

negative workup and 

suspicion of dysimmune 

etiologyAGO1 ~13% of SNN Probably low (false+ in 

systemic and CNS auto-

immune diseases)

ANNA-1 Immunoblot confirmed by 

TBA

82% of paraneoplastic 

SNN

More sensitive in the 

serum than CSF

99% of paraneoplastic 

SNN

More specific if also+ in 

the CSF

First line workup of SNN, 

especially if subacute and 

severe

CRMP5 Unknown

More sensitive in the 

serum than CSF

Good (not specific to 

SNN)

More specific if also+ in 

the CSF

MND IgLON5 Immunoblot confirmed by 

TBA

Unknown Unknown Bulbar-onset ALS with 

sleep disorders, vocal 

cord paresis or chorea

SFN FGFR3 ELISA 15% of patients with 

cryptogenic SFN

Probably specific to 

sensory neuropathies (not 

neuronopathies)

Unknown (suspected 

auto immune SFN?)

TS-HDS 37% of patients with 

cryptogenic SFN

Not specific to SFN (found 

in healthy controls)

Plexin D1 13% of patients with 

probable SFN

Probably specific to SFN

PNHS CASPR2/LGI1 CBA confirmed by TBA 0–24% of CFS

20–30% of Isaacs 

syndromes

60–75% of Morvan 

syndromes

Good (not specific to 

PNHS)

Every suspicion of PNHS

RMD Cavin-4 CBA (not routinely available) 80% of immune-

mediated RMD, 

according to one study

Unknown Every RMD?

AAG, auto-immune autonomic ganglionopathy; AChR, acetylcholine receptor; AGO1, argonaute-1; ANNA-1, antineuronal nuclear antibody type 1; CASPR2, contactin associated protein 2; 
CBA, cell-based assay; CFS, cramp-fasciculation syndromes; CNS, central nervous system; CRMP5, collapsing response mediator protein-5; ELISA, enzyme-linked immunosorbent assay; 
FGFR3, fibroblast growth factor 3; IgLON5, Ig-like cell adhesion molecule 5; LGI1, leucine-rich glioma inactivated 1; LIP, Luciferase immunoprecipitation assay; PAF, pure autonomic failure; 
POTS, postural orthostatic tachycardia syndrome; PNHS, peripheral nerve hyperexcitability syndromes; RMD, rippling muscle disease; RIA, radio-immunoprecipitation assay; SFN, small-
fiber neuropathy; SNN, sensory neuronopathy; TBA, tissue-based assay; TS-HDS, Trisulfated heparan disaccharide.
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In initial studies, the specificity of those antibodies has been reported 
in the range of 92–100% (199). However, more recent studies showed 
that anti-cN1a-ab can also been found in patients with IIM (PM, DM, 
IMNM), SLE and Sjögren syndrome (198, 200). Various detection 
method can be used (ELISA, WB, CBA, immunoprecipitation), and 
the best method is currently unknown (199, 200).

Detection of IIM antibodies

Detection of myositis-specific antibodies and myositis-
associated antibodies can be  made with various detection 

methods. As many of those antibodies target cytoplasmic antigens, 
a weak or negative nuclear staining is achieved with indirect 
immunofluorescence using Hep2 cells. Indirect 
immunofluorescence has therefore limited utility as screening 
test. Immunoprecipitation is probably the gold-standard for most 
myositis autoantibodies detection, but is time-consuming, 
expensive and availability is limited to specialized centers (201). 
ELISA is a reliable method, but not all myositis-specific and 
myositis-associated antibodies are amenable to this testing (202). 
In the recent years, commercial line immunoblot assay and 
immunodot assay have been developed and have improved 
availability and diagnostic accuracy of myositis subtypes (203). 

FIGURE 1

Main antibodies in neuromuscular disorders. (A) Neuromuscular junction. P/Q type anti-VGCC antibodies are directed against the voltage-gated 
calcium channel (VGCC or Cav2.1) in the axonal terminal, thus blocking calcium influx, acetylcholine vesicle fusion, and neuromuscular transmission. 
Anti-AChR antibodies target the nicotinic acetylcholine muscle receptor, preventing muscular membrane depolarization and generation of muscle 
action potential. Anti-LRP4 and anti-MuSK antibodies target the LRP4/MuSK complex, implicated in formation and maintenance of the neuromuscular 
junction and in acetylcholine receptor clustering. (B) Autonomic ganglia. Anti-ganglionic-α3-AChR antibodies are directed against the ganglionic 
acetylcholine receptor, preventing post-synaptic depolarization, blocking autonomic neurotransmission. P/Q type anti-VGCC antibodies also blocks 
the Cav2.1 present in presynaptic axonal terminal. (C) Dorsal root ganglia and dorsal horn. Leucin-rich glioma inactivated 1 (LGI1) was shown to 
be expressed in dorsal root ganglia and spinal cord dorsal horn, and is the target of anti-LGI1 antibodies. In central nervous system synapses, LGI1 binds 
to ADAM22/23 at the presynaptic side and modulate Kv1.1 (or voltage gated potassium channel; VGKC) channel; at the post-synaptic side, LGI1 binds 
to ADAM22 and modulate AMPA receptor. LGI1 therefore modulates central nervous system synaptic transmission. Anti-FGFR3 antibodies are directed 
against fibroblast growth factor receptor 3, which was shown to be expressed in small and large sensory neurons of the dorsal root ganglia in adult 
rats. Pathogenicity of anti-FGFR3 antibodies is currently unknown. (D) Peripheral nerve. Anti-gangliosides antibodies target gangliosides, glycoproteins 
that are expressed on neuronal membranes, Schwann cells and myelin. Anti-MAG antibodies recognizes myelin associated glycoprotein, a 
glycoprotein localized in periaxonal Schwann cells, which has function in glia-axon interaction. At the nodal and paranodal region, contactin 1, 
contactin-associated protein 1, neurofascin 155 and neurofascin 186, have different function such as axon-myelin and axon-Schwann cell binding and 
sodium channel clustering. Antibodies against paranodal/nodal proteins are responsible for auto-immune nodopathies. Contactin-associated protein 2 
is expressed in the juxtaparanodal region (and also in dorsal root ganglia), connects to contactin 2 and organizes Kv1.1 (VGKC). Antibodies directed 
against Caspr2 cause peripheral nerve hyperexcitability. Collapsin response mediator protein-5 has been shown to be expressed in unmyelinated 
Schwann cells, and is involved in axon-Schwann cell interactions. Antibodies against CRMP5 are probably nonpathogenic, and a marker of 
paraneoplastic neurological syndrome. ACh, acetylcholine; AChR, Acetylcholine receptor; Cav2.1, voltage-dependent calcium channel 2.1; Caspr1, 
contactin-associated protein 1; Caspr2, contactin-associated protein 2; CNTN1, contactin 1; CNTN2, contactin 2; CRMP5, Collapsin response mediator 
protein-5; FGFR3, fibroblast growth factor 3; Kv1.1, voltage-gated potassium channel; LRP4, lipoprotein-related protein 4; MAG, myelin associated 
glycoprotein; MuSK, muscle kinase; NF155, neurofascin-155; NF186, neurofascin-186; VGCC, voltage gated calcium channel; VGKC, voltage-gated 
potassium channel.
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Two of those commercial immune assays have been assessed and 
compared to immunoprecipitation in a recent study. Overall, 
those assays performed relatively well with sensitivity and 
specificity varying according to antibodies, with two notable 
exceptions: a poor detection rate of anti-TIF1γ (40% of false 
negative with line blot and 76% of false negative with dot blot) and 
a poor detection rate of rare anti-synthetase autoantibodies (200). 
In addition, a high false-positive rate was observed, in 13.7% of 
samples analyzed by line blot and 12.1% analyzed by dot blot, 
usually at low titer (201). Results of those commercial 
immunoassays must therefore be interpreted within the clinical 
context, and in selected cases, immunoprecipitation should 
be considered.

Myositis-specific and associated antibodies need to be tested in 
every suspicion of inflammatory myopathy. As detection of such 
antibody is part of the classification process of IMM, a positive 
antibody will help guide investigations (e.g., paraneoplastic workup) 
and guide treatment. It is important to note that the diagnostic value 
of myositis-specific and myositis-associated antibodies depends on 
pre-test probability, determined mainly by the clinical pictures and 
complementary exams like electromyography (204).

Characteristics of antibodies associated with IIM are summarized 
in Table 5.

Conclusion

Autoantibody testing is extremely useful in the management of a 
great number of patients with inflammatory neuromuscular disorders 
(205). In addition to confirming a diagnosis, the presence of such 
autoantibody can guide the paraneoplastic workup (e.g., the screening 
for thymoma in anti-AChR+ MG) and treatment (e.g., anti-C5 therapy 
in anti-AChR+ MG, anti-CD20 therapy in anti-MuSK+ MG and 
autoimmune nodopathy or IVIg therapy in anti-FGFR3+ sensory 
neuronopathy). Moreover, the recent discovery of new autoantibodies 
(such as anti-nodal and paranodal antibodies in auto-immune 
nodopathies, anti-FGFR3 and AGO1 in sensory neuronopathies or 
anti-cN1a in inclusion-body myositis) has led to a better understanding 
of the pathophysiology of immune-mediated neuromuscular diseases.

Despite their high clinical usefulness, clinicians should be aware 
of limitations related to such autoantibodies screening. First, their 
specificity is not always optimal. For example, anti-LRP4 antibodies 
are not specific to MG and may be found in patients with ALS. Anti-
gangliosides antibodies are non-specific at low titers, and only some 
antibodies are associated with a specific clinical phenotype. False 
positives are frequent when testing for muscle-specific and muscle-
associated autoantibodies. Finally, when testing for autoantibodies, 
clinicians should be aware of the used detection method. Indeed, 

TABLE 5 Characteristics of antibodies associated with autoimmune myopathies.

Disease Antibodies Recommended 
detection method

Sensitivity Specificity Indication Comment

DM Mi-2, MDA5, TIF1, 

NXP2 and SAE

IP (not routinely available)

Immunoblot or immunodot

~70% of DM

Sensitivity of 

immunoblot/

immunodot vary 

according to 

antibodies (i.e., low 

sensitivity of anti-

TIF1γ)

~80–90% (frequent 

false + with 

immunoblot/

immunodot, 

especially at low 

titers)

Every suspicion of 

idiopathic 

inflammatory 

myopathy

TIF1/NXP2: high 

association with 

tumor

MDA5/SAE: usually 

amyopathic

ASyS Jo1, Ha/YRS, Zo, EJ, 

PL-7, OJ, KS and 

PL-12

Good sensitivity?

IMNM HMGCR and SRP 60–70% of IMNM SRP: severe 

myopathy, 

extramuscular 

involvement and 

frequent dysphagia

HMGCR: severe 

myopathy, no 

extramuscular 

involvement, high 

association with 

tumor

OM U1RNP, Ku, PM-Scl, 

RuvBL1, RuvBL2, 

Ro/SSA and La/SSB

Good sensitivity?

IBM cN1a ELISA, WB, CBA or IP 33–80% of IBM ~90% (false + in 

other IIM, SLE or 

Sjögren)

In case of incomplete 

or atypical cases

ASyS, antisynthetase antibody syndrome; CBA, cell-based assay; DM, dermatomyositis; ELISA, enzyme-linked immunosorbent assay; IBM, inclusion-body myositis; IIM, idiopathic immune 
myopathies; IMNM, immune mediated necrotizing myopathy; IP, immunoprecipitation; OM, overlap myositis; SLE, systemic lupus erythematosus; WB, western blot.
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sensitivity and specificity of detection techniques can vary widely, and 
the use of the reference method should be encouraged. However, some 
of these techniques (such as immunoprecipitation for the detection of 
muscle autoantibodies) are not widely available in clinical practice.
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