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Alzheimer’s disease (AD) is a neurodegenerative ailment that is becoming

increasingly common, making it a major worldwide health concern. E�ective

care depends on an early and correct diagnosis, but traditional diagnostic

techniques are frequently constrained by subjectivity and expensive costs. This

study proposes a novel Vision Transformer-equipped Convolutional Neural

Networks (VECNN) that uses three-dimensional magnetic resonance imaging

to improve diagnosis accuracy. Utilizing the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) dataset, which comprised 2,248 3D MRI images and diverse

patient demographics, the proposed model achieved an accuracy of 92.14%,

a precision of 86.84%, a sensitivity of 93.27%, and a specificity of 89.95%

in distinguishing between AD, healthy controls (HC), and moderate cognitive

impairment (MCI). The findings suggest that VECNN can be a valuable tool

in clinical settings, providing a non-invasive, cost-e�ective, and objective

diagnostic technique. This research opens the door for future advancements in

early diagnosis and personalized therapy for Alzheimer’s Disease.
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1 Introduction

Alzheimer’s disease is an increasingly severe neurodegenerative ailment that poses a
significant worldwide health issue. Countless individuals and their families are impacted
by the inexorable advancement of this condition, which deprives sufferers of their
cognitive faculties and self-reliance. Characterized by memory loss, cognitive decline, and
structural brain changes, AD poses a significant burden on healthcare systems worldwide.
Alzheimer’s disease, marked by amnesia, cognitive deterioration, and alterations in brain
structure, imposes a substantial strain on global healthcare systems. A recent report
estimates that there were 57.4 million dementia patients worldwide in 2019 and that figure
is predicted to rise to∼152.8 million by 2050 (1).

Frontiers inNeurology 01 frontiersin.org

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2024.1490829
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2024.1490829&domain=pdf&date_stamp=2024-12-16
mailto:710020220279@xzhmu.edu.cn
mailto:jhchuah@um.edu.my
https://doi.org/10.3389/fneur.2024.1490829
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fneur.2024.1490829/full
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Zhao et al. 10.3389/fneur.2024.1490829

Timely detection of AD is crucial. It enables prompt
medical and therapeutic interventions and empowers patients and
caregivers to strategize for the future. Studies have demonstrated
that early therapies can decelerate the advancement of the
disease, thereby enhancing the patients’ quality of life (2). So, the
pursuit of precise and timely diagnostic techniques remain a vital
concern in the field of Alzheimer’s research. Nevertheless, the task
of diagnosing AD remains a daunting endeavor. Conventional
diagnostic methods frequently depend on clinical evaluations,
cognitive exams, and neuroimaging techniques. Although these
procedures are helpful, they are prone to human error, may
lack sensitivity in the initial phases of the disease and can be
intrusive or expensive. Hence, there exists a demand for diagnostic
techniques that are more precise, unbiased, and non-intrusive.
Three-dimensional magnetic resonance imaging (3D MRI) scans
are utilized in this context. MRI technology provides a non-invasive
method to observe the structural changes in the brain, making
it a suitable option for diagnosing AD (3). 3D MRI scans offer
comprehensive and multi-dimensional insights into the structure
of the brain, allowing for the identification of minor anomalies
related to the disease.

Furthermore, recent breakthroughs in deep learning have
completely transformed the field of medical image analysis
(4). Deep learning algorithms, especially Convolutional Neural
Networks (CNN), like VGG (5), ResNet (6), GoogLeNet (7),
DenseNet (8), etc., and Vision Transformers (ViT) (9), which are
inspired by neural networks, are highly proficient in extracting
detailed patterns and features from complex medical images.
Their capacity to autonomously acquire knowledge and adjust to
data has unveiled novel horizons in the automation of disease
diagnosis. Although deep learning and medical imaging have made
tremendous strides, the diagnosis of AD using existing methods
frequently struggles to appropriately identify complex spatial
patterns in volumetricMRI data. The inadequacy of current models
to efficiently include global context information may restrict their
diagnostic accuracy, particularly during the early stages of the
ailments. Due to this research gap, a novel model that improves
feature extraction and discriminating abilities by utilizing the
benefits of both pure 3D CNNs and mechanisms inspired by vision
transformers are required.

In order to address this significant deficiency, this study aims to
achieve two main research goals: firstly, to create a novel 3D CNN
model with adaptations inspired by the vision Transformer capable
of accurately distinguishing AD from other neurodegenerative
disorders using 3D MRI scans, and secondly, to assess the
effectiveness of the model on AD diagnosis. The foundation of
this research is based on the notion that proposed pure 3D CNN
model, enriched with vision transformer-inspired adaptations,
will demonstrate improved diagnostic efficacy in comparison to
traditional approaches. The suggested model has the potential
to enable more precise differentiation among various stages of
AD. The significance of this study includes that the accuracy of
identifying AD, especially during its early phases, could be greatly
improved by the suggestedmodel. Another significant contribution
of this research is the creative incorporation of vision transformer-
inspired mechanisms into a pure 3D CNN architecture. This paper
presents several innovative contributions to the field of Alzheimer’s
Disease diagnosis:

• Introduction of VECNN, integrating Vision Transformers and
Convolutional Neural Networks.

• Proposal of a modified residual block distribution in ResNet-
50, adopting a Swin Transformer-inspired ratio of 1 : 1 : 3 : 1.

• Implementation of non-overlapping convolutions with a 4 ×
4 × 4 size and stride of 4 to reduce redundancy and
computational complexity.

• Adoption of spatial separable convolution to enhance feature
representation by effectively capturing spatial and channel
relationships, thereby reducing computational demands.

2 Related work

Accurate and prompt identification of AD is crucial for the
management and care of patients. Conventional methods for
identifying AD, on the other hand, rely primarily on subjective and
time-consuming clinical observation and behavioral evaluations.
The diagnostic methods for AD have predominantly focused on
clinical evaluations, cognitive exams, and two-dimensional MRI
scans. The advancement of machine learning has led to the
development of more effective and convenient computer-aided
diagnostics that decrease costs while increasing accuracy.

Traditional machine learning methods, such as Support
Vector Machines (SVM), Random Forest (RF), etc.. Develop a
classifier that can accurately distinguish individuals with AD from
individuals in other groups using features like cortical thickness
and gray matter volumes. Given SVMs’ capacity for effective
performance and their transparent operational principles, they
are widely utilized in various industrial and scientific fields. In a
study by 10. Suk et al. (10), multi-kernel SVMs were employed
for classifying integrated data derived from multi-modal inputs. Bi
et al. (11) addressed the challenge of limited samples by introducing
a novel clustering evolutionary random forest architecture. This
approach was designed to handle multimodal data from ADNI,
facilitating the detection of brain abnormalities and pathogenic
genes. Suk and Shen (12), Suk et al. (10), and Suk et la. (13)
introduced models that employ stacked Autoencoders (AEs) for
feature extraction. The features extracted are then processed
by a SVM for classification. Recent studies have shown that
combining textural features reflecting local functional activity, such
as the amplitude of low-frequency fluctuation, with structural MRI
can improve diagnostic performance for Alzheimer’s disease and
amnestic mild cognitive impairment. These findings highlight the
potential of multimodal radiomics techniques in enhancing early
diagnosis accuracy (14).

The development of these trends has been further accelerated
by the wide adoption of deep learning. Recent research has
showcased the capacity of neural networks to retrieve complex
patterns from medical images. The utilization of 3D MRI scans has
become prominent in diagnosing AD due to its ability to provide
more comprehensive structural information. Multiple research
have investigated the possibility of using MRI to diagnose AD.
Mainly, the methods consist of 2D sliced-based and 3D voxel-
based approaches. The sliced-based method simplifies networks
by avoiding the need to handle millions of parameters during
training. Nevertheless, sliced-based method sacrifices the spatial
relationships between neighboring picture slices. Voxel-based
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methods have the advantage of capturing the 3D information
in brain scans, but they come with the drawback of intensive
computing requirements and a large number of features. Jain et al.
(15) used transfer learning with VGG16, pre-trained on ImageNet
(16), for AD classification from 3D MRI slices converted to 2D.
CNN was evaluated by Basaia et al. (17) on ADNI and a private
dataset called Milan. The findings shown that CNN achieved a
classification accuracy of 99% for distinguishing between AD and
HC in the ADNI dataset, and 98% in the ADNI + Milan dataset.,
and 75% on both datasets for cMCI and sMCI detection. Abrol
et al. (18) employed a 3D ResNet for AD diagnosis, achieving
a prediction accuracy of 83% through domain transfer learning.
Transfer learning was employed to adapt the trained model from
MCI detection, which utilized 3D gray matter images as input, to
the task of HC and AD classification. To assist with reducing the
dimensionality of feature vectors, Alinsaif et al. (19) customized
a CNN using the 3D shearlet transform and obtained a highest
classification accuracy of 92.78%. Kruthika et al. (20) employed a
two-stage classifier, comprising a Gaussian Naive Bayes Classifier,
an SVM, and a KNN classifier, resulting in an accuracy rate of
90.47% when classifying HC/MCI/AD.

3D CNNs have demonstrated promise by learning spatial
dependencies in neuroimaging tasks. Liu et al. (21) constructed
a 3D DenseNet model to acquire information from the 3D
patches that were extracted according to the classification
task’s hippocampus segmentation outcomes. Yeoh et al. (22)
implemented 3DCNNs for the purpose of identifying knee
osteoarthritis and employed transfer learning to enhance the
model’s performance. Shoaib et al. (23) utilized a convolutional
neural network to automate the process of segmenting the
left ventricle in order to analyze heart activity and diagnose
cardiovascular illness. Korolev et al. (24) demonstrated that the
residual and simple 3D CNN performed similarly in classifying AD
against MCI and HC. Wang et al. (25) introduced a model where
each classifier utilizes DenseNet as backbone, incorporating dense
layers and activation functions. The 3D DenseNet is configured
and trained separately, then a voting method is used to merge
probabilistic results from these different classifiers. Cui et al. (26)
proposed a CNN and RNN integrated classification framework
that obtained 91.33% classification accuracy for AD and HC. For
the purpose of diagnosing Alzheimer’s illness, Lim et al. (27)
trained a CNN from scratch, and its performance was compared to
that of pretrained VGG and ResNet-50. Recent studies showcased
the potential of ViT models in image classification tasks, raising
questions about their applicability in medical image analysis. The
self-attention (28) mechanisms of ViT facilitate the learning of
global context, which could potentially be advantageous when
conducting complex tasks like diagnosing AD. The integration
of mechanisms inspired by vision transformers into CNN for
neuroimaging may be able to maximize the benefits of both
models by utilizing CNNs to capture local spatial patterns and
vision transformer mechanisms to improve global contextual
understanding. Zhao et al. (29) performed a series of experiments
using 2D CNN and ViT, demonstrating the effectiveness of ViT on
the task of AD diagnosis.

Despite substantial advancements, there continue to be
obstacles in achieving a high level of diagnostic accuracy,

specifically for the initial phases of AD. The requirement for
interpretability and robustness in deep learning models for medical
diagnosis continues to be a primary focus. Besides, generalization
of the models is hindered by differences in picture resolution, data
preprocessing, and acquisition methods of datasets for training and
evaluating AD diagnosis models. Although there has been progress,
there are still some unresolved questions in the current body of
literature. It is worth mentioning that there is a lack of thorough
investigation on the use of 3D VECNN models for diagnosing AD
using MRI scans. The complete clarification of the possible benefits
and constraints of this method is still pending, serving as the main
motivation for this investigation. Research in this domain extends
beyond prior studies that mainly concentrated on 2DMRI scans by
incorporating MRI images and utilizing 3D VECNN models. The
purpose of this methodological divergence is to utilize the detailed
spatial information provided by 3D data and apply the capabilities
of the ViT architecture for the examination of medical pictures. To
summarize, the existing study highlights the increasing importance
of using MRI-based diagnostics and deep learning techniques in
the field of AD research. This research contributes to the current
literature by investigating the capabilities of VECNN models when
used with 3D MRI data, filling a significant gap in past studies.

3 Materials and methods

3.1 Dataset

The datasets utilized in this study is the Alzheimer’s Disease
Neuroimaging Initiative (ADNI). The ADNI dataset was accessed
through the ADNI database (adni.loni.usc.edu). The 3D MRI
scans were obtained utilizing scanners with varying magnetic field
strengths, including 1.5T and 3T. The dataset included 188 AD, 401
MCI, and 229 NC subjects. This study utilized a total of 2,248 MRI
scans obtained from 818 participants in the database. Specifically,
only the standard 1.5T T1-weighted sMRI data were included in
the analysis. The ADNI dataset encompasses a diverse range of
participants, with age spanning from 55 to 90 years, representing
both genders. The training, validation, and test sets are split
according to a ratio of 8:1:1. In details, in the three way classification
task, among the 2,284 samples, 1,827, 228, and 229 samples are
divided into the training set, validation, and test set. A subject-level
split strategy was adopted during the cross-validation process.

Prior tomodel training, all MRI scans underwent preprocessing
procedures. As shown in Figure 1, the flowchart outlines the
sequential steps involved in image preprocessing, Orientation,
Spatial Registration, Skull Stripping, Bias Field Correction,
Enhancement, and Normalization to a common anatomical
template. Registration is a method to spatially align image scans
to ensure the correspondence of anatomy across modalities,
individuals, and studies. It registers multiple images of the same
subject or distinct subjects into a common coordinate system.
Skull-stripping or brain extraction means removing the non-brain
tissues like skull, fat, eyes, etc., and remaining gray matter (GM),
white matter (WM), Cerebrospinal fluid (CSF), etc. in the brain
scan. Accurate removal of the non-brain tissues is crucial for
obtaining valid results, as the presence of these tissues could
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FIGURE 1

Image pre-processing procedure overview.

introduce noise. In medical imaging, specifically MRI, the non-
uniform intensity distribution in the image is referred to as the bias
field or intensity inhomogeneity. The bias field can considerably
affect the accuracy of the subsequent preprocessing process.

First, the orientation tool in the FMRIB Software Library (FSL)
(30) is used to match the image’s orientation. Next, FSL’s FLIRT (the
FMRIB’s Linear Image Registration Tool) is utilized for the purpose
of image registration, which is essential for spatial correspondence.
By employing FSL’s Brain Extraction Tool (BET) (31), skull
stripping ensures precise identification of brain tissue. The N4
method from ANTs (32) is used to provide bias field correction to
address intensity gradients. Lastly, to increase visual quality and
get the pictures ready for further analysis, image enhancement
techniques such as median filtering, rescaling, and histogram
equalization are applied. Quality control checks were performed to
ensure data integrity. Data augmentation techniques were applied
to the training subsets of dataset to enhance the diversity of
the training samples.In this research, the data augmentation was
implemented dynamically. As a result of the dynamic generation
of each augmented image throughout the training process, the
total amount of training data was significantly increased. In details,
spatial augmentation techniques such as random flip, random
affine, and random elastic deformation were employed with the
possibility of one third. Intensity augmentation methods including
random blur, randommotion, random ghosting, and random noise
were implemented with the possibility of one forth. Figure 2 depicts
the raw image and the images generated after each preprocessing
step. Addressing the uneven distribution of diagnostic categories,
the data imbalance was mitigated by assigning weights to each class
when calculating the loss to ensure balanced class representation.

In summary, this study utilized the ADNI dataset, encompassing a
wide range of subjects and clinical profiles. The integration of these
datasets allowed us to conduct a comprehensive investigation into
the diagnostic effectiveness of the proposedmodel in distinguishing
different stages of AD.

3.2 Network architecture

This paper proposes a VECNN model architecture designed
for automated AD diagnosis using 3D MRI scans. The primary
objective of the proposed model is to leverage the spatial
richness of 3D MRI data while using the power of the Vision
Transformer architecture for extracting and classifying features
with long-range dependencies. To integrate conventional CNN
with ViT, two approaches can be employed: using a ViT as
the backbone with integrated CNN characteristics or using
a CNN as the backbone with incorporated ViT components.
The latter approach is adopted in this study due to the high
computational complexity associated with ViTs, particularly in
3D applications. Self-attention assesses relationships among all
pairs of spatial positions within an image, allowing the model to
concentrate on globally relevant regions. This suffers significant
processing costs, particularly for high-dimensional datasets such
as 3D MRI. Spatial separable convolution divides a full 3D
convolution kernel into smaller, independent operations, such as
horizontal and vertical convolutions. This decreases computing
complexity while preserving the capacity to identify patterns
in various spatial orientations. While less expressive than self-
attention, spatial separable convolutions canmimic its functionality
by facilitating information transfer over long spatial areas with
reduced parameters and lower computation. When combined
with suitable receptive field tuning and supplementary layers,
they can attain a level of global feature integration similar to
that of self-attention. This method enables efficient capture of
local spatial patterns through CNNs while enhancing global
contextual understanding with ViT-inspired mechanisms. The
network is constructed using the 3D ResNet-50 architecture
as its backbone, drawing inspiration from the enhancements
introduced by ConvNeXt (33) to the ResNet framework. The
ResNet-50 is regarded as the initial benchmark for commencing
the training process in accordance with the training procedure
of the vision transformer. A CNN typically comprises many
convolutional layers, with each layer being subsequently followed
by an activation function and batch normalization. The purpose
of inserting max-pooling layers between convolutional layers is to
extract hierarchical information and reduce spatial dimensionality.
A global average pooling layer is frequently included in the
CNN’s last layer. The first part of a typical ViT network is patch
embedding where the input image is patchified and embedded.
Patchifying means to divide the input image into fixed-size patches.
The patchified images are then linearly embedded into a flat
vector format.

The initial design of the distribution of building blocks
organized across blocks in ResNet was primarily based on empirical
evidence [3, 4, 6, 3]. The conv4 layer as a substantial component
was specifically designed to generate an feature map of 14 × 14
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FIGURE 2

Image pre-processing sample. The top image is the original MRI scan. The rest are samples of image after each preprocessing step, including,

orientation, registration, skull stripping, bias field correction, and enhancement.
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that is intended to be consistent with further tasks such as object
detection. Swin-T adhered to the same approach, however with
a slightly modified ratio of the number of stacked blocks, which
was 1 : 1 : 3 : 1. The ratio for larger Swin transformers, including
Swin-S, Swin-B, and Swin-L is [1, 1, 9, 1]. Following this design, the
ratio of the number of stacked blocks in ResNet-50 was modified.
In summary, the number of Residual Block in each level of the
proposed model has been rearranged to correspond with the Swin
Transformer’s 1 : 1 : 3 : 1 ratio from 3 : 4 : 6 : 3. According to the
distribution, the number of blocks that were present in each of the
four layers was as follows: [3, 3, 9, 3]. This change slightly improved
the accuracy.

The proposed model accepted 3D MRI scans as input data,
represented as 3D tensors with dimensions [C,H,W,D], where
C denotes the number of channels, H is the height, W is
the width, and D is the depth. After preprocessing, the input
size of the proposed model is (1, 112, 112, 112). Considering the
considerable redundancy that comes with natural images, CNN
and ViT employed comparable techniques to reduce the input to
a proper size at the network’s beginning. In earlier CNN designs,
the initial layers often utilized larger kernels to capture broader
spatial features. Vision Transformers, on the other hand, divided
the input into a few patches. Given that ResNet was trained on
datasets typically featuring larger images than 224 × 224, starting
with a 7 × 7 convolutional layer might be too aggressive as a stem
convolution for this task, especially considering the input size is
112× 112× 112.

Both CNN and Vision Transformers employ stem convolution
to efficiently reduce the size of the input image to an appropriate
feature map. The stem convolution in the vanilla ResNet
architecture consists of a 7×7 convolutional operation with a stride
of 2, which is then followed by a max pooling operation. It leads to
a four times downsampling of the input. In the vision transformer,
the stem convolution is intensified to a higher degree. The stem
convolution in vision transformer is equivalent to employing a
non-crossed convolution with dimensions of 14 × 14 or 16 × 16,
or a fusion of a large convolution kernel and a large step size.
The Swin Transformer also employs a comparable architecture but
it uses a strategy similar to 4 × 4 disjoint convolutions for the
initial downsampling. The proposed network architecture utilized
non-overlapping convolutions with a size of 4 × 4 × 4 and a
stride of 4. This change improved the accuracy by 0.29%. This
demonstrates that the stem convolution of ResNet can be replaced
with simple non-overlapping convolution, resulting in similar or
even better performance.

Dilated convolution is another technique that could be used
to obtain a wider receptive field. By using this technique, the
receptive field is increased without using more parameters. In
a standard convolution, each element of the kernel is applied
to the input image or feature map without any gaps between
them. In the case of dilated convolution, the convolutional kernel
is expanded by introducing gaps between its components. The
spacing between these elements is determined by the dilation
rate. In this investigation, convolutions with a dilation factor
of 2 were assessed. However, no discernible enhancement in
performance was observed under these experimental conditions.
Implementing the dilated convolution reduced the accuracy by

1.16%. Although dilated convolutions are effective at capturing
long-range dependencies, the sparse sampling caused by dilatation
may make it difficult for them to capture fine-grained local
information. This limitation can be crucial in this task where fine
details are essential.

The utilization of a larger convolutional kernel, such as a 7× 7
kernel, conferred the advantage of an expanded receptive field.
This extended receptive field contributed to enhanced modeling
of long-range dependencies within the data. However, large
kernels required more computations and consume more memory,
leading to increased computational complexity. A golden standard
proposed in VGG (5) is to use a stack of 3 × 3 × 3 kernel to
replace 7 × 7 × 7 kernel. By the way, non-linearities between
convolutional operations can be introduced by stacking numerous
layers of small kernels.

This study also makes advantage of the spatial separable
convolution design (34). Spatial separable convolution which used
in Xception (34) andMobileNet (35) is the application of pointwise
convolution after depthwise convolution. The weighted sum
operation in self-attention is analogous to depthwise convolution.
Channel and spatial mixing are separated by employing a
combination of depthwise and pointwise convolutions. This
approach ensures that the spatial and channel dimensions of the
data are processed independently, without being mixed during the
convolutional operation. Specifically, the pointwise convolution
exclusively integrates information along the channel dimension,
while the depthwise convolution solely combines data across the
spatial dimensions. The spatial depthwise convolutional layer’s
placement has been shifted to precede the 1 × 1 × 1 convolutions,
reflecting the design found in models like MobileNetV2 (36),
EfficientNet (37), and EfficientNetV2 (38). In detail, the bottleneck
structure from ResNet utilized a 1 × 1 × 1, a 3 × 3 × 3 and a
1× 1× 1 convolution. The bottleneck residual block from ResNet
included a convolution that was 1 × 1 × 1, a convolution that was
3× 3× 3, and a convolution that was 1× 1× 1. Between every two
convolutional operation, BN and Rectified Linear Unit(ReLU) are
applied. The number of activation functions in the proposed model
was reduced. In the Residual Blocks, we take the original scale and
conduct a sequence of 3 × 3 × 3 convolution operations with BNs
to expand the respective field, but we do not perform the ReLU
activations that were previously performed. After the convolutions,
Layer Normalization(LN) was implemented before further 1×1×1
convolutions. A minor change in employed in this proposed model
was the activation function. ReLU is commonly employed in CNNs,
including its usage in the architecture of the vanilla transformer.
Many modern transformer architectures often employ the GELU
(Gaussian Error Linear Unit) activation function as a substitute for
the ReLU activation function. These structures comprise BERT (39)
and GPT (40, 41).

The overall network architecture is depicted in Figure 3. In each
layer, the initial Conv1 operation reduces the number of channels
by half, whereas the subsequent convolutions decrease it by a factor
of 4. The Conv4 introduces a stride, resulting in a halving of the
spatial dimensions. Batch Normalization(BN) comes after every
convolution. After the convolutions are complete, LN is applied.
The activation function used within the ResBlock is GELU instead
of ReLU to provide a smoother gradient for better model training.
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FIGURE 3

The overall network architecture of the proposed model.

Following this, the 1 × 1 × 1 convolutions are used to increase
the number of channels by a factor of 4. In summary, after each
layer, the channel count of the features doubles, and the spatial
dimensions are halved.

The proposed model is trained using Binary Cross-Entropy
Loss and Cross-Entropy Loss according to the type of task
and optimized with the AdamW optimizer. The study used
an exponential learning rate scheduler with a multiplicative
component for the decay of the learning rate, featuring an initial
learning rate set at 5e − 5. In this study, 10-fold cross-validation
was employed to evaluate the performance of the proposed model.
Key hyperparameters include a batch size of 16, and 150 epochs
for training. The model is implemented using PyTorch (v3.9.7) and
trained on a Ubuntu 20.04.3 LTS system equipped with an Intel
Core i5 16-core 3.69 GHz CPU and a 12 GB NVIDIA GeForce RTX
3080Ti GPU. Every stage of the workflow for processing MRIs uses
the FMRIB Software Library v6.0.

4 Result

To evaluate themodel’s diagnostic performance, the subsequent
quantitative metrics are introduced, as defined by the following
Equations 1–4:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Sensitivity =
TP

TP + FN
(3)

Specificity =
TN

TN + FP
(4)

Here, TP, TN, FP, and FN represent true positive, true negative,
false positive, and false negative, respectively.

The proposed VECNN model achieved an average accuracy
of 92.14% for HC, MCI, and AD classification on the ADNI
datasets, demonstrating its proficiency in AD diagnosis. In this
3-way classification task, the average sensitivity, specificity and
precision values were 93.27, 89.95, and 86.84% respectively. The
accuracy of the model for the three classes were as follows: 91.27%
for HC, 89.52% forMCI, and 95.63% for AD. These results reflected
the model’s ability to differentiate between the different stages of
Alzheimer’s disease. The model exhibited an accuracy of 91.27%
for HC. The sensitivity of 82.89% demonstrated a robust capacity
to accurately identify HC samples, but it was slightly less than
the specificity of 95.42%. This indicated that although the model
effectively identified healthy controls, it could have resulted in some
false negatives. A precision of 90% indicated that the majority
of predicted HC samples were accurately identified as HC, hence
validating the model’s reliability for this category. The sensitivity
for MCI was notably high at 94.29%, indicating the model’s efficacy
in identifying MCI cases. The specificity was 85.48%, suggesting
that the model was more susceptible to interpreting non-MCI
participants as MCI relative to other categories. The precision rate
was 84.62%, indicating that the model’s predictions of MCI were
generally correct, though there was potential for enhancement in
minimizing false positives. For AD, the model attained a specificity
of 98.90%, indicating its efficacy in identifying non-Alzheimer’s
disease participants. The sensitivity of 83.33% was inferior to
the specificity, suggesting that although the model effectively
identified AD patients, it still produced some false negatives. The
high precision of 95.24% indicated that most projected AD cases
were accurate.

In order to evaluate the training progress of our proposed
model, the loss and accuracy of the model on both the training
and validation datasets during multiple epochs in both 3-way
and binary classification were tracked. Figures 4A, B illustrate the
training progress and the performance of the model over epochs
in the 3-way classification task. The training accuracy exhibited a
consistent upward trend, suggesting that the model was efficiently
learning from the training data. The validation accuracy shown
improved gradually over time, eventually stabilizing at a threshold.
This indicates that the model had achieved the ability to generalize
effectively to unfamiliar data. Similarly, Figures 4C, D depict the
advancement of training and the model’s performance across
epochs in the context of a binary classification task. The trends in
these plots also suggest effective learning and strong ability to apply
that knowledge to new situations.

A further evaluation is performed to validate the effectiveness
of the proposed VECNN model in diagnosing AD by conducting
a comparative analysis with several 3D models established
in the literature. Multiple classification tasks are compared,
such as HC/MCI/AD, HC/AD, HC/MCI, and MCI/AD. Table 1
presents the performance metrics, specifically accuracy, precision,
sensitivity, and specificity, for each model and task.

As shown in Table 1, in comparison to previous studies, the
VECNN exhibited superior diagnostic accuracy. When compared
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FIGURE 4

(A) Training and validation loss over epochs in 3-way classification. (B) Training and validation accuracy over epochs in 3-way classification. (C)

Training and validation loss over epochs in binary classification. (D) Training and validation accuracy over epochs in binary classification.

to existingmodels in the literature, the proposedmodel consistently
outperforms them. As an instance, the 3D CNN developed by
Basaia et al. (17) attained an accuracy of 98.20% for the HC/AD task
on the ADNI and their own private dataset. The study conducted
by Abrol et al. (18) demonstrates that their model achieves an
accuracy of 83.01%, a sensitivity of 76.00%, and a specificity of
87.00% for the HC/AD task. However, these results indicate that
their model performs less effectively compared to the proposed
model. The study conducted by Alinsaif et al. (19) demonstrated a
high accuracy rate of 92.78% for the task of distinguishing between
HC and those with AD. In comparison, Liu et al. (21) reported that
the accuracy for the HC/AD task was 88.90%, with a sensitivity
of 86.60% and a specificity of 90.80%. For the HC/MCI job, the
accuracy was 76.20%, with a sensitivity of 79.50% and a specificity
of 69.80%. Kruthika et al. (20) present a model that implemented a
2-stage classification approach. In the first stage, a Gaussian Naive
Bayes Classifier was used to determine whether an object belongs
to the AD, MCI, or NC class, or if it is uncertain and should
be rejected. In the second stage, SVM and KNN classifiers were

applied to classify the objects based on the predictions from the
first stage. Thier model achieves an accuracy of 90.47%, a precision
of 80.26%, a sensitivity of 88.62%, and a specificity of 90.15% for
the HC/MCI/AD task. In contrast, Cui and Liu (26) combined
CNN and RNN for longitudinal analysis of structural MR images.
The CNN captured spatial features, while the RNN extracted
longitudinal features. Their result showed a higher accuracy of
91.33% for distinguishing between HC and individuals with AD.
These models do not have the complete accuracy, sensitivity, and
specificity metrics, which makes it difficult to directly compare
them. Lastly, the model proposed by Agarwal et al. (42) utilized the
3D EfficientNet-b0 CNN to accurately categorize different stages
of Alzheimer’s disease. The EfficientNet-b0 model achieved an
accuracy of 93.10% and a precision of 86.20% in the MCI/AD task.
For the HC/MCI/AD task, the accuracy was 87.38%, the precision
was 86.38%, and the sensitivity was 87.51%.

The findings suggest that the VECNN model exhibits potential
as a precise and interpretable tool for diagnosing AD through
the analysis of 3D MRI scans. This improvement underscores
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TABLE 1 VECNN performance metrics comparative analysis (in %).

Model Task ACC PRE SEN SPE

Kruthika et al. (20) HC/MCI/AD 90.47 80.26 88.62 90.15

Cui and Liu (26) HC/AD 91.33 – – –

Basaiaet al. (17) HC/AD 98.20 – 98.10 98.30

Abrol et al. (18) HC/AD 83.01 – 76.00 87.00

Liu et al. (21) HC/AD 88.90 – 86.60 90.80

HC/MCI 76.20 - 79.50 69.80

Alinsaif et al. (19) HC/AD 94.44 – 95.65 92.31

Agarwal et al. (42) MCI/AD 93.10 86.20 – –

HC/MCI/AD 87.38 86.38 87.51 –

Proposed HC/MCI/AD 92.14 86.84 93.27 89.95

HC/AD 94.07 93.06 95.65 97.10

HC/MCI 91.21 85.71 94.12 88.52

MCI/AD 91.19 84.62 93.33 80.49

Symbol “–” denotes no data.

the potential of the VECNN architecture in the context of 3D
MRI-based AD diagnosis. The model’s proficiency in capturing
spatial relationships within brain regions affected by the disease
contributes to its enhanced diagnostic capability. Additionally, the
observed performance improvement relative to 2D-based models
implies potential for broader clinical relevance. To sum up, this
study provides strong evidence for the efficacy of the VECNN
model in automated AD detection utilizing 3D MRI data This
model’s outstanding quantitative performancemakes it a viable tool
for accurate and timely diagnosis, opening new avenues for AD
research and clinical applications.

5 Discussion

The application of non-overlapping stem convolution, change
for computation distribution, and spatial separable convolution are
the primary characteristics of the proposedmodel.When compared
to text, image data, particularly 3D medical imaging, contains a
comparatively substantial amount of redundant information. In
the process of feature extraction, non-overlapping convolution
is helpful in reducing redundancy. Because the convolution
operations do not overlap, each one processes a distinct and
unique chunk of the input data. This can result in feature maps
that are more efficient and contain fewer instances of redundant
information. Besides, using non-overlapping convolutions can
decrease the amount of computational work required. Due to
the absence of overlap between the patches, the total number
of convolution operations required is reduced compared to
convolutions that involve overlapping. This can lead to accelerated
calculations and reduced memory consumption. Using non-
overlapping convolutions can simplify the structure of the network.
By utilizing separate patches, the need to handle overlapping
regions and their corresponding computations is eliminated,
resulting in a simpler and perhaps more interpretable model.

Adopting the Swin Transformer’s approach to block distribution
aligns the model with a proven design that effectively handles
complex tasks. The Swin Transformer’s block distribution has
been shown to work well for various vision tasks, suggesting that
similar benefits can be obtained by applying this strategy to the
VECNN model. Extensive research has been conducted on the
distribution of computing, as evidenced by studies (43, 44). The
rearrangement of residual blocks to match the Swin Transformer’s
1 : 1 : 3 : 1 ratio ensures that more computational power is devoted
to the middle layers, which are crucial for capturing detailed and
abstract features. The increased number of blocks in the middle
layers allows the model to learn more hierarchical and abstract
features. This is particularly important for tasks like AD diagnosis,
where subtle differences in MRI scans need to be captured and
understood at multiple levels of abstraction. At last, The concept
of depthwise convolution in spatial separable convolution is
similar to the weighted sum process in self-attention mechanisms
employed in transformers. The shared characteristics between
spatial separable convolution and transformer-based architectures
allows for an effective combination of the two, resulting in
an enhanced ability to capture both spatial and channel-wise
dependencies. Spatial separable convolution effectively decreases
the number of parameters and computational cost in comparison to
traditional convolution by segregating spatial and channel mixing.
This enhances the efficiency and accelerates the training and
inference process of the model. The findings shed light on the
possibility of deep learning models in addressing the pressing
challenge of early and accurate diagnosis.

However, It is crucial to point out that the proposed VECNN
model outperformed traditional CNN-based approaches, marking
a significant advancement in the field. This performance gain
may be attributed to the VECNN’s ability to capture both spatial
and contextual information within 3D MRI scans. The practical
implications of the findings are substantial. Accurate and early
diagnosis of AD is crucial for timely intervention and patient care.
The VECNN offers a promising tool for clinicians, potentially
reducing diagnostic errors and enabling early intervention
strategies. Furthermore, it can aid in patient stratification for
clinical trials and treatment planning. It is critical to recognize the
study’s limitations. First, even though the VECNNmodel performs
well in terms of diagnosis, more extensive and varied external
validation is necessary. Secondly, the interpretability insights might
not fully represent the variety of model behavior because they
are based on a limited quantity of cases. In order to improve
diagnostic accuracy even more, future research directions include
investigating new data modalities like voice, positron emission
tomography (PET), and functional magnetic resonance imaging
(fMRI). Furthermore, studies examining the robustness of the
model across various scanner types and patient populations are
crucial for practical translation. In conclusion, the study highlights
the promising role of the VECNN in automating AD diagnosis
from 3D MRI scans. While further research and validation are
required, the findings pave the way for advancements in early
diagnosis and personalized treatment strategies for this debilitating
neurodegenerative disease. The authors anticipate that ongoing
research in this field will not only refine diagnostic tools but also
bring us closer to the ultimate goal of developing effective therapies
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for Alzheimer’s disease, significantly improving the quality of life
for affected individuals and their families.

6 Conclusions

This paper aimed to evaluate the effectiveness of the VECNN
in this crucial healthcare domain. This study contributes to the
increasing body of data that demonstrates the effectiveness of
deep learning models in correctly identifying cases of AD in
its early stages, which is crucial for intervention and therapy.
The findings of this research have both practical and theoretical
implications. In practice, the VECNN can be included in clinical
workflows to improve early intervention facilitation, lower false
negative rates, and improve diagnostic accuracy. This research
contributes to the theoretical knowledge of CNNs and ViTs
working together to analyze complicated 3D medical imaging
data. Finally, several directions for further study are proposed. To
begin with, external validation on larger and more varied datasets
is necessary to verify the robustness of ViT-CNN. In addition,
investigating the incorporation of supplementary data modalities,
including functional magnetic resonance imaging and genetic data,
may augment the accuracy of the diagnosis. To sum up, this
research provides strong evidence that the VECNN can be used to
automatically diagnose AD using 3D MRI data. It contributes to
the development of AI-driven solutions in neurology and medical
imaging, as well as better outcomes for those with AD.
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