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Introduction: Radiological scores used to assess the extent of subarachnoid 
hemorrhage are limited by intrarater and interrater variability and do not utilize 
all available information from the imaging. Image segmentation enables precise 
identification and delineation of objects or regions of interest and offers the 
potential for automatization of score assessments using precise volumetric 
information. Our study aims to develop a deep learning model that enables 
automated multiclass segmentation of structures and pathologies relevant for 
aneurysmal subarachnoid hemorrhage outcome prediction.

Methods: A set of 73 non-contrast CT scans of patients with aneurysmal 
subarachnoid hemorrhage were included. Six target classes were manually 
segmented to create a multiclass segmentation ground truth: subarachnoid, 
intraventricular, intracerebral and subdural hemorrhage, aneurysms and 
ventricles. We used the 2d and 3d configurations of the nnU-Net deep learning 
biomedical image segmentation framework. Additionally, we  performed an 
interrater reliability analysis in our internal test set (n = 20) and an external 
validation on a set of primary intracerebral hemorrhage patients (n = 104). 
Segmentation performance was evaluated using the Dice coefficient, volumetric 
similarity and sensitivity.

Results: The nnU-Net-based segmentation model demonstrated performance 
closely matching the interrater reliability between two senior raters for the 
subarachnoid hemorrhage, ventricles, intracerebral hemorrhage classes and 
overall hemorrhage segmentation. For the hemorrhage segmentation a median 
Dice coefficient of 0.664 was achieved by the 3d model (0.673 = 2d model). 
In the external test set a median Dice coefficient of 0.831 for the hemorrhage 
segmentation was achieved.

Conclusion: Deep learning enables automated multiclass segmentation of 
aneurysmal subarachnoid hemorrhage-related pathologies and achieves 
performance approaching that of a human rater. This enables automatized 
volumetries of pathologies identified on admission CTs in patients with 
subarachnoid hemorrhage potentially leading to imaging biomarkers for 
improved outcome prediction.
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1 Introduction

Aneurysmal subarachnoid hemorrhage (aSAH) is a severe 
subtype of stroke with an incidence of 8/100,000 person-years leading 
to a potential loss of many years of productive life (1, 2). Patient 
outcomes following aSAH show significant variability; while aSAH is 
lethal for one-third of patients, survivors may become permanently 
dependent on nursing care due to residual cognitive and functional 
impairment (3). In aSAH several clinical and imaging variables were 
shown to predict outcome. The initial imaging performed for 
diagnosing SAH is non-contrast CT imaging (NCCT) and delivers 
important information on the presence, volume, location and 
radiological appearance of the hemorrhage (4).

Different radiological scores are used to assess the extent of the 
subarachnoid hemorrhage and highlight different aspects of SAH. For 
example, SEBES (subarachnoid hemorrhage early brain edema score) 
predicts delayed cerebral ischemia (DCI) and unfavorable outcomes 
(5), the Graeb Score focuses on intraventricular bleeding (6) and the 
Hijdra Sum Score includes a grading system based on the amount of 
subarachnoid blood in different localizations of the brain (7). A 
different common scoring system is the Barrow Neurological Institute 
(BNI) scoring system which estimates the risk of vasospasm depending 
on the radiological extent of SAH in NCCT via measuring the 
thickness of the hemorrhage and distinguishing five different severity 
levels (8). Out of all radiological scores the modified Fisher Scale (9) 
is predominantly used in clinical practice due to its practicality. It 
quantifies the amount of subarachnoid blood to predict cerebral 
vasospasm, a condition leading to poor outcome and high mortality.

A main limitation of radiological scores is their subjective nature 
and considerable interrater variability, which may limit their predictive 
value and clinical utility. For instance, the Fisher Scale does not 
include an exact definition of the various scoring criteria—thick 
subarachnoid clot or presence of intracerebral and intraventricular 
hemorrhage—determining the different severity levels (10, 11). The 
vague definition of imaging findings further reduces the interrater 
agreement which can be  measured by weighted kappa score kw 
reported for various scores (kw for the Fisher Scale depending on 
different studies = 0.66/0.53/0.45) (10–14). The radiological scores 
only focus on specific aspects of the images like blood thickness, 
location, or volume, without providing a comprehensive assessment 
of available information in the medical images.

Recently, several studies have proposed quantifying the SAH volume 
using automated segmentation methods in NCCT (15–18). There are 
different methods for binary segmentation of subarachnoid hemorrhage 
including threshold-based (16), semi-automated (17), and deep 
learning-based methods (15, 19) not only quantifying the SAH-volume 
but also trying to predict parameters that are relevant to the patient’s 
outcome—e.g., the prediction of vasospasm risk (17). Whereas a manual 
segmentation provided by an experienced human rater is considered the 
gold standard (17), this has several limitations including the high time 
effort and relatively low interrater reliability (15, 16). Deep learning-
based methods can provide a more objective assessment of hemorrhage 
volumes in an automated way. Due to its high clinical relevance, 
hemorrhage segmentation is addressed as part of segmentation 
challenges such as the INSTANCE challenge 2022 and the upcoming 
MICCAI 2024 challenge MBH-Seg for segmentation of intracranial 
hemorrhage (20–22). One limitation of recently proposed models is that 
they only provide binary labels for intracranial hemorrhage subtypes or 
do not explicitly consider various co-occurring pathologies and relevant 
anatomical changes such as enlarged or shifted ventricles. Hence the 
automated segmentation can only differentiate between healthy brain 
tissue and hemorrhage and cannot classify the different types of 
hemorrhage. The distinction of the hemorrhage types is especially 
important because the presence of co-occurring pathologies—like ICH 
together with SAH—significantly worsens the outcome of aSAH patients 
(23, 24). One of the first studies that assess multiclass segmentation of 
intracranial hemorrhage in patients after traumatic brain injury was 
published as a preprint in 2023 by Wu et al. (25). In contrast to our study, 
Wu et al. only assessed pathologies, e.g., different types of intracranial 
hemorrhages and did not consider anatomical structures which, when 
altered, may also be of prognostic value.

Our study aims to develop a multiclass deep learning-based 
segmentation model tailored to aneurysmal subarachnoid hemorrhage 
that includes outcome-relevant structures and pathologies for rapid 
and accurate volume segmentation. The proposed method segments 
six different classes: basal and cortical SAH, intraventricular 
hemorrhage (IVH), ventricles, intracerebral hemorrhage (ICH), 
aneurysms visible on NCCT and subdural hematoma (SDH). 
Moreover, we assess expert interrater agreement and perform external 
validation of our model on patients with a different main pathology 
(primary ICH). Our model is made available open source with 
pre-trained weights to facilitate the extraction of outcome-related 
pathologies from NCCT images of aSAH patients for further research.

2 Materials and methods

2.1 Patients

Out of 408 aSAH patients treated in the Department of 
Neurosurgery at Charité University Hospital in Berlin from 2009 to 
2015, 73 patients meeting the inclusion criteria were randomly 
selected and retrospectively included. The selection of a limited subset 
of 73 patients meeting the inclusion criteria was due to time 

Abbreviations: SAH, subarachnoid hemorrhage; aSAH, aneurysmal SAH; ICH, 

intracerebral hemorrhage; IVH, intraventricular hemorrhage; SDH, subdural 

hematoma; NCCT, non-contrast CT scans; CNN, convolutional neural network; 

BNI, Barrow Neurological Institute; DICOM, Digital imaging and communications 

in medicine; NIfTI, Neuroimaging informatics technology initiative; TP, true 

positives; FP, false positives; FN, false negatives; DCI, delayed cerebral ischemia; 

SEBES, subarachnoid hemorrhage early brain edema score; VS, volumetric 

similarity; EDH, epidural hematoma; IPH, intraparenchymal hemorrhage; ICU, 

intensive care unit; AI, artificial intelligence; IQR, interquartile range.
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constraints regarding manual segmentation (Figure  1). Inclusion 
criteria were diagnosis of aSAH; CT scan at admission; CT scan slice 
thickness between 4 and 6 mm; and patients aged 18 or older. aSAH 
was diagnosed through non-contrast computed tomography (NCCT) 
scans, and if NCCT was negative, lumbar puncture was performed to 
assess bilirubin or other blood degradation products. 69 out of 73 
patients had visible hemorrhage in NCCT and 4 patients were 
diagnosed with SAH by lumbar puncture because NCCT was negative.

To test for generalizability, we  validated our final model on 
external data. For the external validation, we analyzed NCCT images 

of 104 patients presenting with the primary diagnosis of ICH at Kaisei 
Hospital, Japan.

2.2 Ethics statement

Ethics approval was granted by the local authorities of Charité 
University Hospital (EA1/291/14) and Kaisei Hospital (2020-05), 
respectively. The need for participant consent was waived by both 
ethics committees due to the analysis being retrospective. All data 

FIGURE 1

Flow chart of patients included in our study from the Department of Neurosurgery Charité University Hospital and distribution of training, validation, 
and test set and external dataset from Kaisei Hospital, Japan.
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were fully anonymized before the analysis. The data of our main 
dataset was first accessed on December 1st, 2021. The data of the 
external set was first accessed on August 15th, 2023.

2.3 Image processing

The NCCT images were converted from DICOM (Digital imaging 
and communications in medicine) to NIfTI (Neuroimaging 
informatics technology initiative) file format using the dicom2niix 
command line tool in nipype (26). No gantry tilt correction was 
applied. Preprocessing of images, including reshaping, and resampling 
was performed by the default configuration of the nnU-Net framework. 
All CT scans had a slice thickness of 4–6 mm (median slice thickness 
5.0002 mm) with 24–32 slices (median number of slices: 28). The 
median voxel spacing after preprocessing was 5 × 0.44 × 0.44 mm and 
the median shape of the volumes were 512 × 512 × 28. For the external 
dataset the images were preprocessed manually to have uniform slice 
thickness of 2 mm with a shape of 512 × 512 × 80 using 3D slicer (27).

2.4 Dataset and labeling

Seventy three head NCCT scans that met the inclusion criteria were 
manually segmented with ITK-Snap, an open-source 3d medical image 
analysis software (28) (ITK-SNAP Version 3.6.0). For the segmentation, 
six different target classes were determined: basal and cortical SAH, IVH, 
ventricles, ICH, aneurysms and SDH. All 73 CT scans were first manually 
segmented by a junior rater (JK) then checked and corrected by a senior 
rater (ND, senior physician neurosurgeon). The raters, except for JK, had 
no access to any other information about the patients besides the NCCT 
image. The manual segmentation of one CT scan took between 3 and 6 h 
depending on the complexity and volume of the hemorrhages.

For the deep learning models, 73 CT scans were split into three 
sets: training set (n = 43), validation set (n = 10), and test set (n = 20). 
The split was stratified by balancing the number of our six classes and 
the occurrence of metal artifacts and shunts in each set to avoid biases 
in the training of the nnU-Net models (Table 1). Table 1 shows the 
distribution of the classes in the different sets.

For quality assurance, we  calculated the interrater agreement. 
Another junior rater (MG) independently segmented the test set (20 
out of the 73 CT scans) and another senior rater (AK, neuroradiology 
resident) checked and approved the segmentations to create a 
comparison group. In 4 patients we were only able to segment the 
ventricles as there was no visible hemorrhage in the NCCT, 2 of these 

patients belonged to the training set, one belonged to the validation 
set and one patient belonged to the test set.

Due to the time effort of multiclass segmentation of 3–6 h per 
NCCT, we  validated the results using an already-available binary 
hemorrhage segmentation dataset (hemorrhage or no hemorrhage) 
for the external validation of our models. The dataset was labeled by 
ST (senior physician neurosurgeon) using the software 3D slicer (27).

For the evaluation, the outputs of our multiclass 2d model were 
merged to create a single hemorrhage class.

2.5 Deep learning segmentation

nnU-Net is a state-of-the-art biomedical image segmentation tool 
with automated configuration, including preprocessing, network 
architecture, training, and post-processing which gives the framework 
high flexibility (29). We also tested BRAVENET, which is a multiscale 
3-D convolutional neural network (CNN) model initially developed 
on a dataset of patients with cerebrovascular diseases. For brain artery 
segmentation tasks, the BRAVENET architecture showed a superior 
performance compared to a standard U-Net (30).

2.6 Training

The nnU-Net framework was trained in two configurations: (1) 
3d and (2) 2d using axial slices. The models were trained for 1,000 
epochs. The best-performing model on the validation set after 1,000 
epochs was selected for evaluation on the test set. Model training was 
performed on an RTX Titan GPU with 24GB of VRAM, while the 
GPU VRAM argument was set to 8GB (default) for the training. The 
selected patch sizes, hyperparameters, and model architecture details 
can be found in Table 2. We used the 2d model for compatibility with 
various slice thickness values and across datasets and patients.

2.7 Evaluation

The segmentation performance was evaluated using the 
EvaluateSegmentation tool (31). The quantitative evaluation of 
performance on each class was performed separately, and additionally 
a general hemorrhage group was created where all hemorrhage classes 
were merged to test the general ability of our model to detect blood in 
NCCT. To assess the performance, different metrics were reported: the 
median Dice coefficient, calculated on individual patients, the global 

TABLE 1 Distribution of hemorrhage and artifacts in datasets.

Training set = 43 Validation set = 10 Test set = 20 n = 73

Basal and cortical SAH (%) 41 (95%) 10 (100%) 20 (100%) 71 (97%)

Intraventricular hemorrhage (IVH) 

(%)
25 (58%) 6 (60%) 11 (55%) 42 (58%)

Intracerebral hemorrhage (ICH) (%) 16 (37%) 2 (20%) 7 (35%) 25 (34%)

Visible aneurysm (%) 5 (12%) 1 (10%) 3 (15%) 9 (12%)

Subdural hematoma (SDH) (%) 2 (0.5%) 1 (10%) 2 (10%) 5 (7%)

Metal artifacts (%) 2 (5%) 1 (10%) 2 (10%) 5 (7%)

Shunt artifacts (%) 2 (5%) 1 (10%) 1 (5%) 4 (5%)
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Dice coefficient, by considering all patients in the test set to be one 
single concatenated image, volumetric similarity and sensitivity. 
Classes where the model segmented less than 20 voxels were excluded 
from metric calculations.

The Dice coefficient was used as the main metric for performance 
assessment. In addition to reporting mean and median values for the 
Dice coefficient a global Dice coefficient was calculated to provide a 
general overview of the models’ performance on the whole dataset 
(Equation 1), since in patients with smaller SAHs even small errors in 
segmentations can easily lead to loss of overlap and impact mean Dice 
values. The Dice coefficient was calculated according to 
following formula:

 
2Dice coefficient

2
TP

TP FP FN
∗

=
∗ + +  

(1)

Equation 1: Calculation of Dice coefficient and global Dice 
coefficient (31).

Where TP (True Positives), FP (False Positives) and FN (False 
Negatives) are used from each individual patient. For calculating the 
global Dice coefficient, the same equation applies as the FP, TP and 
FN voxels across the entire test set were used.

 

| |Volumetric similarity 1
2

FN FP
TP FP FN

−
= −

∗ + +  
(2)

Equation 2: Calculation of volumetric similarity (31).
While the global Dice coefficient provides valuable insight into the 

spatial overlap between segmented and ground truth regions, we also 
calculated the volumetric similarity (Equation 2). Volumetric similarity 
directly emphasizes the portion of the segmented volume in relation to 
the reference volume and is an important measure for outcome 
prediction (31). Detailed descriptions and formulas of the metrics can 
be found in the study by Taha et al. (31). Bland Altman Plots were 
created to show the volumetric similarity and bias of the models for the 
SAH class for the 3d and 2d nnU-Net model and Rater 2 and the merged 
hemorrhage class. We also report the cases where the different models 
and the raters agreed or disagreed on the presence of a certain class.

3 Results

We assessed 73 head CT scans from patients with aSAH at 
admission. Median age was 48 years [min; max = 22; 92 years] and 
63% of the patients were female (Table 3). Out of 73 CT scans, there 
were 71 with basal and/or cortical SAH, 42 with IVH, 25 with ICH, 9 
with visible aneurysms, and 5 with SDH (Table 1). Out of 73 patients, 
28 patients had image artifacts or additional treatment material: 4 had 
an intraventricular shunt, 19 had movement artifacts in the form of 

blur and 5 had metal artifacts due to previous aSAH therapy in the 
form of aneurysmal clipping or coiling.

3.1 nnU-Net segmentation results

In general, the nnU-Net models achieved human-level 
performance for the SAH, the ICH, the ventricle and the hemorrhage 
segmentation class. For other classes such as the IVH, aneurysm, and 
the SDH class, the automated segmentation performance was lower 
than human-level performance (Table 4). Overall, the 3d and 2d 
models performed similarly. The 3d model achieved a global Dice 
coefficient in the hemorrhage class of 0.730 and the 2d model 
achieved a global Dice coefficient of 0.736 (Table 4). For the SAH 
class, the 3d and 2d models achieved the same result with a global 
Dice coefficient of 0.686. The models had a slightly better performance 
for the ICH and IVH classes with a global Dice coefficient of 0.750 
(IVH 3d and 2d model) and 0.743 (ICH 3d model) respectively 0.765 
(ICH 2d model). The segmentation performance of the aneurysm 
class varied the most (3d model: global Dice coefficient = 0.037; 2d 
model: global Dice coefficient = 0.366). The results of the automatic 
segmentation of the 3d and 2d models of the SDH class were similar 
to the segmentation results of the IVH and ICH classes. The ventricle 
class segmentation achieved the highest global Dice coefficient of 
0.875/0.872 (3d model/2d model).

The checkpoints of the segmentation models can be found in the 
following GitHub repository: https://github.com/claim-berlin/
aSAH-multiclass-segmentation.

The experimentation we  performed with additional 
hyperparameter configurations and another in-house model 
architecture coined BRAVENET (30) can be  found in the 
Appendix Tables 7, 8. Overall, the nnU-Net configured model 
outperformed the BRAVENET architecture. For reporting our results 
in the following sections, we only focused on the 2d and 3d nnU-Net 
models because no significant performance gains were observed by 
changing the architecture or tuning its hyperparameters.

Figures 2, 3 show a few examples of the segmentations of our 
model on different hemorrhage classes in comparison to the ground 
truth (Rater 1). The failure cases of the nnU-Net models are shown in 
Figure 4.

3.2 External dataset results

In the external dataset the median age was 71 years [min; 
max = 36; 98 years] and 46% of the patients were female. The external 
dataset included mainly patients with ICH as primary diagnosis, but 
many patients had co-occurring pathologies like SAH, IVH, and 
SDH. The automated segmentation of the external dataset achieved a 

TABLE 2 Model hyperparameters.

Model 
configuration

Patch size Convolutional 
kernel size

Starting/maximum 
number of 

convolutional 
filters

Batch size Number of 
convolutional 

stages

3d_fullres 320 × 320 × 16 3 × 3 × 3 32–320 2 7

2d 512 × 512 3 × 3 × 3 32–512 12 8

https://doi.org/10.3389/fneur.2024.1490216
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://github.com/claim-berlin/aSAH-multiclass-segmentation
https://github.com/claim-berlin/aSAH-multiclass-segmentation


Kiewitz et al. 10.3389/fneur.2024.1490216

Frontiers in Neurology 06 frontiersin.org

TABLE 3 Patient characteristics.

Training set
n = 43

Validation set
n = 10

Test set
n = 20

Total
n = 73

External testing
n = 104

Sex

Male (%) 17 (40%) 0 (0%) 10 (50%) 27 (37%) 56 (54%)

Female (%) 26 (60%) 10 (100%) 10 (50%) 46 (63%) 48 (46%)

Age

Mean age 50 62 49 52 70

Median age 46 (IQR = 19) 62 (IQR = 24) 49 (IQR = 12) 48 (IQR = 17) 71 (IQR = 23)

Glasgow coma scale

GCS < 9 25 5 7 37 15

TABLE 4 Comparison of results.

SAH IVH Ventricles ICH Aneurysm SDH Hemorrhage 
class

Global dice

3d_fullres 0.686 0.750 0.875 0.743 0.037 0.758 0.730

2d 0.686 0.750 0.872 0.765 0.366 0.766 0.736

Rater 2 0.663 0.808 0.839 0.750 0.877 0.902 0.732

External 

dataset

– – – – – – 0.838

Median dice (Q1/Q3)

3d_fullres 0.581 

(0.515/0.691)

0.568 

(0.197/0.664)

0.862 (0.815/0.888) 0.622 

(0.565/0.729)

0.208 (0.104/0.275) 0.758 

(0.758/0.758)

0.664 (0.545/0.735)

2d 0.616 

(0.489/0.689)

0.515 

(0.232/0.765)

0.855 (0.832/0.874) 0.692 

(0.530/0.855)

0.541 (0.435/0.646) 0.766 

(0.766/0.766)

0.673 (0.498/0.754)

Rater 2 0.626 

(0.511/0.683)

0.792 

(0.699/0.822)

0.808 (0.753/0.854) 0.834 

(0.613/0.873)

0.833 (0.741/0.861) 0.896 

(0.891/0.901)

0.659 (0.560/0.764)

External 

dataset

– – – – – – 0.831 (0.724/0.872)

Median volumetric similarity (Q1/Q3)

3d_fullres 0.922 

(0.833/0.973)

0.698 

(0.365/0.973)

0.947 (0.924/0.979) 0.741 

(0.593/0.932)

0.233 (0.118/0.416) 0.775 

(0.775/0.775)

0.892 (0.820/0.960)

2d 0.843 

(0.731/0.909)

0.723 

(0.533/0.852)

0.938 (0.900/0.966) 0.898 

(0.701/0.951)

0.660 (0.502/0.818) 0.786 

(0.786/0.786)

0.879 (0.729/0.914)

Rater 2 0.835 

(0.704/0.927)

0.860 

(0.719/0.927)

0.890 (0.849/0.919) 0.879 

(0.670/0.889)

0.920 (0.824/0.934) 0.928 

(0.927/0.929)

0.831 (0.779/0.915)

External 

dataset

– – – – – – 0.906 (0.835/0.954)

Median sensitivity (Q1/Q3)

3d_fullres 0.589 

(0.509/0.683)

0.479 

(0.111/0.573)

0.858 (0.821/0.910) 0.616 

(0.402/0.942)

0.118 (0.059/0.181) 0.619 

(0.619/0.619)

0.628 (0.553/0.698)

2d 0.583 

(0.494/0.692)

0.484 

(0.138/0.668)

0.819 (0.777/0.842) 0.576 

(0.533/0.899)

0.466 (0.333/0.600) 0.632 

(0.632/0.632)

0.662 (0.492/0.705)

Rater 2 0.492 

(0.411/0.614)

0.720 

(0.546/0.850)

0.745 (0.627/0.773) 0.790 

(0.585/0.832)

0.792 (0.651/0.879) 0.836 

(0.832/0.840)

0.578 (0.446/0.646)

External 

dataset

– – – – – – 0.765 (0.684/0.830)

Comparison of different metrics for different labels for 3d model, 2d model, Rater 2 and the external set. Values were only calculated when there was an agreement on the presence of one class.
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global Dice coefficient of 0.838 for the merged hemorrhage class 
(Table 4 and Figure 5).

As shown in Table 5 both nnU-Net models agreed with the ground 
truth of Rater 1 on the presence of SAH in all cases, whereas Rater 1 
and Rater 2 did not agree on the presence of SAH in two patients. The 
two different nnU-Net models agreed with the ground truth on the 
presence of IVH, ICH, and SDH in 8/5/1 cases. The two nnU-Net 
models disagreed with the ground truth mostly on the presence of IVH 
and ICH (3d model: 3/4; 2d model: 4/4), whereas Rater 2 disagreed on 
a relatively similar number of cases in the IVH, ICH, aneurysm and 
SDH class (2/3/2/1). The ventricle class showed no disagreements 
between the ground truth, the 3d model, the 2d model, and Rater 2. 
The agreements and disagreements for all classes are shown in Table 5.

In this study we not only assessed the Dice coefficient but also 
calculated the volumetric similarity (VS) to create a connection 
between the correctly segmented volume and the overall hemorrhage 

volume. Figure 6 shows the volumetric similarity for the SAH class 
using Bland Altman Plots and therefore the absolute and relative 
difference between the ground truth, the segmented SAH volumes by 
Rater 2 and by the 3d and 2d nnU-Net model. It illustrates that even 
though smaller volumes have smaller differences in segmented volume 
(Figure 6: left column) relatively speaking, the deviation based on the 
total segmented volume is larger (Figure 6: right column).

4 Discussion

We present in the current work a deep learning-based analysis of 
automated multiclass segmentation for SAH-related pathologies from 
NCCTs of patients with SAH. Our framework demonstrates high 
quantitative performance based on the Dice coefficient and volumetric 
similarity that is close to the performance of a human rater. We show 

FIGURE 2

Comparison of 4 patients’ segmentations in the following order from left to right: first column shows the original NCCT, second column shows the 
ground truth (segmentation of Rater 1), third column shows the segmentation of Rater 2 and the fourth and fifth columns show the results of our nnU-
Net models (fourth column: 3d model, fifth column: 2d model). This figure shows that the nnU-Net is able to detect hemorrhage but struggles to 
assign the segmentations to the different classes. The second row (II) effectively illustrates our findings that in the aneurysm class the results of the 
nnU-Net models and Rater 2 differed the most.
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that our nnU-Net models are able to do a precise and fast segmentation 
of aSAH related classes that are relevant to assess patient outcome.

4.1 Our results

We evaluated our model with quantitative measures, compared 
performance against interrater variability of medical expert raters, and 
performed an external validation. Overall, despite a limited training 
dataset, we  attain highly promising results in most classes and 
demonstrate generalizability on an external dataset featuring ICH as 
primary hemorrhage class.

We observe varied performance across the different classes and 
identify important findings that might explain these differences in 
performance. Overall, the two deep learning models, 3d model and 
2d model, show a similar performance. Segmentations of SAH, 
ventricles, ICH and the hemorrhage segmentation are comparable 
in 3d model, 2d model and Rater 2 whereas the aneurysm and SDH 
class show the highest variability. The difference between the 
performance of the nnU-Net models in comparison to Rater 2 is 
relatively high in the aneurysm and SDH class. This is most likely 
due to the limited occurrence of these classes in our training set 

and the limited size of our internal test set. Compared to the 
segmentation of the SAH class, better results were achieved for the 
IVH, ICH and SDH class by the nnU-Net models. The interrater 
reliability was assessed to create human benchmarks which can 
be used to put our models’ results into context. A comparison of 
the models’ results to human benchmarks is necessary because 
absolute values of metrics are challenging to interpret and thus 
model performance can be over−/underestimated. For instance, 
from an absolute value point of view, a global Dice coefficient of 
0.686 for SAH is lower than a global Dice coefficient of 0.758 (3d 
model)/0.766 (2d model) for SDH but actually compared to human 
benchmarks (Rater 2 global Dice coefficient of 0.665 for SAH and 
0.902 for SDH) the overall automated segmentation performance 
for SAH is closer to the human performance and is considered a 
better result when aiming for human level performance. In this 
sense, optimizing for higher performance—with an improvement 
of the global Dice coefficient—with architectural changes or 
optimizing the training approach is not the main goal of our study.

Interestingly, we achieve a superior performance according to 
the global Dice coefficient in the external test dataset compared 
to the internal test set for the ICH class. This is a relatively 
uncommon occurrence in the field of machine learning and is 

FIGURE 3

Comparison of segmentations of 4 patients in the following order from left to right: first column shows original NCCT, second column shows ground 
truth (Rater 1 segmentation) in 2d, third column shows 3d representation of ground truth (Rater 1), fourth column shows 3d representation of the 3d 
model and fifth column shows 3d representation of the 2d model. This figure shows a 3d reconstruction of the hemorrhage distribution which might 
be useful in clinical practice to get an overview of the extent of the hemorrhage.
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most likely due to the presence of SAH in our internal dataset 
making the labeling of the ICH more challenging. This 
phenomenon was also reported in the INSTANCE Grand 
challenge where SAH achieved the worst results compared to all 
the other intracranial hemorrhages that were evaluated (SDH, 
epidural hematoma (EDH), IPH, IVH) (20). Wu et  al. also 
reported the best results for multiclass segmentation for IVH and 
ICH and an inferior performance for SAH, SDH and EDH (25). 
This highlights the challenging nature of distinguishing between 
different hemorrhage subtypes in real world cases of SAH.

Hemorrhage segmentation can also become more difficult in 
patients with shunts and metal artifacts (Appendix Figure 7) due to 
previous bleeding or intensive-care-unit (ICU)-monitoring. Shunt 
artifacts could be  misinterpreted as ventricles and metal artifacts 
might resemble SAH (Appendix Figure 7). Being aware of potentially 
inferior performance in scans with artifacts, we include those patients 

to improve model generalizability and robustness in cases where a 
metal artifact or shunt was present.

The ventricle class achieves the best results out of all classes most 
likely because of its consistent shape and location and because it is the 
most represented class in the dataset. It is important to consider the size 
and shape of ventricles in SAH patients because they can be altered due 
to increased intracranial pressure and provide valuable information 
concerning the patient’s outcome, e.g., enlarged ventricles can be a sign 
of increased intracranial pressure which can lead to decrease of cerebral 
perfusion pressure and therefore an unfavorable outcome (23). 
Ventricles as one of the most significant anatomical structures in SAH 
can serve as an anatomical orientation for downstream outcome 
prediction models. Therefore, the segmentation of the ventricles is 
relevant and can be considered an advantage of our model compared 
to already published automated multiclass segmentation models 
(20, 25).

FIGURE 4

Failure cases, segmentations from left to right: first column shows original data, second column shows the ground truth (segmentation of Rater 1), 
third and fourth columns show the segmentations of our nnU-Net models (segmentation 3d model/segmentation 2d model). This figure showcases 
the most representative instances of failure we encountered. Once more, it underscores that the challenge does not primarily reside in detecting 
hemorrhage but rather in accurately distinguishing between various types of hemorrhages.
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4.2 2d/3d model

The 2d and 3d model architectures performed similarly based on 
quantitative assessments by global Dice coefficient and volumetric 
similarity. However, there were some locations (Figure 2: aneurysm, 
SDH) where it is difficult for the model to distinguish the type of 
bleeding looking only at one axial slice. The use of 2d models can 
be more advantageous for generalization to volumes with various slice 
thicknesses because 3d models either require resampling or might 
show poor performance when the voxel spacings are significantly 
different on the test sets. However, as stated in the INSTANCE Grand 
challenge, directly utilizing 2d networks would lead to a loss of 

significant context information among slices (20). Additionally, the 
spatial distribution of SAH in three dimensions is not considered in 
most of the known radiological scores but can be  important for 
outcome prediction.

4.3 Current use of deep learning-based 
segmentation

Radiological features of hemorrhages in aSAH patients provide 
valuable outcome relevant information that has not been exploited to 
date. Despite the general acceptance that the volume of blood after 

FIGURE 5

External validation. Comparison of segmentations in the following order from left to right: first column shows the original data, the second column 
shows the hemorrhage segmentation that was done at an external institution by a human rater (ground truth), the third column shows our 3d model 
binary segmentation and the fourth column shows our 3d model multiclass segmentation.

TABLE 5 Agreement/disagreement.

Agreement Disagreement Class not present

SAH IVH//ICH//
Aneurysm//SDH

SAH IVH//ICH//
Aneurysm//SDH

SAH IVH//ICH//
Aneurysm//SDH

3d_fullres 20 8//5//3//1 0 3//4//1//1 0 9//11//16//18

2d 20 8//5//2//1 0 4//4//2//1 0 8//11//16//18

Rater 2 18 9//4//3//2 2 2//3//2//1 0 9//13//15//17

Agreement/disagreement 3d model/2d model/Rater 2. The first column illustrates the agreements in labeling the different classes between the ground truth (Rater 1) and the 3d model (first 
row), 2d model (second row), Rater 2 (third row). The second column shows the disagreements in labeling the classes and the third column shows the number of NCCT where a certain class 
was not present, therefore we cannot assess the agreement/disagreement.
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SAH is prognostic for outcome and provides guidance for treatment 
decisions, no method to estimate the volume and distribution patterns 
of subarachnoid blood has been successfully implemented in clinical 
practice so far.

For a successful translation of artificial intelligence (AI) models 
into clinical practice there is a need to not only assess the stand-alone 
performance of models but more so focus on the outcomes when 
these algorithms are used as assistive tools in clinical practice (32). 
In our study, achieving performance levels comparable to human 
assessment based on quantitative metrics is feasible across most 

classes, despite the constraints of limited data. However, what is 
interesting for future investigations is assessing the model’s efficacy 
when utilizing segmentation outputs in a downstream task aimed at 
predicting outcomes in patients with SAH. There are a few examples 
for radiomics-based classification of intracranial pathologies, e.g., 
intracranial aneurysm rupture or SAH prognosis prediction (33–35). 
In future works, the extraction of radiomics features based on 
segmentation masks might allow the extraction of imaging 
biomarkers predictive of SAH outcome. Deep learning-based 
segmentation models presented in this study would not only allow 

FIGURE 6

Bland Altman Plot absolute (first column) and relative (second column) difference in segmented subarachnoid hemorrhage (SAH) volume. Comparison 
of segmented subarachnoid hemorrhage volume in mL and % of Rater 2, 3d model and 2d model. Absolute difference in SAH volume: total bias Rater 
2: 9.54 mL; total bias 3d model: 6.45 mL; total bias 2d model: 7.59 mL. The average total bias for SAH volume is 7.86 mL which means that Rater 1 
(ground truth) segmented 7.86 mL more SAH volume on average than Rater 2, the 3d model and the 2d model. This phenomenon is also shown in 
Figures 2, 4.
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to distinguish between different types of hemorrhages and healthy 
brain tissue, but also give precise information about the exact 
volumes of different structures and the impact on the 
patient’s outcome.

There are a few examples of automated segmentation in NCCT 
in patients with SAH or ICH as leading pathology (16, 20, 36). The 
different models achieved Dice scores that were close to human 
level performance via volume quantification for SAH based on 
density quantification (16) or intracerebral hemorrhage 
segmentation via viola-U-Net (“Voxels-Intersecting Along 
Orthogonal Levels Attention U-Net”) (36) in the INSTANCE Grand 
Challenge 2022. Even though the studies included patients with 
different subtypes of intracranial bleeding, only a recent multiclass 
model from Wu et  al. was able to distinguish between different 
subtypes of intracranial hemorrhage (25). However, since 
anatomical changes, e.g., altered shape of ventricles, can be  a 
negative predictor for the patient’s outcome, it is important to assess 
the shape and volume of the ventricles as well and not only report 
the different types of hemorrhages.

Co-occurring pathologies can change the outcome of 
SAH-patients drastically for the worse, creating the need for a tool that 
is able to distinguish between the different subtypes of hemorrhage 
and can segment anatomical structures like ventricles (23, 24). 
Automated multiclass segmentation in NCCT was only tested on 
patients with ICH and intracranial hemorrhage in general so far (25, 
37, 38). In contrast, our proposed model is developed specifically for 
patients with aneurysmal SAH, highlighting a key distinction of 
our work.

4.4 Study limitations

Our study has several limitations. First, the number of patients in 
our dataset was limited due to the time-consuming manual 
segmentation step and resulted in the underrepresentation of some 
classes in the training set as well as in the validation and test set (e.g., 
aneurysm, SDH), which could lead to an inferior performance of the 
models for these classes. Additionally, to validate the performances of 
the nnU-Net models, further training with a larger dataset may 
be beneficial. Second, the model is trained mostly on patients with 
subarachnoid hemorrhage to quantify the volume and distribution of 
hemorrhage subtypes. Hence, the models are not directly applicable 
for classifying CTs whether they contain hemorrhage or healthy 
brain tissue.

Finally, our external validation set does not include primarily 
SAH patients. Despite being tested on a different patient population 
our model demonstrated considerable generalization. Future works 
should test the performance of our model in segmentation challenges 
and public multiclass cerebral hemorrhage segmentation datasets. 
Validating the model across more diverse patient populations, 
particularly those with varying distributions of hemorrhage subtypes, 
could help address generalizability concerns. Additional external 
validation is essential before clinical adaptation of models from our 
exploratory study.

In this study we aim to compare our models’ performance to 
human benchmarks which we created by assessing the performance 
of a different human rater (Rater 2) other than the ground truth 
(Rater 1).

The comparison to human level performance is likely more 
relevant in the clinical context but needs presumably more than 2 
different human raters and a consensus-based ground truth creation 
to validate the comparison of the performances of humans and our 
nnU-Net models.

4.5 Future work

Our work has implications for future works in SAH segmentation 
and outcome prediction. Traditional scores lack interrater and 
intrarater reliability and often create disagreements between different 
reviewers. All known radiological scores calculate the amount of 
blood via hemorrhage thickness estimations in different areas in 
NCCT which is either roughly precise [modified Fisher scale, Hijdra 
Scale (7, 9)] or only applicable for symmetrical hemorrhages [ABC/2 
Scale (39)], which leads to a low interrater reliability. A high interrater 
reliability ensures consistency in the segmentations irrespective of 
different raters, it provides a measure of agreement among human 
raters and is serving as a benchmark for evaluating the performance 
of automated methods. In clinical context, it ensures quality control, 
reproducibility and reduces bias. Because in clinical context the exact 
determination of the hemorrhage volume and severity of the 
hemorrhage is crucial for the treatment decision and outcome of the 
patient (23), there is a strong clinical need for a score or model that is 
reliable and shows consistent performance regardless of qualification 
or experience of the clinical personnel.

The prognostic value of different traditional radiological scores 
can be increased by an automated calculation that is supported by 
deep learning methods like our model or other radiomics approaches 
(35, 40). Additionally, the multiclass nature of our proposed model 
can be utilized in future studies to analyze the correlation of outcomes 
with co-occurrence of hemorrhage classes, their spatial distribution, 
hemorrhage volume and radiomics signatures. Our framework can 
be used to segment a large number of patients, enabling the processing 
of extensive patient data while being as precise as manual segmentation 
without being time-consuming.

With the help of deep learning there is the possibility to develop 
novel scores and biomarkers based on the exact imaging information. 
Deep learning-based automated semantic segmentation can facilitate 
the extraction of volumetric information from CT scans and enable 
an objective assessment of SAH severity. Development of novel 
prognostic approaches that overcome limitations of traditional 
scores—pending further validation—can enable rater-independent 
outcome prediction. These approaches can result in the extraction and 
utilization of more radiological data from CT scans, providing 
additional information that enables outcome prediction and facilitates 
decision support for personalized treatment decisions to improve 
patient outcomes.

5 Conclusion

Our deep learning-based nnU-Net-model demonstrated a 
performance close to the human benchmark and achieved accurate 
segmentation of SAH and SAH-related pathologies. This can be the 
starting point for automation of traditional radiological scores, 
correlation analysis of outcomes with co-occurrence of hemorrhage 
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classes and development of novel, prognostic scores for predicting 
outcomes in SAH. Deep learning can overcome the significant 
limitations of interrater and intrarater variability and provide an 
efficient solution to better exploit outcome-relevant image information 
than traditional scores. Our open-source model can enable analyses 
of large multicentric datasets to further improve performance and 
explore generalization.

Taken together, our study demonstrates the potential of deep 
learning to improve patient outcomes by advancing radiological 
examination of SAH and other intracranial hemorrhages.
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