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Objective: To establish and validate a model based on hyperdense middle 
cerebral artery sign (HMCAS) radiomics features for predicting hemorrhagic 
transformation (HT) in patients with acute ischemic stroke (AIS) after 
endovascular treatment (EVT).

Methods: Patients with AIS who presented with HMCAS on non-contrast 
computed tomography (NCCT) at admission and underwent EVT at three 
comprehensive hospitals between June 2020 and January 2024 were recruited 
for this retrospective study. A radiomics model was constructed using the 
HMCAS radiomics features most strongly associated with HT. In addition, 
clinical and radiological independent factors associated with HT were identified. 
Subsequently, a combined model incorporating radiomics features and 
independent risk factors was developed via multivariate logistic regression and 
presented as a nomogram. The models were evaluated via receiver operating 
characteristic curve, calibration curve, and decision curve analysis.

Results: Of the 118 patients, 71 (60.17%) developed HT. The area under the curve 
(AUC) of the radiomics model was 0.873 (95% CI 0.797–0.935) in the training 
cohort and 0.851 (95%CI 0.721–0.942) in the test cohort. The Alberta Stroke 
Program Early CT score (ASPECTS) was the only independent predictor among 
24 clinical and 4 radiological variables. The combined model further improved 
the predictive performance, with an AUC of 0.911 (95%CI 0.850–0.960) in the 
training cohort and 0.877 (95%CI 0.753–0.960) in the test cohort. Decision 
curve analysis demonstrated that the combined model had greater clinical utility 
for predicting HT.

Conclusion: HMCAS-based radiomics is expected to be  a reliable tool for 
predicting HT risk stratification in AIS patients after EVT.
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Introduction

Endovascular thrombectomy (EVT) has been widely used as 
standard treatment for all eligible patients with acute ischemic stroke 
(AIS) due to large vessel occlusion (1, 2). Hemorrhage transformation 
(HT) is the most common and severe complication after EVT, 
potentially leading lead to a worse prognosis than the natural course 
of the disease, thus negating the benefits of surgery (3, 4). The 
European Cooperative Acute Stroke Study II (ECASS II) classifies HT 
into hemorrhagic infarction (HI) and parenchymal hemorrhage (PH) 
by imaging (5). The Heidelberg criteria classifies HT into 
asymptomatic intracranial hemorrhage (ICH) and symptomatic ICH 
(sICH) according to clinical deterioration (6). However, even minor 
HT may lead to a poor functional prognosis later in life once HT 
occurs (7, 8).

Non-contrast computed tomography (NCCT) is the first-line 
imaging modality for AIS patients because of its rapidity and 
universality (2). Early signs of intracranial large-vessel occlusive 
infarction can be  detected on admission NCCT, including loss of 
gray–white matter differentiation at the insula, basal ganglia, and 
caudate head; loss of the sulcus; and hyperdense middle cerebral 
artery sign (HMCAS) (9). HMCAS represents acute thromboembolic 
occlusion of the large vessels [middle cerebral artery (MCA) and/or 
internal carotid artery (ICA) terminals] with a specificity approaching 
100% (10, 11). Some studies have shown that HMCAS is associated 
with an increased risk of HT after EVT (12, 13). Therefore, it is crucial 
to identify the risk of hemorrhage in patients presenting with HMCAS 
prior to EVT, which may guide clinicians in carefully selecting the 
appropriate treatment regimen and optimizing management to 
improve patient prognosis.

Radiomics can tap into a wide range of quantitative imaging features 
in biomedical images that are not recognized by the human eye for use 
in clinical diagnosis, decision support and prediction of outcomes (14). 
Most previous radiomics studies on the prediction of HT after 
reperfusion were based on the brain parenchyma on CT or MRI (15–17). 
Unclear boundaries of hyperacute-phase cerebral infarcts on NCCT at 
admission led to uncertainty in the outlining of the region of interest 
(ROI), and the time-consuming nature of the MRI examination may 
hinder its application in urgent clinical situations. In recent years, 
thrombus-based radiomics has shown great potential in the estimation 
of infarct onset time, recanalization after ischemia-perfusion, and 
assessment of prognosis (18–22). However, the utility of HMCAS-based 
radiomics for post-EVT HT has not been reported.

In this study, for the first time, we  explored HMCAS-based 
radiomics on NCCT to predict HT in AIS patients who underwent EVT.

Materials and methods

Patients

Imaging and clinical data of AIS patients who underwent EVT in 
three comprehensive hospitals from June 2020 to January 2024 were 

retrospectively collected. The inclusion criteria were as follows: (1) 
age ≥ 18 years; (2) acute anterior circulation large vessel occlusion, 
including terminal internal carotid artery occlusion, the M1 segment 
of the MCA, the M2 segment of the MCA; (3) patients with AIS show 
HMCAS on admission NCCT; and (4) within 24 h from symptom 
onset to groin puncture. The exclusion criteria were as follows: (1) 
baseline NCCT combined with intracranial hemorrhage (n = 3), (2) 
severe artifacts on NCCT (n = 6), and (3) postoperative HT could not 
be determined because of a lack of follow-up images or insufficient 
follow-up time (n = 21). Finally, 118 patients were included in this 
study. All the patients were randomly divided into the training 
(n = 82) and test (n = 36) cohorts at a ratio of 7:3. The flow chart of 
this study is shown in Figures 1, 2.

Imaging acquisition

The CT scanner models and scanning parameters used in the 
three comprehensive hospitals are shown in Supplementary Table S1.

Clinical data collection and imaging 
evaluation

The following clinical data were collected from all the patients: (1) 
baseline characteristics, including age, sex, hypertension, diabetes, 
atrial fibrillation, coronary artery disease, hyperlipidemia, previous 
stroke, history of anticoagulant drugs, history of antiplatelet drugs, 
history of smoking, and history of drinking. In addition, the severity 
of stroke at admission was assessed via the National Institutes of 
Health Stroke Scale (NIHSS) score, and stroke etiology was 
determined according to the Trial of Org 10172  in Acute Stroke 
Treatment (TOAST) (23). (2) Laboratory findings, including 
triglyceride, cholesterol, high-density lipoprotein (HDL), low-density 
lipoprotein (LDL), and glucose levels at admission were determined. 
(3) EVT procedures, including intravenous thrombolysis prior to 
EVT, thrombectomy mode, angioplasty, number of device passes (>3), 
and successful recanalization [mTICI 2B and 3 (24)], were also 
collected and analyzed.

HT was assessed by follow-up CT or MR images within 24 h after 
EVT. If hyperdense areas, which could not be  identified as 
hemorrhage, were observed on the follow-up NCCT within 24 h, HT 
was defined as a hyperdense lesion persisting for ≥48 h. If the 
hyperdense area disappeared or nearly disappeared within 48 h, 
contrast extravasation was considered (25). We evaluated the following 
thrombus imaging features: the clot burden score (CBS) (26), the 
length of the HMCAS, and the distance from the end of the ICA to the 
thrombus (DT) (27). The CBS is a scoring system used to quantify the 
thrombosis burden in the anterior circulation on a scale of 0–10; the 
lower the score is, the more extensive the thrombus. Other imaging 
data evaluated included the Alberta Stroke Program Early CT Score 
(ASPECTS) on NCCT, which quantifies early ischemic changes due 
to middle cerebral artery stroke prior to treatment (28).
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Thrombus segmentation and radiomics 
feature extraction

The HMCAS was defined if the unilateral middle cerebral artery 
appeared more dense than the surrounding brain tissue and other 
arteries but non-calcified on NCCT (29, 30). The region of interest 
(ROI) of the HMCAS was manually segmented layer-by-layer from 
axial slices of the NCCT images by a radiologist using 3D Slicer 
(version 5.6.2) (31). For doubtful areas, the corresponding digital 
subtraction angiography (DSA) or computed tomography 
angiography (CTA) images were viewed for guidance, similar to Qiu 
et al. (19) and Li et al. (21). Prior to feature extraction, the ROIs of all 
the images were normalized to address the potential effects of 
inconsistent spatial resolution, including resampling the image voxels 
to 1 mm × 1 mm × 1 mm by linear interpolation and fixing the 
bin-width value of the image gray value at 25. Subsequently, 1,130 
radiomic features (RFs), including shape features, first-order features, 
2D-shaped features, gray-level co-occurrence matrix (GLCM), gray-
level dependence matrix (GLDM), gray-level run length matrix 
(GLRLM), gray-level size zone matrix (GLSZM), and neighboring 
gray-tone difference matrix (NGTDM), were automatically extracted 

from all the ROIs via the PyRadiomics plug-in in the software. Wavelet 
filtering and three different Laplacian Gaussian filters were applied to 
obtain further higher-order features. Forty patients were randomly 
selected for the segmentation task to assess the inter-observer 
agreement of the computationally extracted RFs, and features with an 
intergroup correlation coefficient (ICC) of less than 0.9 were excluded.

Feature selection and radiomics model 
building

Before feature selection, all RFs were normalized, i.e., the mean 
was removed and divided by its standard deviation, and each set of 
feature values was converted into normalized data with zero mean and 
one variance. Owing to the large number of RFs, to avoid problems 
such as model overfitting and multicollinearity, the extracted RFs were 
downscaled via the following three methods: first, the variance 
thresholding method was used for feature dimensionality reduction, 
and features with variance less than 0.8 were deleted; second, the 
univariate selection method was utilized to screen for nonsignificant 

FIGURE 1

The flow chart of patient recruitment process.
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features (p > 0.05); and last, through the least absolute shrinkage and 
selection operator (LASSO) regression algorithm, the indicators most 
relevant to the research objectives were fitted, and the weights of these 
indicators were obtained. The radiomic score (Rad score) was 
calculated via a linear combination of the final sifted features weighted 
by their respective coefficients, and then a radiomic model 
was established.

Development of the radiological and 
combined models

Clinical and imaging features were screened for variables 
independently associated with HT via univariate and multivariate 
logistic regression analyses. Independent risk factors were included in 
the radiological and combined models. The combined model was 

FIGURE 2

The flow chart of this study.
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visualized by building a radiomic nomogram, which presents the 
variables included in the model as a column-line graph to provide 
personalized HT probability estimates.

Statistical analysis

The Kruskal–Wallis rank sum test or one-way analysis of variance 
was used for continuous variables. Continuous data are reported as 
medians [interquartile ranges (IQRs)] or means (standard deviations) 
depending on whether the data were normally distributed. The 
chi-square test was used for categorical variables, which are reported 
as counts (percentages). The receiver operating characteristic (ROC) 
curve was used to determine the predictive performance of the 
models. The Delong test was used to compare differences in areas 
under the curves (AUCs) between the models. Calibration curves and 
the Hosmer–Lemeshow test were used to assess the calibration 
performance of the model. The clinical utility of the models was 
assessed via decision curve analysis (DCA). Statistical analyses were 
performed via R software (version 4.3.2). A value of p < 0.05 was 
considered to indicate a statistically significant difference.

Results

Clinical and radiological characteristics

A total of 118 patients who underwent EVT were included. 
Among them, 71 (60.17%) patients developed HT (35 [29.66%] with 
HI and 36 [30.51%] with PH), and 15 (12.71%) patients had 
sICH. There were no significant differences in any of the variables 
between the training and test cohorts (p > 0.05), indicating an even 
distribution of data between the two groups (Table 1). In the training 
set, univariate logistic regression analysis for HT showed that CBS, 
DT, length of HMCAS, ASPECTS, NIHSS, glucose level, diabetes were 
significantly difference (p < 0.05). However, Only the imaging feature 
ASPECTS (OR 0.672, 95% CI 0.443–0.946, p  = 0.039) was an 
independent predictor for HT in the multivariate logistic regression 
analysis (Supplementary Table S2). Furthermore, there were no 
statistically significant differences between patients with HT and 
without HT in other factors, such as age, gender, number of devices, 
and successful recanalization (p > 0.05).

Establishment and performance of the 
radiomics model

One thousand one hundred and thirty RFs were extracted from 
each patient’s ROI, and 205 features with ICCs <0.9 were removed. 
The 925 features left behind were further reduced by variance 
thresholding and univariate feature selection methods. Finally, 12 
features highly correlated with HT were selected for the radiomics 
model by LASSO and 10-fold cross-validation (Figures 3A,B). The 
Rad-score was calculated for each patient via the following formula: 
Rad-score = 0.622 + (−0.019) × Mean_firstorder_wavelet-HLH 
 + 0.102 × GrayLevelNonUniformity_glszm_wavelet-LLL + (−0.056)  
× Median_firstorder_wavelet-HLH + (−0.099) × LowGray 

LevelZoneEmphasis_glszm_wavelet-LHH + (−0.043) × LowGray 
LevelZoneEmphasis_glszm_wavelet-HLH + 0.014 × dependence 
Variance_gldm_log-sigma-2-0-mm-3D + 0.061× skewness_
firstorder_wavelet-HHL + 0.025 × Correlation_glcm_wavelet-HLH  
+ 0.068 × LargeDependenceLowGrayLevelEmphasis_gldm_wavelet- 
LLH + 0.025 × LargeAreaLowGrayLevelEmphasis_glszm_log-sigma-
1-0-mm-3D +0.006 × SizeZoneNonUniformity_glszm_log-sigma-0-
5-mm-3D + 0.043 × Skewness_firstorder_wavelet-HHH (Figure 3C).

The AUC of the radiomics model was 0.873 (95% CI: 0.797–0.935) 
in the training cohort, with an accuracy, sensitivity, and specificity of 
0.829, 0.804, and 0.871, respectively. In the test cohort, the AUC was 
0.851 (95% CI: 0.721–0.942), with an accuracy, sensitivity, and 
specificity of 0.722, 0.636, and 0.857, respectively (Table 2; Figure 4).

Establishment and performance of the 
radiological model

Among the 24 clinical and 4 imaging variables, only the ASPECTS 
was independently associated with HT, and this imaging variable was 
included in the radiological model. The AUC of the radiological 
model was 0.717 (95% CI: 0.619–0.805) in the training cohort and 
0.706 (95% CI: 0.574–0.847) in the test cohort (Table 2; Figure 4).

Establishment and performance of the 
combined model

We developed a combined model containing an imaging feature 
(ASPECTS) and the Rad score. The AUC of the combined model was 
0.911 (95% CI: 0.850–0.960) in the training cohort, with an accuracy, 
sensitivity, and specificity of 0.866, 0.843, and 0.903, respectively. In 
the test cohort, the AUC was 0.877 (95% CI: 0.753–0.960), with an 
accuracy, sensitivity, and specificity of 0.778, 0.773, and 0.786, 
respectively (Table 2; Figure 4). The p value of the DeLong test for both 
the combined model and the radiological model was less than 0.05, 
indicating that the predictive efficiency of the combined model was 
significantly greater than that of the radiological model in both the 
training and test cohorts. Although there was no significant difference 
in predictive efficiency between the combined model and the radiomic 
model, the AUC value of the combined model was greater than that 
of the radiomic model (Supplementary Table S3).

A nomogram was used for visual assessment of the combined 
model for predicting postoperative HT risk in AIS patients 
(Figure 5A). Compared with the radiological risk factor, the Rad-score 
played a major role in the predictive model. Calibration curves and 
Hosmer–Lemeshow tests revealed that the nomogram had good 
accuracy in both the training cohort (p = 0.49) and the test cohort 
(p = 0.576) (Figures 5C,D). The DCA curve indicated that using the 
combined model to predict postoperative HT had a greater overall net 
benefit over large threshold probability interval (Figure 5B).

The predictive performance of the combined model in different 
subgroups was further analyzed and discussed. The model predicted 
HT with an accuracy of 90.2 and 76.1% in patients receiving EVT with 
or without thrombolysis, respectively (Figure 6A). The accuracy of the 
model in predicting HT based on NIHSS scores for patients with 
different stroke severities was 66.7, 85.9, and 90.0%, respectively 
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(Figure 6B). Additionally, no statistically significant differences were 
found in model predictions across the different subgroups analyzed 
(p > 0.05).

Discussion

In this multicenter retrospective cohort study, we explored the 
correlation between radiomics-based HMCAS on NCCT and HT in 
AIS patients undergoing EVT, and the results revealed that the 

radiomics model achieved good predictive efficacy, with an AUC of 
0.851 in the test set. Furthermore, we developed a combined model by 
combining the Rad-score with the radiological risk factor ASPECTS, 
which further improved the performance of the radiomic model, with 
an AUC of 0.877  in the test set, and had good calibration and 
clinical utility.

HT is a common complication and an important prognostic factor 
after EVT, with an incidence of up to 55.9% (32). In our study, HT 
occurred in 60.17% of patients, which is higher than previous studies. 
This may be related to the fact that our study population were patients 

TABLE 1 Demographics and characteristics of the training and test cohorts.

Variable Training cohort
(N = 82)

Test cohort
(N = 36)

p value

Male sex (%) 38 (46.3) 19 (52.8) 0.657

Age (median [IQR]) 72.00 [66.50, 82.00] 71.50 [61.75, 82.00] 0.425

Stroke etiologies (%) 0.787

  Large artery atherosclerosis 24 (29.3) 12 (33.3)

  Cardioembolism 53 (64.6) 21 (58.3)

  Other etiologies 5 (6.1) 3 (8.3)

CBS (median [IQR]) 7.00 [6.00, 9.00] 6.00[4.75, 8.00] 0.093

DT (median [IQR]) 10.35 [0.00, 19.88] 4.00[0.00, 13.75] 0.070

Length of HMCAS (median [IQR]) 16.65[10.25, 22.90] 17.60[10.60, 25.25] 0.638

ASPECTS (median [IQR]) 9.00 [8.00, 10.00] 9.00[6.00, 10.00] 0.840

Drink (%) 25 (30.5) 17 (47.2) 0.124

Smoke (%) 25 (30.5) 16 (44.4) 0.209

Previous stroke (%) 8 (9.8) 5 (13.9) 0.733

Diabetes (%) 17 (20.7) 8 (22.2) 0.792

Hypertension (%) 46 (56.1) 17 (47.2) 0.491

Atrial fibrillation (%) 59 (72.0) 19 (52.8) 0.070

Coronary heart disease (%) 24 (29.3) 9 (25.0) 0.800

Hyperlipidemia (%) 9 (11.0) 9 (25.0) 0.094

History of anticoagulant drugs (%) 14 (17.1) 3 (8.3) 0.337

History of antiplatelet drugs (%) 12 (14.6) 4 (11.1) 0.824

Baseline NIHSS score [mean (SD)] 15.63 (5.92) 15.06 (6.01) 0.628

Glucose level (median [IQR]) 7.18 [5.81, 9.84] 6.84 [5.70, 10.44] 0.891

Triglyceride (median [IQR]) 1.08 [0.78, 1.58] 1.10 [0.77, 2.20] 0.291

Cholesterol (median [IQR]) 3.86 [3.28, 4.72] 4.20 [3.82, 5.28] 0.026

HDL (median [IQR]) 1.08 [0.97, 1.43] 1.15 [1.03, 1.26] 0.498

LDL (median [IQR]) 2.21 [1.65, 3.00] 2.58 [2.22, 3.21] 0.094

Intravenous thrombolysis (%) 32 (39.0) 19 (52.8) 0.235

Thrombectomy modes (%) 0.573

  Aspiration alone 45 (54.9) 17 (47.2)

  Stent retriever alone 2 (2.4) 2 (5.6)

  Combination of stent retriever and aspiration 35 (42.7) 17 (47.2)

Angioplasty procedure with stent placement (%) 5 (6.1) 1 (2.8) 0.764

Number of device > 3 (%) 10 (12.2) 3 (8.3) 0.766

Successful recanalization (%) 75 (91.5) 34 (94.4) 0.853

CBS, clot burden score; DT, distance from the end of the ICA to the thrombus; HMCAS, hyperdense middle cerebral artery sign; ASPECTS, the Alberta Stroke Program Early CT Score; HDL, 
high-density lipoprotein; LDL, low-density lipoprotein.
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presenting with HMCAS. Previous studies have shown that a number 
of clinical factors and imaging features are associated with HT. For 
example, Hou et al. (33) analyzed patients with large cerebral infarcts 
without thrombolytic therapy in the HMCAS group and reported that 

the length of the HMCAS was associated with an increased risk of 
HT. Yogendrakumar et al. (34) reported that pretreatment ASPECTS, 
CBS, and clot location were independent risk factors for HT after 
EVT. Tian et al. (12) included patients from the DIRECT-MT trial 

TABLE 2 Performance of the three models.

Models AUC (95% CI) Accuracy Sensitivity Specificity

Radiomics model Training cohort 0.873 (0.797, 0.935) 0.829 0.804 0.871

Test cohort 0.851 (0.721, 0.942) 0.722 0.636 0.857

Radiological model Training cohort 0.717 (0.619, 0.805) 0.707 0.745 0.645

Test cohort 0.706 (0.574, 0.847) 0.639 0.636 0.643

Combined model Training cohort 0.911 (0.850, 0.960) 0.866 0.843 0.903

Test cohort 0.877 (0.753, 0.960) 0.778 0.773 0.786

FIGURE 3

The feature selection by LASSO analysis. (A) MSE PATH. The dotted line represents the α value with the smallest mean square error (α = 1.5). (B) LASSO 
PATH. The RFs are determined according to the α value with the smallest mean square error. (C) Selected RFs and their corresponding coefficients. 
MSE, mean squared error; LASSO, least absolute shrinkage and selection operator; RFs, radiomics features.
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who were treated with EVT alone or intravenous thrombolysis 
combined with EVT and reported that postoperative HT in patients 
with AIS was associated with a higher glucose level on admission, a 
longer time from stroke onset to revascularization, the presence of 
HMCAS, and a lower collateral score. These predictors have not been 
harmonized and are controversial in clinical studies. Our results 
revealed that only the imaging feature ASPECTS was an independent 
predictive marker of HT after EVT, with lower ASPECTS indicating a 
greater early ischemic extent and a greater risk of HT, similar to the 
results of previous studies. However, no other variables were associated 
with HT in this study. The discrepancy may be related to the use of 
different patient selection criteria and the relatively small sample size.

In recent years, interest in thrombus-based radiomics has 
increased. Qiu et al. (19) evaluated the value of thrombus radiomics 
on NCCT and CTA for predicting suitability for intravenous (IV) 
alteplase recanalization in AIS patients and reported that thrombus 
heterogeneity was greater in patients who underwent IV alteplase 
recanalization. Hofmeister et  al. (20) showed that first-attempt 
recanalization with thromboaspiration was associated with a more 
homogeneous thrombus texture. These two studies reflect the value of 
thrombus radiomics for recanalization after reperfusion; they focused 

on analyzing all thrombi, whereas our study was dedicated to HMCAS 
because it was the most easily identified and outlined on 
NCCT. Recently, Li et  al. (21) extracted RFs of the HMCAS to 
construct a model, and the results suggested that patients with 
heterogeneous thrombi had a high likelihood of a poor prognosis. To 
date, the application of radiomics-based HMCAS for predicting HT 
after EVT in AIS patients has not been reported. In our work, many 
RFs were extracted from the HMCAS, and 12 optimal features were 
identified through screening. The two most relevant features were all 
from the GLSZM after the wavelet transform (GrayLevel 
NonUniformity_glszm_wavelet-LLL, LowGrayLevelZoneEmphasis_
glszm_wavelet-LHH). LowGrayLevelZoneEmphasis_glszm_wavelet- 
LHH measures the proportion of low gray level regions among all 
regions. This feature is negatively correlated with HT, i.e., the larger 
the value of this feature is, the more low-gray-level regions there are, 
and the less likely the HT is. GrayLevelNonUniformity_glszm_
wavelet-LLL measures the heterogeneity of the gray levels in the 
image. This feature is positively correlated with HT, which means that 
thrombi prone to HT after EVT may be  more heterogeneous. 
We speculate that heterogeneous thrombi may be more difficult to 
remove, leading to more frequent thrombus-removal procedures. 

FIGURE 4

Receiver operating characteristic (ROC) curves of radiomics model (A), radiological model (B), and combined model (C) in the training cohort and test 
cohort.
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Multiple thrombus-removal procedures can cause minor damage to 
the vascular endothelium and prolong recanalization time, thereby 
increasing the risk of postoperative HT.

According to the literature, although some studies have explored 
CT-related radiomics for predicting HT in AIS patients, most of these 
studies focused on AIS patients treated with thrombolytic therapy or 
various therapies (15, 35, 36), and only a few studies have investigated 
the occurrence of HT after EVT. Moreover, the risk of HT is higher in 
AIS patients undergoing EVT. Recently, Wen et al. (17) developed a 
CT radiomics model based on selected RFs in the MCA region to 
predict HT after EVT, with an AUC of 0.797 in the validation cohort. 
However, our study demonstrated that the classification accuracy of 
the radiomics model based on the HMCAS alone was good enough 
(AUC = 0.851) to reliably predict whether patients were in the HT or 
non-HT group after EVT. Furthermore, the combined model with the 
addition of imaging features had improved predictive discrimination 
performance and greater net clinical benefit, although its AUC values 

were not significantly different from those of the radiomic model. It is 
reasonable to believe that this may be because RFs are more important 
than radiological factors and that HMCAS-based RFs have potential 
for predicting HT. Finally, the model demonstrated good robustness 
in its predictive performance, including for the analysis of whether or 
not to combine thrombolytic therapy, as well as for different stroke 
severity subgroups.

There are several limitations to this study. First, it was a 
retrospective study, which may be  subject to data selection bias. 
Despite including data from three centers, the small overall sample 
size and the lack of independent external validation may limit the 
generalizability of the model. Second, all the ROIs outlined in our 
study were manually segmented by radiologists, and such an approach 
is heavily dependent on the radiologist and is time-consuming. Fully 
automated deep learning-based thrombus segmentation may 
accelerate clinical decision-making in AIS patients. Third, this study 
did not categorize HT in detail because of the small sample size. Thus, 

FIGURE 5

(A) Nomogram developed for predicting HT probability based on the combined model, combining two variables: the ASPECTS and Rad-score. 
(B) Decision curve analysis of the three models in the test cohort. y-axis represents the net benefit; x-axis represents the threshold probability. The red, 
yellow, and blue lines represent the net benefit of the combined model, the radiomics model, and the radiological model, respectively. (C) Calibration 
curve of the nomogram in the training cohort. (D) Calibration curve of the nomogram in the test cohort. The dashed line is the reference line for the 
column plots.
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larger studies are needed. However, the occurrence of cerebral 
hemorrhage of any type during the postoperative period has an 
important influence on the clinical outcome. Fourth, because of some 
incomplete data, we  were unable to include some important 
HT-related predictors, such as the timing of stroke intervention from 
symptom onset. Fifth, the added value of HMCAS-based radiomics in 
terms of functional outcome was not analyzed. In the future, we will 
further expand the sample, collaborate with multiple disciplines, and 
conduct prospective studies to explore and analyze the clinical value 
of thrombus radiomics in patients with AIS.

In conclusion, our findings demonstrate the potential of 
radiomics-based HMCAS on NCCT performed at the time of 
admission. A combined model that incorporates imaging features 
could be predictive of post-EVT HT in patients with AIS and facilitate 
the tailoring of patient-specific interventions by clinicians to optimize 
stroke management.
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FIGURE 6

Predictive ability of the combined model in different subgroups. (A) Shows the different treatment methods. (B) Shows the different stroke severity.
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