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Objective: Electroconvulsive therapy (ECT) has been occasionally applied as a 
treatment for super-refractory status epilepticus (SRSE). However, the effects of ECT 
on electrographic activity and related clinical outcomes are largely unknown. Here, 
we use quantitative approaches on electroencephalography (EEG) data to evaluate 
the neurophysiological influences of ECT and how they may relate to patient survival.

Methods: This was a single center study of adult patients who underwent 
bi-frontal ECT for treatment of SRSE between 2007 and 2021. Continuous 
scalp EEG data obtained before and after each ECT session was converted 
using a linelength transform and projected into low-dimensional space using 
complementary linear and non-linear dimensionality reduction techniques 
(principal component analysis and separately uniform manifold approximation). 
Differences between before versus after ECT were quantified using silhouette 
scores. Mixed effects models evaluated whether changes in mean scores were 
related to time (across sessions, and separately within sessions up to 1 h after 
treatment) and patient outcomes (survival).

Results: Eight patients underwent ECT for SRSE, ranging from 3 to 12 sessions 
each. Four patients survived with chronic epilepsy and varying cognitive 
sequelae, and four died while hospitalized. Projecting EEG data into low-
dimensional space revealed several sessions with visualizable differences in 
electrographic activity before versus after ECT treatment. Silhouette scores 
significantly increased as time elapsed up to 60 min after ECT and higher scores 
were related to survival, though there was no significant change in scores across 
successive ECT sessions.

Discussion: ECT is associated with changes in electrographic activity in certain 
patients, and such changes may be associated with survival, although our study 
was underpowered to detect more definitive treatment-related effects. Further 
quantitative neurophysiology studies, and potentially clinical trials, in larger 
groups of patients are warranted to study direct influences of ECT treatment 
given the devastating and often deadly outcomes of SRSE.
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Introduction

Super-refractory status epilepsy (SRSE) is a state of continuous or 
intermittent seizures that persists or recurs despite treatment with 
appropriate anti-seizure medications and at least 24 h of appropriate 
anesthetic therapy. SRSE has a roughly 24% in-hospital mortality rate 
(1). Nearly all survivors experience multi-organ injury and long-term 
morbidity as a result of relentless ictal activity and potential iatrogenic 
effects of prolonged use of anesthetics and anti-seizure medications. 
Comorbidities among survivors include permanent cognitive 
impairment, psychiatric disease, and other neurological symptoms, 
including high rates of epilepsy (2). New and better therapies are 
clearly needed for this devastating condition.

Electroconvulsive therapy (ECT) has been used as treatment for 
SRSE but evidence for its benefit is limited to case reports and small 
case series (3–17). Conceptually, the electrical stimulation pulses in 
ECT are thought to disrupt and “reset” neurophysiologic circuits to 
help mitigate continuous seizure activity (18). However, despite 
investigations into ECT effects on scalp EEG parameters in psychiatry 
(19), the electrographic (and by extension the related 
neurophysiological) effects of ECT on SRSE are poorly described. 
Specifically, the degree to which ECT induces electrographic changes, 
and whether such changes impact clinical outcomes, are unknown (18).

Quantitative studies of scalp EEG data (20–23) are increasingly 
used to provide an objective assessment of neurophysiological 
changes. While surveying general changes in EEG background 
patterns is valuable (16), emerging computational techniques may 
be  better suited for the stark challenges of accounting for the 
complexities of varying waveform features across multiple electrodes 
for extended time periods (20, 23). We  aimed to evaluated 
electrographic changes associated with ECT among patients with 
SRSE using such techniques, and to determine whether these 
electrographic changes could be used to predict clinical outcomes.

Methods

Study design and subjects

This was a self-controlled case series study to examine 
electrographic changes associated with ECT among patients with 
SRSE. Retrospective chart and EEG review identified all patients at a 

single academic center who met the inclusion criteria of (1) underwent 
ECT for SRSE between January 1st, 2007, and December 31st, 2021, 
and (2) had digital EEG data available both pre- and post-stimulation 
from at least one ECT session. This study was approved by the 
Institutional Review Board via the UCSF Committee on Human 
Research including a waiver of consent on the de-identified 
retrospective data analyzed herein.

Clinical variables

We reviewed the electronic medical record and EEG database to 
collect patient age, sex, race, anesthetic and antiseizure medications 
used during the hospitalization, in-hospital survival, 90-day clinical 
outcome, 1-year clinical outcome, and date/time of each ECT 
stimulus. We confirmed the diagnosis of SRSE by reviewing clinical 
notes and the continuous EEG recordings (Figure  1A). ECT was 
administered over multiple sessions for each patient, and each ECT 
session included the delivery of two or more electrical stimuli spaced 
approximately 3 min apart on average (Table 1; Figure 1B; further 
reliable details of the specific ECT parameters were unfortunately not 
available in the retrospective medical record).

EEG recordings

EEG data were recorded using Nicolet Inc. (2007–2013) or Natus 
Inc. (2014–2021) data acquisition systems. All EEG recordings were 
performed using a standard 10–20 montage. We exported EEG data 1 h 
before and 1 h after each ECT session (Figures 1A,B). Due to digital 
storage limitations, certain portions of scalp EEG recordings (most 
often those obtained prior to infrastructure upgrades in 2019) were 
pruned (deleted) and unavailable for analysis. The number of total and 
available sessions is included in Table  1, and the duration of data 
available for individual sessions is illustrated in Figure 1B. We included 
up to six ECT sessions for each patient in the analysis.

Artifact is a common problem in critical care scalp EEG recordings 
(24), which prevents reliable quantitative analyses of the EEG data due 
to contamination with spurious values which can heavily skew data 
(25). To address EEG artifact in our dataset, each EEG recording was 
annotated by trained epileptologists (L.H., J.K.K.). Segments of the 
recordings with temporary artifacts (e.g., due to bedside care, muscle 
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 •  Electroconvulsive therapy (ECT) is sometimes used as an alternative treatment for super-
refractory status epilepticus (SRSE), yet quantitative evaluations of its influence are lacking.

 •  Dimensionality reduction and unsupervised clustering were used to compare scalp EEG 
signals before and after ECT stimulation in eight patients with SRSE.

 •  ECT during ongoing SRSE was associated with changes in EEG signal composition in a 
subset of sessions.

 •  Electrographic changes associated with ECT were marginally related to outcomes 
(surviving) after SRSE, though further studies with larger patient volumes are needed.
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artifact) and artifact from ECT stimulation (Figure 1A) were marked 
and omitted from analysis (24). Channels that were not recording 
neural signal or were otherwise unreliable in the analysis periods (e.g., 
due to intermittent or persistent impendence issues) were removed 
from the analysis. This study targeted any potential lasting effects of 
ECT rather than temporary ECT-induced seizures. Therefore, any 
temporary overt ECT-induced seizures superimposed on the 
background of SE were also annotated and omitted. A temporary 
ECT-induced seizure was defined as a rapidly evolving superimposed 
ictal discharge pattern that occurred immediately after ECT stimulation 
and lasted less than 2 min (Figure 1A).

Signal processing

Recordings were originally digitized as referential recordings (to 
CPz) at 256 or 512 Hz, and the latter were downsampled to 256 Hz 
preceded by an anti-aliasing filter (<127 Hz low-pass Butterworth filter). 
Notch filters were applied (60 Hz and harmonics) (20). Data for each 
channel in each session was converted using a linelength transform, 
calculated by summing the absolute value of the signal derivative, which 
has been shown to have good sensitivity and specificity as a surrogate 

measure for epileptiform activity (26, 27). The linelength transform was 
performed with a one-second window that was slid datapoint-by-
datapoint to preserve time resolution. These data were converted into 
consecutive one-second data points by taking the mean across every 256 
timepoints (non-overlapping one-second windows). We then applied a 
natural log transform to approach normality of the data distribution. All 
data processing and subsequent analysis was performed in MATLAB 
(MathWorks, Inc., Natick, MA, USA).

Data visualization and statistical analysis

To address the complexity of analyzing EEG signals across up to 19 
different electrodes over time, we applied two different dimensionality 
reduction approaches. First, we applied principal component analysis 
(PCA), a linear reduction technique, by transforming the data from the 
peri-ECT window (segments before the first stimulus and after the last 
stimulus of each ECT session, as outlined below and in Figures 1C,D) 
into its principal components. We  then projected the data in 3D 
coordinate space of the first, second, and third principal components 
(Figures  1D,E) to visualize electrographic differences in the EEG 
recording before and after ECT as graded colors and enable cluster 

FIGURE 1

ECT stimulation session data processing. (A) Raw scalp EEG data from an example ECT stimulation during an ECT session, demonstrating epileptiform 
activity before and after the stimulation artifact (along with the temporary superimposed increase in seizure activity induced by ECT). The ECT stimulus 
artifact and temporary ECT-related seizure data were omitted from analyses to focus on more durable effects of ECT. (B) Available data for all included 
patients. Each row designates an ECT session with up to 60 min before and after ECT, with individual ECT stimuli as white dots (note: plot shows data 
aligned to first stimulus, though post-ECT data for all subsequent analyses was aligned to the last stimulus as time zero). (C) Schematic of session data 
realignment for all subsequent analyses. The “pre-ECT” data is obtained from the 60 min prior to the first stimulus, whereas the “post-ECT” data is 
obtained from the 60 min after the last stimulus. Data between stimuli was avoided due to variability in number and timing of stimuli across sessions. 
Asterisk (*) denotes ECT-induced seizure annotated for each individual session (omitted from subsequent analyses). (D) The upper panel shows the 
natural log of the linelength transform of EEG data over time (x-axis) for each channel (y-axis). Data omitted due to EEG artifact is in white vertical 
sections, and data omitted due the initial ECT-induced seizure is labeled * as in C. The lower panel showed the same data converted into principal 
components (PCs), ranked by the percent variance explained (from top, 78.1, 6.4, and 4.5% for PC 1, 2, and 3 respectively). (E) Data according to the top 
three PCs from D is plotted in 3-D space (each data point = 1 s; turquoise-blue = pre-ECT, red-orange = post-ECT), demonstrating a subtle separation 
in this space between pre- vs. post-ECT stimulation in that session. Right panel shows same data similarly processed with UMAP (first three 
dimensions).
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analysis using these same three dimensions. Second, as a non-linear 
reduction technique to better preserve the global structure of the data 
relative to PCA, we  applied uniform manifold approximation and 
projection (UMAP) (20, 28, 29). Parameters used were a three-
dimensional Euclidean embedding and neighborhood of 15, and the 
results were plotted similar to PCA to visualize and analyze 
electrographic differences in the EEG recording before and after ECT 
in UMAP embedding space (Figure 1E, right panel). Importantly, the 
PCA and UMAP embeddings were computed using unlabeled data 
(“blinded”) in order to reveal any latent structure to the data, which 
we hypothesized may arise due to the influence of ECT.

To evaluate the association between ECT and changes electrographic 
activity using PCA and UMAP projections in low-dimensional space, 
our aim was to compare electrographic activity before each ECT session 
(pre-ECT) to electrographic activity after each ECT session (post-ECT). 
Specifically, we evaluated whether pre-ECT data and post-ECT data 
from the same session projected into different regions of low-dimensional 
space. Differences between pre-ECT and post-ECT data were interpreted 
as reflecting ECT-related EEG changes across the available electrodes; in 
other words, latent patterns in the data indicating meaningful 
morphological (electrophysiological waveform) influences, and thus a 
measurable neurophysiological impact of ECT.

Following unsupervised analysis using PCA and UMAP on the 
unlabeled data, labels were revealed (colors in Figures  2, 3). 
We  calculated silhouette scores (30) (silhouette.m function in 
MATLAB) for each ECT session using these labels in order to quantify 
changes in the EEG data associated with ECT. Silhouette scores 
ranged from −1 to +1, with a high score conceptually suggesting good 
separability between the portions of data (i.e., between pre-ECT and 
post-ECT) in low-dimensional space. Silhouette scores were 
calculated from the first three dimensions of the blinded PCA (or 
UMAP) embedding using the revealed labels (i.e., “unblinding”). 
These scores were compared in two temporal scenarios: (1) across 
consecutive sessions, and (2) as time elapsed after ECT stimuli, or in 
other words, across consecutive five-minute periods of post-ECT data. 
Specifically, in the first scenario we calculated silhouette scores for 
data up to 10 min before and 10 min after each ECT session for all 
consecutive sessions (Figure  4). In the second scenario 
we independently compared the 5-min period pre-ECT repeatedly to 
consecutive 5-min periods post-ECT, for up to 1 h (Figure 5).

We examined the association between ECT and silhouette scores with 
mixed effects models (fitlme.m function in MATLAB). We incorporated 
a patient-adjustment (“random effect”) in the models to account for 
patient-specific differences, and fixed effects of time (across sessions for 
the first analysis, and over time elapsed since ECT for the second analysis) 
and in-hospital survival (referred to hereafter as survived vs. did not 
survive). Since the distributions of the primary outcome data (silhouette 
scores of unsupervised data reductions comparing before vs. after ECT) 
and their global structure were unknown and variable, the above analyses 
were performed using PCA-transformed data as a linear dimensional 
reduction approach, and separately using the UMAP data as a 
complementary nonlinear approach.

Results

We identified eight patients who met the eligibility criteria for 
inclusion. They ranged from 19 to 67 years old, and four (50%) were T

A
B

LE
 1

 D
em

o
g

ra
p

h
ic

s 
an

d
 p

er
ti

n
en

t 
in

fo
rm

at
io

n
 f

o
r 

th
e 

ei
g

h
t 

p
at

ie
n

ts
.

ID
O

u
tc

o
m

e
A

g
e

 
(y

)
Se

x
Im

ag
in

g
Lu

m
b

ar
 

p
u

n
ct

u
re

O
n

se
t 

to
 

ad
m

. 
(d

)

O
n

se
t 

to
 E

C
T

 
(d

)

E
C

T
 t

o
 

d
is

ch
ar

g
e

 
(d

)

O
u

tc
o

m
e

 (
9

0
 

d
)

O
u

tc
o

m
e

 (
1 

y)
#

 E
C

T
 

se
ss

io
n

s
U

sa
b

le
 

se
ss

io
n

s
A

ve
ra

g
e

 
st

im
./

se
ss

io
n

#
 

an
e

s-
th

e
ti

cs

#
 o

f 
A

SM
s

1
D

isc
ha

rg
ed

27
M

N
or

m
al

A
bn

or
m

al
3

23
23

Ep
ile

ps
y, 

co
gn

iti
ve

 

sy
m

pt
om

s

Ep
ile

ps
y

5
2

3
3

7

2
D

isc
ha

rg
ed

32
F

A
bn

or
m

al
N

or
m

al
N

/A
N

/A
13

Ep
ile

ps
y

Ep
ile

ps
y

4
2

2.
7

N
/A

4

3
D

isc
ha

rg
ed

23
F

N
or

m
al

1 
of

 2
 

ab
no

rm
al

33
41

33
Ep

ile
ps

y, 
co

gn
iti

ve
 

sy
m

pt
om

s

Ep
ile

ps
y, 

co
gn

iti
ve

 

sy
m

pt
om

s

11
8

2.
7

3
6

4
D

isc
ha

rg
ed

30
M

A
bn

or
m

al
N

or
m

al
6

10
41

Ep
ile

ps
y, 

co
gn

iti
ve

 

sy
m

pt
om

s

Ep
ile

ps
y, 

co
gn

iti
ve

 

sy
m

pt
om

s

12
12

3.
2

3
6

5
D

ec
ea

se
d

20
M

A
bn

or
m

al
A

bn
or

m
al

5
9

21
D

ec
ea

se
d

D
ec

ea
se

d
5

4
3

3
4

6
D

ec
ea

se
d

19
M

N
or

m
al

A
bn

or
m

al
2

18
14

D
ec

ea
se

d
D

ec
ea

se
d

5
5

3
4

3

7
D

ec
ea

se
d

28
F

A
bn

or
m

al
A

bn
or

m
al

0
17

N
/A

D
ec

ea
se

d
D

ec
ea

se
d

3
1

3
3

5

8
D

ec
ea

se
d

67
F

N
/A

N
/A

N
/A

N
/A

N
/A

D
ec

ea
se

d
D

ec
ea

se
d

3
3

3.
3

N
/A

N
/A

Th
e 

te
rm

 “d
isc

ha
rg

ed
” m

ea
ns

 th
at

 th
e 

pa
tie

nt
 w

as
 e

ve
nt

ua
lly

 tr
an

sf
er

re
d 

ba
ck

 to
 th

e 
or

ig
in

al
 a

dm
itt

in
g 

ho
sp

ita
l f

ol
lo

w
in

g 
cl

in
ic

al
 im

pr
ov

em
en

t. 
Th

e 
to

ta
l n

um
be

r o
f E

C
T 

se
ss

io
ns

 p
er

fo
rm

ed
 b

ef
or

e 
di

sc
ha

rg
e 

is 
in

 th
e 

“T
ot

al
 se

ss
io

ns
” c

ol
um

n,
 w

hi
le

 th
e 

nu
m

be
r o

f 
se

ss
io

ns
 w

ith
 p

re
- a

nd
 p

os
t-

st
im

ul
at

io
n 

EE
G

 d
at

a 
av

ai
la

bl
e 

(n
ot

 d
el

et
ed

) i
s i

n 
th

e 
“U

sa
bl

e 
se

ss
io

ns
” c

ol
um

n.
 y,

 y
ea

rs
; d

, d
ay

s; 
ad

m
., 

ad
m

iss
io

n;
 st

im
, E

C
T 

st
im

ul
i; 

EC
T,

 el
ec

tr
o-

co
nv

ul
siv

e 
th

er
ap

y;
 A

SM
s, 

an
ti-

se
iz

ur
e 

m
ed

ic
at

io
ns

 u
se

d 
du

rin
g 

ho
sp

ita
liz

at
io

n;
 N

/A
, n

ot
 

av
ai

la
bl

e 
(d

at
a 

no
t a

va
ila

bl
e 

in
 th

e 
el

ec
tr

on
ic

 m
ed

ic
al

 re
co

rd
).

https://doi.org/10.3389/fneur.2024.1493336
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Christin et al. 10.3389/fneur.2024.1493336

Frontiers in Neurology 05 frontiersin.org

female (Table  1). Patients were treated with up to four anesthetic 
agents during their SRSE hospitalization, and up to seven anti-seizure 
medications not including anesthetics (Supplementary Figure  1; 
Table 1). Half of the patients survived, whereas the other half did not. 
The surviving patients had chronic localization-related epilepsy and 
cognitive impairments at 90 days and one-year follow-up timepoints 
after onset of SRSE (Table 1). Patients underwent 3–12 sessions of 
ECT during their hospitalization, and electrical stimuli were delivered 
two to four times per session. Analysis was limited to data from the 
first six sessions for each patient (Figure 1B; Table 1) since only two 
patients had additional sessions. Of the 29 ECT sessions included in 
the analysis, 4 (13.8%) had a change in anesthesia during the period 
analyzed (10 min before and 10 min after ECT) and 25 (86.2%) did 
not have a change in the dose of anesthesia.

Unsupervised analysis

Briefly, we next quantified patterns of EEG changes due to ECT. To 
extract EEG fluctuations associated with epileptiform activity, we first 

applied a linelength transform to the EEG data. The high-dimensional 
linelength-transformed EEG channel data from individual sessions 
was next projected into a low-dimensional space using 
PCA. We observed in several ECT sessions that EEG fluctuations 
before treatment occupied a different region of the three-dimensional 
PC space than fluctuations after treatment (Figure 2). This suggests 
that ECT may effect scalp EEG signal composition more in some 
patients (patients 2 and 3) compared to others (e.g., patients 2 and 3). 
We  next applied UMAP (20, 21, 31) to this same data, again 
demonstrating several sessions with overt visualizable differences 
before vs. after ECT, similar to PCA yet with more salient clustering 
(Figure 3).

ECT-related electrographic changes: 
across sessions

The silhouette score provided an approximation of the degree to 
which the EEG signal composition changed before vs. after ECT in a 
given session. The use of a silhouette score thus helped to control for 

FIGURE 2

PCA-derived embeddings plots of linelength-converted EEG data for all patients and sessions. Using the workflow illustrated in Figures 1C,E, data 
points for each one-second interval is projected into 3-D space with axes corresponding to the first 3 PC’s. Colors designate the timing of the data 
points relative to ECT (legend). Patients had variable numbers of sessions (Table 1; Figure 1B). Sessions without available EEG data (i.e., deleted, see 
Methods) are denoted as N/A, and a.u. indicates arbitrary units (generated separately by each PCA analysis). Patients 1–4 and 5–8 are those who 
survived or did not survive as outcomes, respectively.
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FIGURE 3

UMAP-derived embedding plots of linelength-converted EEG data for all patients and sessions. Data is projected similar to Figure 2, instead using the 
non-linear approach of UMAP.

pre-existing differences between patients and sessions (e.g., different 
combinations of anesthetics and ASMs administered, different 
etiologies). Patients were receiving anesthesia during this period 
(Supplementary Figure  1) which could affect scalp EEG signal 
composition, however, only four sessions involved a change in 
anesthesia during the period analyzed. Mean silhouette scores for 
these sessions were in similar ranges as sessions with no dynamic 
anesthesia change, suggesting these differences did not confound our 
results (Supplementary Figure 2).

The mean silhouette score across all ECT sessions was 0.364 
(median 0.294, range −0.131 to 0.943). On visual inspection, the 
distinction of EEG data before vs. after ECT varied widely both 
within and between patients, with some sessions with overlapping 
and others showing separation. This is reflected in variability among 
silhouette scores in Figure  4. A mixed effect model using the 
PCA-derived data (Figure  2) showed no effect of consecutive 
session (OR: −0.009, CI: −0.078 to 0.060, p = 0.795), nor patient 
survival (OR: −0.101, CI: −0.117 to 0.319, p = 0.349) on silhouette 
scores. Replicating the mixed effect model using UMAP-derived 
data as a non-linear data reduction approach (Figures 3, 4) also 
showed no effect of consecutive session (OR: −0.025, CI: −0.082 to 
0.032, p  = 0.374) or outcome (OR: 0.149, CI: −0.111 to 0.410, 
p = 0.249).

ECT-related electrographic changes: 
within sessions

The plot of silhouette scores over time within each ECT session 
demonstrated that the distinction between EEG data before vs. after ECT 
also appeared to change minute-by-minute (migrating locations of color 
shades in Figures  2, 3 denote EEG changes over consecutive time) 
suggesting evolution in the hyperacute and acute neurophysiological 
influences of ECT. A mixed effects model assessing consecutive 5-min 
bins of data (Figure  5) suggested that silhouette scores significantly 
increased across this 60-min post-ECT timeframe (OR: 0.003, CI: 0.001–
0.005, p = 0.008), and scores were higher for patients who survived (OR: 
0.162, CI: 0.006–0.318, p = 0.042). Replicating the analysis with UMAP-
derived data similarly showed a positive effect across consecutive 5-min 
bins (OR: 0.005, CI: 0.003–0.006, p < 0.001), though the effect of patient 
outcome became a trend that did not reach statistical significance (OR: 
0.217, CI: −0.044 to 0.479, p = 0.102).

Discussion

ECT has shown promise in limited retrospective case reports 
and series that have studied clinical outcomes. Yet to our knowledge, 
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FIGURE 4

Evolution of pre- vs. post-ECT silhouette scores across sessions (days). (A) Individual session examples of high (upper panel) and low (lower panel) 
silhouette scores for data comparing 10 min immediately before vs. after ECT. Note the clear separation between nearly all pre-stimulation data points 
(turquoise to blue) and post-stimulation data points (red to orange) in the upper panel, suggesting an immediate and persistent difference in the scalp 
EEG linelength measure (surrogate for epileptiform activity) after ECT is delivered. Data in the lower panel is largely overlapping, suggesting poor 
separability and thus minimal no change related to ECT during this session. (B) Silhouette scores for all evaluated sessions across patients.

FIGURE 5

Evolution of pre- vs. post-ECT silhouette scores up to 60 min immediately post-ECT. (A) Schematic of analysis in panel (B,C) in which, for each 
session, consecutive 5-min periods of data are each compared to the same baseline of 5 min immediately preceding ECT. (B) Silhouette scores for 
each session (gray traces) of an example patient (Pt 3) illustrating the estimated separability between pre-ECT segment [blue period in panel (A)] vs. 
post-ECT segments over time [consecutive red-orange segments in panel (A)]. Green traces illustrate the average of all sessions for this patient. 
(C) Silhouette score means (across sessions) similar to green trace in panel (A), shown for all patients (note Pt 1 and Pt 7 restricted to 5-min mark due 
to limited post-ECT data across sessions, Figure 1B).
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prior reports of whether ECT treatment is associated with 
measurable electrographic changes are exceedingly rare. This is 
presumably due to challenges of reliably measuring the complex 
and evolving SRSE epileptiform burden on extended EEG 
recordings. These challenges can be addressed using semi-subjective 
clinician descriptions of the EEG background (16, 32), simplified 
metrics (e.g., epileptiform discharge rates), or more recently, 
objective methods using emerging computational tools (20, 21, 33). 
The current investigation follows the latter approach to 
quantitatively describe latent changes in electrographic activity 
associated with receiving ECT for SRSE.

Given the high morbidity and mortality of SRSE (2, 18), this study 
provides a much needed methodological step forward in investigating the 
effects of SRSE treatment, specifically demonstrating a potential 
neurophysiological impact of ECT treatment. Our findings suggest ECT 
may be associated with modulation of electrophysiological features, and 
we demonstrate this through objective assessment of the data. Specifically, 
our PCA and UMAP approaches were unsupervised, or in other words, 
blinded to whether the data came from before vs. after ECT stimuli in a 
given session. Our silhouette score approach subsequently unblinded this 
transformed data, evaluating the different locations in these 
low-dimensional PCA and UMAP space embeddings to measure how 
different the EEG epileptiform background was before vs. after 
ECT. Illustrating the data through colored dots supplemented our 
approaches with visual evidence of EEG signal changes before vs. after 
ECT in many sessions across patients (Figures 2, 3, 4A).

Evaluating the first 10 min post-ECT data did not reveal overt 
differences related to survival (Figure 4). We chose this relatively short 
segment initially since many sessions lacked data for longer periods 
immediately following ECT. However, our latter analysis showed that 
later timepoints post-ECT may show stronger separability from pre-ECT 
timepoints (higher silhouette scores). Indeed, when including data for up 
to 1 h after ECT (and statistically adjusting for time elapsed, missing 
values, and individual patients), a higher degree of evident modulation 
(higher silhouette score) in the one-hour period after ECT was apparent 
and related to a better clinical outcome (Figure 5).

The mechanism of an ECT-related effect on EEG recordings is 
unclear. However, we  speculate that a stronger degree of potential 
modulation (i.e., a higher silhouette score) may imply that the brief 
ECT-induced seizure (Figures 1A,D) engaged larger regions of cortex 
and/or engaged the involved brain tissue to a greater degree. 
ECT-induced seizure activity superimposed on ongoing status 
epilepticus could affect metabolism, neurotransmitter transmission, 
gene expression, and/or receptor translocation (34–36). We speculate 
that such influences could be reflected by overall tissue neurophysiology 
and excitability, hence ECT-related changes in the electrographic ictal 
(status epilepticus-related) patterns observed in our study.

Overall, a greater before vs. after silhouette score noted in the 
hour after ECT may indicate susceptibility to ECT treatment and thus 
potentially better outcomes. However, our study was likely relatively 
underpowered due to the rarity of SRSE, perhaps as evidenced by the 
influence of outcome of silhouette scores becoming a non-significant 
trend when using UMAP data. A larger prospective study, ideally 
across multiple institutions to increase patient volumes, would 
be required to verify true potential efficacy of ECT for SRSE.

Our study had several potential limitations. First, the availability 
of data was limited, including the number of total patients given the 
rareness of SRSE, and availability of data since patients who were 

hospitalized in earlier years often lacked complete EEG recordings 
due to historical practices of pruning data for digital storage limits. 
Patients also had varying concurrent medications and doses (though 
we addressed these aspects with our within-subject study design; see 
Methods) and other differences in treatment courses (e.g., ECT 
stimulus duration and intensity). Such influences could affect EEG 
features and interact with the influence of ECT. These aspects reduce 
the generalizability of our findings, underscoring that future studies, 
particularly combining larger numbers of patients across multiple 
centers with specific ECT parameters, are crucially needed. 
Limitations in data availability were also due to artifact related to 
routine ICU care (24), which we omitted to prevent data skewing (25). 
Second, we used a single transform (linelength) as a surrogate for ictal 
activity given its validation as a metric for ictal and other epileptiform 
activity (26, 27) As the sum of the absolute voltage changes over a set 
time window of data points, linelength inherently incorporates 
common metrics of ictal severity (e.g., spike discharge rate) (37). Yet 
this is just one of many potential metrics, and other transforms 
provide various pros and cons (e.g., sensitivity and specificity for 
epileptiform activity) (20, 21). Our PCA and UMAP approaches were 
used to evaluate the data using complementary linear and non-linear 
clustering techniques, though other approaches such as non-negative 
matrix factorization and t-SNE may be relevant as well (38, 39).

Conclusion

Our findings provide evidence for a measurable and potentially 
lasting effect of ECT on scalp EEG-recorded neural signals. This 
quantitative study adds novel insights into the understanding of 
whether and how ECT may influence patient variables, and thus our 
findings may have future implications for expanding the use of ECT 
in the neurocritical care setting. However, given the typically poor 
outcomes of SRSE, further investigation into ECT as a potential 
therapy is strongly warranted, ideally combining larger numbers of 
patients across multiple centers using a prospective randomized 
design (e.g., ECT vs. placebo). This study further demonstrates the 
potential value of quantitative EEG metrics for such evidence-based 
studies, so that measurable differences in treatment effects can 
be  more objectively evaluated among emerging therapies for 
devastating neurological conditions.
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