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Recent studies focusing on neural activity captured by neuroimaging modalities

have provided various metrics for elucidating the functional networks and

dynamics of the entire brain. Functional magnetic resonance imaging (fMRI) can

depict spatiotemporal functional neural networks and dynamic characteristics

due to its excellent spatial resolution. However, its temporal resolution is

limited. Neuroimaging modalities such as electroencephalography (EEG) and

magnetoencephalography (MEG), which have higher temporal resolutions, are

utilized for multi-temporal scale and multi-frequency-band analyzes. With this

advantage, numerous EEG/MEG-bases studies have revealed the frequency-

band specific functional networks involving dynamic functional connectivity and

multiple temporal-scale time-series patterns of neural activity. In addition to

analyzing neural data, the examination of behavioral data can unveil additional

aspects of brain activity through unimodal and multimodal data analyzes

performed using appropriate integration techniques. Among the behavioral

data assessments, pupillometry can provide comprehensive spatial-temporal-

specific features of neural activity. In this perspective, we summarize the recent

progress in the development of metrics for analyzing neural data obtained from

neuroimaging modalities such as fMRI, EEG, and MEG, as well as behavioral data,

with a special focus on pupillometry data. First, we review the typical metrics

of neural activity, emphasizing functional connectivity, complexity, dynamic

functional connectivity, and dynamic state transitions of whole-brain activity.

Second, we examine the metrics related to the time-series data of pupillary

diameters and discuss the possibility of multimodal metrics that combine neural

and pupillometry data. Finally, we discuss future perspectives on these multiple

and multimodal metrics.
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1 Introduction

Mounting evidence from recent studies focusing on neural activities captured by

neuroimaging modalities has provided diverse metrics for elucidating functional networks

and dynamics in the entire brain [reviewed in Sporns and Seguin et al. (1, 2)]. The analysis

of functional magnetic resonance imaging (fMRI) data to ascertain functional connectivity
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facilitates the elucidation of the functional whole brain network,

called the “functional connectome” (3–5), owing to its fine

spatial resolution for the brain, including the deep-located

nuclei. Moreover, functional networks show dynamic (called

dynamic functional connectivity) rather than static characteristics

in response to cognitive and perceptual stimuli, even during

the resting state (6–8) [reviewed in Preti et al. (9)]. This

dynamic organization of functional connectivity is strongly linked

to the complexity of local regional neural activity (10). Brain

function is a representative “emergence” phenomenon produced

by the integration of hierarchical and mutual interactions of

neural activities of the brain (11–13). Notably, the broad-range

mutual interactions among neural activities enable cognitive

functions as the most complex emergent phenomena, venturing

beyond mere signal propagation between specific regions [as

reviewed in Thiebaut de Schotten and Forkel (14)]. To elucidate

this mechanism, the use of comprehensive metrics of whole-

brain spatiotemporal neural activities has gained widespread

recognition (1).

fMRI can depict spatiotemporal functional neural networks

and dynamic characteristics due to its excellent spatial resolution.

However, its temporal resolution is limited . 1 Hz. This prevents

the elucidation of neural activity characteristics over a wide

frequency range including delta, theta, alpha, beta, gamma, and

high gamma . 100 [Hz] and moment-to-moment dynamics

(15). Neuroimaging modalities such as electroencephalography

(EEG) and magnetoencephalography (MEG) with higher time

resolutions have been utilized for multi-temporal scale and multi-

frequency-band analyzes [reviewed in Beppi et al., Iivanainen et al.,

and Niso et al. (16–18)]. The vast collection of EEG/MEG data

in these studies revealed the frequency-band-specific functional

network involving dynamic functional connectivity and multiple

temporal-scale time-series patterns of neural activities. This was

captured as “complexity,” which refers to the degree of irregularity

observed in time-series data of neural activity, evaluated using

metrics from non-linear time-series analysis, including chaos

theory, fractal analysis, and various types of entropy measures;

additionally, moment-to-moment dynamic state transitions based

on whole-brain neural activity were analyzed to capture temporal

dynamics (19–22). However, these neuroimaging modalities have

limitations related to volume conduction, which refers to the

spurious synchronization of regional neural activities (23, 24).

By focusing on the phase components of neural activities, this

influence can be curtailed and typified as the phase lag index (PLI)

and weighted PLI (25–29). Subsequently, the combinations of high-

density EEG and MEG data and complementary cortical source

localization techniques have significantly augmented the spatial

resolution, yielding sustained high temporal resolutions (30–33).

Moreover, considering the assembly of functional connectivity as

a topological feature enables assessment of the functional networks

among widely distributed brain regions [reviewed in Farahani et al.,

Ismail and Karwowski, Pegg et al. (34–36); see the typical example

of Figure 1A).

In addition to the analysis of neural data, the examination

of behavioral data, such as heart rate, body movements,

eye movements, and pupil behaviors, can reveal additional

characteristics of brain activity through unimodal [reviewed in

Lujan et al., Mahanama et al., and Gullett et al. (37–39)] and

multimodal data analyses with appropriate integration techniques

[reviewed in Iwama et al. (40)]. This encompasses daily fluctuations

in neural activity, known as the circadian rhythm [reviewed

in Foster (41)], the balance between neural systems in whole-

brain activity, such as the sympathetic and parasympathetic

neural systems [reviewed in Hyun and Sohn (42)], and the

activity patterns of deep-located neural nuclei [reviewed in Aston-

Jones and Cohen and Viglione et al. (43, 44)]. Amongst these

behavioral data, pupillometry can provide comprehensive spatial-

temporal-specific features of neural activity (45–47). Figure 1B

illustrates the relationship between the depth of signal-source

location in the brain and the major frequency components of

the time-series data obtained by each neuroimaging modality.

Pupillometry detects relatively high-frequency components of

neural activity, . several Hz, in deep-located brain regions; fMRI

and EEG/MEG cannot capture such high-frequency components

and the neural activities of deep brain regions (45, 48). Leveraging

this specificity can pave the way for understanding the mechanisms

underlying brain functions and introduce a novel approach for

identifying dysfunctions responsible for psychiatric disorders (49).

Effectively ascertaining the dynamic patterns of neural activity

using pupillometry is beset by challenges when extremely high-

dimensional brain activities are projected onto two-dimensional

time series of pupil diameters in the left and right eyes through

signal propagation with nonlinear transformation and diverse

interactions of inherent neural activities (50, 51). Therefore,

developing metrics to estimate the internal neural activity from the

time-series data of pupil diameters is important, as evidenced by the

substantial focus of recent research (49). Moreover, although many

recent multimodal studies focused primarily on pupil size (52,

53), there have been increasing attempts to capture innate neural

activity based on pupil dynamics beyond simple size measurements

(51, 54–56).

In this perspective, we summarize the recent progress in

developing metrics for analyzing neural data obtained from

neuroimaging modalities such as fMRI, EEG, and MEG as well

as behavioral data, with a focus on pupillometry data. First, we

review the typical metrics of neural activity, emphasizing functional

connectivity, complexity, dynamic functional connectivity, and

dynamic state transitions of whole-brain activity. Second, we

examine the metrics related to the time-series data of pupil

diameters. Third, we discuss the possibility of multimodal metrics

that combine neural and pupillometry data. Finally, we discuss

future perspectives on these multiple and multimodal metrics.

2 Analysis of neural data

In the classical interpretation of cognitive functions, individual

brain regions are viewed as modular systems, each playing a

specific cognitive role. Information processed in each region is

subsequently propagated through hierarchical neural pathways.

However, recent neuroimaging studies have revealed that cognitive

functions are the result of interactions among widely distributed

brain regions, rather than mere signal propagation between specific

regions [reviewed in Thiebaut de Schotten and Forkel (14)].
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FIGURE 1

(A) Typical examples of metrics as a topological feature of functional networks. Small-worldness based on the ratio of the clustering coe�cient and

path length, which represents the segregation and e�ciency of signal propagation within the functional networks. Hub characteristics such as node

degree (edge numbers in the node) and betweenness centrality (number of shortest paths passing through the node), which are e�ective for

evaluating integration and propagation within functional networks. (B) Spatial-temporal objective domain of representative neuroimaging, including

functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and magnetoencephalography (MEG), pupillometry.

To elucidate local and regional neural activities, the levels of

blood oxygen level-dependent (BOLD) signals in fMRI and the

power components of EEG/MEG signals continue to be widely

utilized, serving as the initial foundational methods. Moreover,

functional connectivity is considered the most representative

approach to evaluate signal propagation and the integration of

brain activities (3–5). Initially, this evaluation employs correlation

coefficients and coherence measures based on cross-spectrum

analysis, which are used in fMRI. However, for EEG/MEG

signals, the influence of volume conduction, which causes spurious

synchronization due to the observation of the same signal source

at different sensors on the scalp, degrades the spatial resolution

of functional networks (23, 24). This influence can be mitigated

by metrics that focus on phase components, such as the PLI (57)

and the weighted PLI, an enhanced iteration of the PLI (27). By

leveraging the high temporal resolution of EEG/MEG combined

with these improvements, these metrics have been utilized to

delineate frequency-band-specific functional networks related to
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aging (58), various cognitive functions (59), and psychiatric

disorders (60, 61).

In addition to evaluating functional connectivity based on

mere pairwise neural activities, assessing the interactions of neural

activity at the whole-brain level entails considering the assembly

of functional connectivity as a topological feature of functional

networks [see the overview of typical example of network measures

in Figure 1A; reviewed in Farahani et al., Ismail and Karwowski,

and Pegg et al. (34–36)]. The clustering coefficient, path length,

and their ratio, which are measures of small-worldness, represent

the segregation and efficiency of signal propagation within the

functional networks (62–64). Hub characteristics such as node

degree and betweenness centrality (65) are effective for evaluating

the integration and propagation within these networks. These

metrics can capture aspects of functional network topology in

cognitive processes (32), their abilities (66), and psychiatric

disorders (67, 68). These topological features reflect the complexity

of time-series data pertaining to local and regional activities.

Specifically, the hub region of the brain is influenced by other brain

regions during the integration process; this interaction induces

region-specific complexity (58, 69, 70). This characteristic is

significantly advantageous from an application viewpoint because

the local and regional complexity can be evaluated using low-

density EEG equipment, which offers high versatility. High-density

EEG is required for evaluating the topological features of functional

networks (71).

In the interactions among brain regions, the evaluation

of functional networks based on averages obtained over long

time-windows, known as static functional connectivity, is not

sufficient. The interaction of neural activity during cognitive

processes, even during the resting state, exhibits significant

dynamic properties [reviewed in Hutchison et al. (72)]. Dynamic

functional connectivity, which involves the temporal variation of

functional connectivity through sliding windows, was proposed to

evaluate dynamic interactions [reviewed in Hutchison et al. (72)].

This approach to dynamic functional connectivity has succeeded in

capturing the network dynamics that support cognitive functions

(73, 74) and alterations caused by psychiatric disorders (75, 76).

Historically, there was ambiguity in setting the window, but

currently, by associating it with the distribution of quasi-stable

states of neural activity, a strict window setting can be achieved,

allowing this method to successfully detect network patterns

that reflect cognitive processes (77). Another recent advancement

in studies on dynamic functional connectivity is the focus on

dynamic phase synchronization instead of mere synchronization.

This emphasizes the patterns produced by the phase difference

in instantaneous phase components of neural activities between

brain regions, and has successfully detected age-related alterations

in functional networks, representing a significant improvement

in detection abilities (78). Dynamic phase synchronization has

evolved into a novel method for detecting dynamic whole-

brain activity states based on the whole-brain distribution of

instantaneous frequency, termed instantaneous frequency micro-

states (79).

Considering future research trends for metrics of neural

data, novel metrics are needed instead of focusing solely on the

synchronization of neural activity. This is because the neural

activity of the brain is dynamic in nature, including transient

behaviors (79, 80). Therefore, the assumption of time invariance

during certain periods in the evaluation of synchronization proves

difficult in the presence of moment-to-moment dynamic behaviors.

A recent study revealed that the propagation of a momentary drop

in complexity within local and regional neural activity modulates

interactions in hierarchical neural networks (10). This implies

that moment-to-moment dynamic characteristics, which cannot

be captured by synchronization alone, are essential for precise

interactions related to brain activity. Metrics that address this

challenge are likely to be developed in the future.

3 Analysis of pupil data

3.1 Metrics for pupillometry

In 1982, Usui and Stark demonstrated an inverted U-shape

profile of the temporal complexity of pupil diameter characteristics

relative to the degree of dilation (50). They attributed this

phenomenon to autonomous fluctuations in internal neural activity

and the non-linearity of neural pathways that control pupil

diameter in response to the levels of activity. This understanding

was based on the erstwhile knowledge that pupil diameters are

regulated by the dilator muscle controlled by the sympathetic

neural system and the sphincter muscle controlled by the

parasympathetic neural system. Recently, it has been discovered

that the autonomous neural fluctuations originate from the locus

coeruleus (LC), which serves mainly as a common source for

the sympathetic and parasympathetic pathways, at least partially

(81) (see the overview of these neural pathways in Figure 2A).

The LC plays a crucial role in coordinating the arousal and

attention functions [reviewed in Aston-Jones and Cohen (43)].

Specifically, the inhibitory projections from the LC to the Edinger-

Westphal nucleus (EWN) include contralateral projections on the

left and right sides, and not only ipsilateral projections. This is

unlike the sympathetic neural pathway, which comprises only

ipsilateral projections (82). Furthermore, the LC, other nuclei, and

various brain regions are sources of fluctuations in neural activity

that significantly influence pupil diameter behaviors, depending

on the cognitive process. This influence has been demonstrated

by multimodal experiments that combined pupillometry with

fMRI (46, 83). These characteristics of pupil diameters involve

neural activity deep within the brain that cannot be captured

by EEG/MEG (43) and faster components (45, 48) that cannot

be detected by fMRI. Therefore, the addition of pupillometry is

crucial for capturing deep brain interactions. However, pupil data

present unique challenges due to missing data and artifacts from

gaze movements and blinks, as well as nonlinear transformations

and multiple projections from various brain regions and nuclei.

Despite a substantial body of research proposing fundamental

preprocessing, normalization, decomposition techniques, and

temporal lag correction for pupil response [as illustrated in

Figure 2B and reviewed in Fink et al. and Shirama et al. (84, 85)],

evaluating such complex pupil data remains a challenging process.

In addition to assessing pupil size, which is the focus of the

majority of studies (43, 46, 83, 86), the application of non-linear
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FIGURE 2

(A) Neural pathways for regulating pupil diameter: the dilator muscle controlled by the sympathetic neural system and the sphincter muscle governed

by the parasympathetic neural system. (B) Typical preprocessing pipeline for pupil data, including artifact removal, normalization, and decomposition.

dynamic analysis has also progressed (51, 54–56). Recent studies

have identified deterministic properties of pupil behavior that

reflect internal neural activity (51, 55). Nobukawa et al. revealed

the deterministic properties of spontaneous pupil behavior by

combining sample entropy and surrogate data analyzes. Sviridova

et al. also demonstrated these deterministic properties using various

types of nonlinear analyzes, such as metrics from recurrence

plots, the largest Lyapunov exponent, and deterministic nonlinear

prediction (55). These properties, characterized by the complexity

and symmetry of the left and right pupil diameters, are indicative

of sleepiness (54) and deficits in attentional function (49, 56).

Specifically, the complexity measured by Shannon entropy and

determinism in cross-recurrence analysis correlates with sleepiness

(54). Asymmetry, measured by transfer entropy between the left

and right time series of pupil size, and differences in complexity

between the right and left eyes measured by sample entropy,

reflect the pathology of attention deficit hyperactivity disorder

[ADHD; (49, 56)]. These metrics, including pupil size, complexity,

and symmetry, have a complementary relationship in identifying

pathologies related to attention deficits (49); therefore, they may be

utilized to derive components of neural activity frommultiple brain

regions and nuclei.

3.2 Computational models for pupil data

Modeling that incorporates non-linear neural pathways and

internal neural activity reproduced by non-linear dynamic systems

is effective as a complementary approach for estimating internal

neural activity from pupil characteristics (50, 51). A pioneering

study in this field by Usui and Stark applied fluctuating neural

activity to the sympathetic (to the pupil dilator muscle) and

parasympathetic pathways (to the pupil sphincter muscle) (50). In

this model, the non-linear characteristics of these neural pathways

elicit the emergence of detailed time-series patterns of internal

neural activity near threshold levels. Consequently, the degree of

temporal complexity of pupil size exhibits an inverted U-shaped

relationship with the degree of dilation. This characteristic aligns

well with the actual temporal behaviors of pupil size. Johansson
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and Balkenius developed a more complex model that considers

multiple projections related to pupil properties and a neural system

comprising the amygdala, LC, cerebellum, and other regions (87).

Additionally, Nobukawa’s model, which includes precise mapping

of both contralateral and ipsilateral projections from the LC

to the EWN, demonstrates that contralateral projections play a

significant role in enhancing the inverted-U shaped profile of

complexity for the pupillary characteristics relative to the pupil

size (51). This model also successfully estimated the imbalance

of internal LC activity between the left and right sides in cases

of ADHD (56). Poynter suggested that pupil diameter asymmetry

could reflect a left-right imbalance in LC activity, and that

this degree of asymmetry is correlated with the severity of

inattention, impulsivity, and hyperactivity (88). Nobukawa’s model

identified that hyperactivity on the right side of the LC causes the

pupil diameter asymmetry observed in patients with ADHD, as

demonstrated via comparisons with physiological pupil behaviors

(56).

Thus, the combination of multiple metrics for pupil behavior

and the application of models to neural systems controlling pupil

behavior can enhance the spatiotemporal utility for estimating

inherent neural activity. It can also provide complementary

data obtained from neural activities and facilitate the effective

integration of neural and behavioral data.

4 Multimodal analysis for neural and
pupillometry sata

Recent studies utilizing simultaneous multimodal

measurements of neural and behavioral activities, including pupil

diameter, heart rate, and body movements, have demonstrated

strong correlations between dynamic neural processes across

various hierarchical levels, from single-neuron spikes to global

brain networks, and these behavioral metrics (89–91) [see reviews

in Aston-Jones and Cohen and van der Wel and van Steenbergen

(43, 92)]. Specifically, the dynamic characteristics of pupil size

offer valuable insights into neural states, reflecting factors such as

arousal levels (93), cognitive functions (94, 95), and psychiatric

conditions (49, 96–98) [reviewed in Aston-Jones and Cohen and

van der Wel and van Steenbergen (43, 92)] (51).

As discussed in Section 2, various metrics have been developed

to capture neural network activities. In parallel, research integrating

multimodal measurements, such as the simultaneous monitoring

of pupil dynamics with neuroimaging, has advanced significantly

(52, 53, 99). As illustrated in Figure 1B, this approach seeks to

utilize the spatial and temporal coverage of pupil measurements

to complement the spatiotemporal range of EEG, MEG, and

fMRI. Specifically, studies have highlighted correlations between

pupil size and steady-state response BOLD signals obtained from

fMRI, as well as associations with the selective attention, salience,

error-detection, and decision-making processes (52). Furthermore,

functional connectivity analyzes have revealed correlations between

the functional connections of the superior frontal gyrus and pupil

size, suggesting that these measurements can provide insights

beyond regional activity alone (52).

Despite these advances, most evaluations based on multimodal

measurements with pupillometry predominantly focus on pupil

size (52, 53). To fully exploit the relatively high temporal resolution

of pupil measurements, future research should aim to enhance the

utility of indices based on pupil dynamics, as discussed in Section 3.

This will help establish pupil measurements as a more integral tool

complementary to multimodal neuroimaging.

5 Conclusion

This perspective highlighted recent advances in the study of

neuroimaging and behavioral data, with a focus on pupillometry.

The targeted spatiotemporal scales vary depending on the

modalities used, as also on the segregation and interactions of

different levels of neural activity. Future research is expected

to place greater emphasis on interactions within deep brain

regions that involve a broad range of fast temporal scales, which

can be captured by pupillometry but not fully by EEG or

fMRI. Consequently, the adoption of multiple and multimodal

measurements and analysis techniques is anticipated to increase, to

enhance our understanding of complex neural processes.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

SN: Conceptualization, Data curation, Formal analysis,

Funding acquisition, Investigation, Methodology, Project

administration, Resources, Software, Supervision, Validation,

Visualization, Writing – original draft, Writing – review & editing.

AS: Writing – original draft, Writing – review & editing. TT:

Writing – original draft, Writing – review & editing. ST: Writing –

original draft, Writing – review & editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by JSPS KAKENHI for Grant-in-Aid for Scientific

Research [A; grant number JP22H00492 (ST), C; grant number

JP22K12183 (SN), grant number JP23K03024 (AS), grant number

JP23K06983 (TT), and grant number JP23K07022 (ST)] and Grant-

in-Aid for Transformative Research Areas [A; JP20H05921 (SN)]

and the Joint Usage/Research Program of the Medical Institute of

Developmental Disabilities Research, Showa University (ST).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Frontiers inNeurology 06 frontiersin.org

https://doi.org/10.3389/fneur.2024.1489822
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Nobukawa et al. 10.3389/fneur.2024.1489822

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

1. Sporns O. The complex brain: connectivity, dynamics, information. Trends Cogn
Sci. (2022) 26:1066–7. doi: 10.1016/j.tics.2022.08.002

2. Seguin C, Sporns O, Zalesky A. Brain network communication:
concepts, models and applications. Nat Rev Neurosci. (2023) 24:557–74.
doi: 10.1038/s41583-023-00718-5

3. Beckmann CF, DeLuca M, Devlin JT, Smith SM. Investigations into resting-state
connectivity using independent component analysis. Philos Trans Royal Soc B Biol Sci.
(2005) 360:1001–13. doi: 10.1098/rstb.2005.1634

4. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME.
The human brain is intrinsically organized into dynamic, anticorrelated functional
networks. Proc Natl Acad Sci USA. (2005) 102:9673–8. doi: 10.1073/pnas.0504136102

5. Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, et al.
Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA.
(2006) 103:13848–53. doi: 10.1073/pnas.0601417103

6. Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD. Tracking
whole-brain connectivity dynamics in the resting state. Cerebr Cortex. (2014) 24:663–
76. doi: 10.1093/cercor/bhs352

7. Calhoun VD, Miller R, Pearlson G, Adalı T. The chronnectome: time-varying
connectivity networks as the next frontier in fMRI data discovery. Neuron. (2014)
84:262–74. doi: 10.1016/j.neuron.2014.10.015

8. Zalesky A, Fornito A, Cocchi L, Gollo LL, Breakspear M. Time-resolved
resting-state brain networks. Proc Natl Acad Sci USA. (2014) 111:10341–6.
doi: 10.1073/pnas.1400181111

9. Preti MG, Bolton TA, Van De Ville D. The dynamic functional
connectome: state-of-the-art and perspectives. Neuroimage. (2017) 160:41–54.
doi: 10.1016/j.neuroimage.2016.12.061

10. Krohn S, von Schwanenflug N, Waschke L, Romanello A, Gell M, Garrett DD,
et al. A spatiotemporal complexity architecture of human brain activity. Sci Adv. (2023)
9:eabq3851. doi: 10.1126/sciadv.abq3851

11. Sporns O, Faskowitz J, Teixeira AS, Cutts SA, Betzel RF. Dynamic expression
of brain functional systems disclosed by fine-scale analysis of edge time series. Netw
Neurosci. (2021) 5:405–33. doi: 10.1162/netn_a_00182

12. Santos FA, Tewarie PK, Baudot P, Luchicchi A, Barros de Souza D, Girier G,
et al. Emergence of high-order functional hubs in the human brain. bioRxiv. (2023)
2023:2023–02. doi: 10.1101/2023.02.10.528083

13. Betzel RF, Cutts SA, Tanner J, Greenwell SA, Varley T, Faskowitz J,
et al. Hierarchical organization of spontaneous co-fluctuations in densely sampled
individuals using fMRI. Netw Neurosci. (2023) 7:926–49. doi: 10.1162/netn_a_00321

14. Thiebaut de Schotten M, Forkel SJ. The emergent properties of the connected
brain. Science. 2022) 378:505–10. doi: 10.1126/science.abq2591

15. Logothetis NK. What we can do and what we cannot do with fMRI. Nature.
(2008) 453:869–78. doi: 10.1038/nature06976

16. Beppi C, Violante IR, Scott G, Sandrone S. EEG, MEG and neuromodulatory
approaches to explore cognition: Current status and future directions. Brain Cogn.
(2021) 148:105677. doi: 10.1016/j.bandc.2020.105677

17. Iivanainen J, Mäkinen AJ, Zetter R, Stenroos M, Ilmoniemi RJ,
Parkkonen L. Spatial sampling of MEG and EEG based on generalized
spatial-frequency analysis and optimal design. NeuroImage. (2021) 245:118747.
doi: 10.1016/j.neuroimage.2021.118747

18. Niso G, Krol LR, Combrisson E, Dubarry AS, Elliott MA, François C, et al. Good
scientific practice in EEG and MEG research: progress and perspectives. NeuroImage.
(2022) 257:119056. doi: 10.1016/j.neuroimage.2022.119056

19. Michel CM, Koenig T. EEG microstates as a tool for studying the temporal
dynamics of whole-brain neuronal networks: a review.Neuroimage. (2018) 180:577–93.
doi: 10.1016/j.neuroimage.2017.11.062

20. Tewarie P, Liuzzi L, O’Neill GC, Quinn AJ, Griffa A, Woolrich MW,
et al. Tracking dynamic brain networks using high temporal resolution
MEG measures of functional connectivity. NeuroImage. (2019) 200:38–50.
doi: 10.1016/j.neuroimage.2019.06.006

21. Tarailis P, Koenig T, Michel CM, Griškova-Bulanova I. The functional aspects
of resting EEG microstates: a systematic review. Brain Topogr. (2023) 9:1–37.
doi: 10.1007/s10548-023-00958-9

22. Li Y, Gao J, Yang Y, Zhuang Y, Kang Q, Li X, et al. Temporal and spatial variability
of dynamic microstate brain network in disorders of consciousness. CNS Neurosci
Therapeut. (2024) 30:e14641. doi: 10.1111/cns.14641

23. Nunez PL, Srinivasan R, Westdorp AF, Wijesinghe RS, Tucker DM, Silberstein
RB, et al. EEG coherency: I: statistics, reference electrode, volume conduction,
Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephal Clin
Neurophysiol. (1997) 103:499–515.

24. Nolte G, Holroyd T, Carver F, Coppola R, Hallett M. “Localizing brain
interactions from rhythmic EEG/MEG data,” in The 26th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society. Vol. 1. San
Francisco, CA: IEEE (2004). p. 998–1001.

25. Eguiluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV.
Scale-free brain functional networks. Phys Rev Lett. (2005) 94:e018102.
doi: 10.1103/PhysRevLett.94.018102

26. van den Heuvel M, Mandl R, Luigjes J, Pol HH. Microstructural organization of
the cingulum tract and the level of default mode functional connectivity. J Neurosci.
(2008) 28:10844–51. doi: 10.1523/JNEUROSCI.2964-08.2008

27. Vinck M, Oostenveld R, Van Wingerden M, Battaglia F, Pennartz CM. An
improved index of phase-synchronization for electrophysiological data in the presence
of volume-conduction, noise and sample-size bias. Neuroimage. (2011) 55:1548–65.
doi: 10.1016/j.neuroimage.2011.01.055

28. van den Heuvel MP, Sporns O. Network hubs in the human brain. Trends Cogn
Sci. (2013) 17:683–96. doi: 10.1016/j.tics.2013.09.012

29. Pendl SL, Salzwedel AP, Goldman BD, Barrett LF, Lin W, Gilmore JH, et al.
Emergence of a hierarchical brain during infancy reflected by stepwise functional
connectivity. Hum Brain Map. (2017) 38:2666–82. doi: 10.1002/hbm.23552

30. Engels MM, StamCJ, van der FlierWM, Scheltens P, deWaal H, van Straaten EC.
Declining functional connectivity and changing hub locations in Alzheimer’s disease:
an EEG study. BMC Neurology. (2015) 15:145. doi: 10.1186/s12883-015-0400-7

31. Takahashi T, Yamanishi T, Nobukawa S, Kasakawa S, Yoshimura Y,
Hiraishi H, et al. Band-specific atypical functional connectivity pattern in
childhood autism spectrum disorder. Clin Neurophysiol. (2017) 128:1457–65.
doi: 10.1016/j.clinph.2017.05.010

32. Hasegawa C, Takahashi T, Ikeda T, Yoshimura Y, Hiraishi H, Nobukawa
S, et al. Effects of familiarity on child brain networks when listening to
a storybook reading: a magneto-encephalographic study. NeuroImage. (2021)
241:118389. doi: 10.1016/j.neuroimage.2021.118389

33. Tobe M, Nobukawa S. Functional connectivity estimation by phase
synchronization and information flow approaches in coupled chaotic dynamical
systems. IEICE Trans Fundament Electr Commun Comput Sci. (2022)
2022:2021EAP1169. doi: 10.1587/transfun.2021EAP1169

34. Farahani FV, Karwowski W, Lighthall NR. Application of graph theory for
identifying connectivity patterns in human brain networks: a systematic review. Front
Neurosci. (2019) 13:439505. doi: 10.3389/fnins.2019.00585

35. Ismail LE, Karwowski W. A graph theory-based modeling of functional brain
connectivity based on EEG: a systematic review in the context of neuroergonomics.
IEEE Access. (2020) 8:155103–35. doi: 10.1109/ACCESS.2020.3018995

36. Pegg EJ, Taylor JR, Keller SS, Mohanraj R. Interictal structural and functional
connectivity in idiopathic generalized epilepsy: a systematic review of graph theoretical
studies. Epilep Behav. (2020) 106:107013. doi: 10.1016/j.yebeh.2020.107013

37. Lujan MR, Perez-Pozuelo I, Grandner MA. Past, present, and future of
multisensory wearable technology to monitor sleep and circadian rhythms. Front Digit
Health (2021) 3:721919. doi: 10.3389/fdgth.2021.721919

38. Mahanama B, Jayawardana Y, Rengarajan S, Jayawardena G, Chukoskie L, Snider
J, et al. Eyemovement and pupil measures: a review. Front Comput Sci. (2022) 3:733531.
doi: 10.3389/fcomp.2021.733531

39. Gullett N, Zajkowska Z, Walsh A, Harper R, Mondelli V. Heart rate variability
(HRV) as a way to understand associations between the autonomic nervous system
(ANS) and affective states: a critical review of the literature. Int J Psychophysiol. (2023)
8:1. doi: 10.1016/j.ijpsycho.2023.08.001

40. Iwama S, Takemi M, Eguchi R, Hirose R, Morishige M, Ushiba J. Two common
issues in synchronized multimodal recordings with EEG: Jitter and Latency. Neurosci
Res. (2023) 30:518625. doi: 10.1101/2022.11.30.518625

Frontiers inNeurology 07 frontiersin.org

https://doi.org/10.3389/fneur.2024.1489822
https://doi.org/10.1016/j.tics.2022.08.002
https://doi.org/10.1038/s41583-023-00718-5
https://doi.org/10.1098/rstb.2005.1634
https://doi.org/10.1073/pnas.0504136102
https://doi.org/10.1073/pnas.0601417103
https://doi.org/10.1093/cercor/bhs352
https://doi.org/10.1016/j.neuron.2014.10.015
https://doi.org/10.1073/pnas.1400181111
https://doi.org/10.1016/j.neuroimage.2016.12.061
https://doi.org/10.1126/sciadv.abq3851
https://doi.org/10.1162/netn_a_00182
https://doi.org/10.1101/2023.02.10.528083
https://doi.org/10.1162/netn_a_00321
https://doi.org/10.1126/science.abq2591
https://doi.org/10.1038/nature06976
https://doi.org/10.1016/j.bandc.2020.105677
https://doi.org/10.1016/j.neuroimage.2021.118747
https://doi.org/10.1016/j.neuroimage.2022.119056
https://doi.org/10.1016/j.neuroimage.2017.11.062
https://doi.org/10.1016/j.neuroimage.2019.06.006
https://doi.org/10.1007/s10548-023-00958-9
https://doi.org/10.1111/cns.14641
https://doi.org/10.1103/PhysRevLett.94.018102
https://doi.org/10.1523/JNEUROSCI.2964-08.2008
https://doi.org/10.1016/j.neuroimage.2011.01.055
https://doi.org/10.1016/j.tics.2013.09.012
https://doi.org/10.1002/hbm.23552
https://doi.org/10.1186/s12883-015-0400-7
https://doi.org/10.1016/j.clinph.2017.05.010
https://doi.org/10.1016/j.neuroimage.2021.118389
https://doi.org/10.1587/transfun.2021EAP1169
https://doi.org/10.3389/fnins.2019.00585
https://doi.org/10.1109/ACCESS.2020.3018995
https://doi.org/10.1016/j.yebeh.2020.107013
https://doi.org/10.3389/fdgth.2021.721919
https://doi.org/10.3389/fcomp.2021.733531
https://doi.org/10.1016/j.ijpsycho.2023.08.001
https://doi.org/10.1101/2022.11.30.518625
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Nobukawa et al. 10.3389/fneur.2024.1489822

41. Foster RG. Sleep, circadian rhythms and health. Interface Focus. (2020)
10:20190098. doi: 10.1098/rsfs.2019.0098

42. Hyun U, Sohn JW. Autonomic control of energy balance and glucose
homeostasis. Exp Mol Med. (2022) 54:370–6. doi: 10.1038/s12276-021-00705-9

43. Aston-Jones G, Cohen JD. An integrative theory of locus coeruleus-
norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci.
(2005) 28:403–50. doi: 10.1146/annurev.neuro.28.061604.135709

44. Viglione A, Mazziotti R, Pizzorusso T. From pupil to the brain: new insights
for studying cortical plasticity through pupillometry. Front Neural Circ. (2023)
17:1151847. doi: 10.3389/fncir.2023.1151847

45. Montefusco-Siegmund R, Schwalm M, Jubal ER, Devia C, Egaña JI, Maldonado
PE. Alpha EEG activity and pupil diameter coupling during inactive wakefulness in
humans. eNeuro. (2022) 9:60. doi: 10.1523/ENEURO.0060-21.2022

46. Lloyd B, de Voogd LD, Mäki-Marttunen V, Nieuwenhuis S. Pupil size reflects
activation of subcortical ascending arousal system nuclei during rest. ELife. (2023)
12:e84822. doi: 10.7554/eLife.84822

47. Takahashi K, Sobczak F, Pais-Roldán P, Yu X. Characterizing brain stage-
dependent pupil dynamics based on lateral hypothalamic activity. Cerebr Cortex.
(2023) 33:10736–49. doi: 10.1093/cercor/bhad309

48. Cazettes F, Reato D, Morais JP, Renart A, Mainen ZF. Phasic activation of
dorsal raphe serotonergic neurons increases pupil size. Curr Biol. (2021) 31:192–7.
doi: 10.1016/j.cub.2020.09.090

49. Nobukawa S, Shirama A, Takahashi T, Takeda T, Ohta H, Kikuchi
M, et al. Identification of attention-deficit hyperactivity disorder based on
the complexity and symmetricity of pupil diameter. Sci Rep. (2021) 11:1–14.
doi: 10.1038/s41598-021-88191-x

50. Usui S, Stark L. A model for nonlinear stochastic behavior of the pupil. Biol
Cybernet. (1982) 45:13–21.

51. Nobukawa S, Shirama A, Takahashi T, Takeda T, Ohta H, Kikuchi M, et al.
Pupillometric complexity and symmetricity follow inverted-U curves against baseline
diameter due to crossed locus coeruleus projections to the Edinger-Westphal Nucleus.
Front Physiol. (2021) 12:92. doi: 10.3389/fphys.2021.614479

52. DiNuzzo M, Mascali D, Moraschi M, Bussu G, Maugeri L, Mangini F, et al.
Brain networks underlying eye’s pupil dynamics. Front Neurosci. (2019) 13:965.
doi: 10.3389/fnins.2019.00965

53. Groot JM, Boayue NM, Csifcsák G, Boekel W, Huster R, Forstmann BU, et al.
Probing the neural signature of mind wandering with simultaneous fMRI-EEG and
pupillometry. NeuroImage. (2021) 224:117412. doi: 10.1016/j.neuroimage.2020.117412

54. Piu P, Serchi V, Rosini F, Rufa A. A cross-recurrence analysis of the pupil
size fluctuations in steady scotopic conditions. Front Neurosci. (2019) 13:407.
doi: 10.3389/fnins.2019.00407

55. Sviridova N, Artoni P, Fagiolini M, Hensch TK, Aihara K. “Dynamical
characteristics of wild-type mouse spontaneous pupillary fluctuations,” in 2021 43rd
Annual International Conference of the IEEE Engineering in Medicine & Biology Society
(EMBC). Mexico: IEEE (2021). p. 853–6.

56. Kumano H, Nobukawa S, Shirama A, Takahashi T, Takeda T, Ohta H, et al.
Asymmetric complexity in a pupil control model with laterally imbalanced neural
activity in the locus coeruleus: a potential biomarker for attention-deficit/hyperactivity
disorder. Neural Comput. (2022) 34:2388–407. doi: 10.1162/neco_a_01545

57. Stam CJ, Nolte G, Daffertshofer A. Phase lag index: assessment of functional
connectivity from multi channel EEG and MEG with diminished bias from
common sources. Hum Brain Map. (2007) 28:1178–93. doi: 10.1002/hbm.
20346

58. Ando M, Nobukawa S, Kikuchi M, Takahashi T. Alteration of neural
network activity with aging focusing on temporal complexity and functional
connectivity within electroencephalography. Front Aging Neurosci. (2022) 14:793298.
doi: 10.3389/fnagi.2022.793298

59. Nobukawa S, Yamanishi T, Ueno K, Mizukami K, Nishimura H, Takahashi T.
High phase synchronization in alpha band activity in older subjects with high creativity.
Front Hum Neurosci. (2020) 14:420. doi: 10.3389/fnhum.2020.583049

60. Takahashi T, Goto T, Nobukawa S, Tanaka Y, Kikuchi M, Higashima M,
et al. Abnormal functional connectivity of high-frequency rhythms in drug-naïve
schizophrenia.Clin Neurophysiol. (2018) 129:222–31. doi: 10.1016/j.clinph.2017.11.004

61. Nobukawa S, Yamanishi T, Kasakawa S, Nishimura H, Kikuchi M,
Takahashi T. Classification methods based on complexity and synchronization of
electroencephalography signals in Alzheimer’s disease. Front Psychiat. (2020) 11:255.
doi: 10.3389/fpsyt.2020.00255

62. Watts DJ, Strogatz SH. Collective dynamics of “small-world” networks. Nature.
(1998) 393:440–2.

63. Fair DA, Dosenbach NU, Church JA, Cohen AL, Brahmbhatt S, Miezin FM, et al.
Development of distinct control networks through segregation and integration. Proc
Natl Acad Sci USA. (2007) 104:13507–12. doi: 10.1073/pnas.0705843104

64. Sporns O, Zwi JD. The small world of the cerebral cortex. Neuroinformatics.
(2004) 2:145–62. doi: 10.1385/NI:2:2:145

65. Freeman L. Centrality in social networks conceptual clarification. Soc Netw.
1:215. doi: 10.1016/0378-8733(78)90021-7

66. Tobe M, Nobukawa S, Mizukami K, Kawaguchi M, Higashima M, Tanaka
Y, et al. Hub structure in functional network of EEG signals supporting high
cognitive functions in older individuals. Front Aging Neurosci. (2023) 15:1130428.
doi: 10.3389/fnagi.2023.1130428

67. Takahashi T, Murata T, Omori M, Kosaka H, Takahashi K, Yonekura Y, et al.
Quantitative evaluation of age-related white matter microstructural changes on MRI
by multifractal analysis. J Neurol Sci. (2004) 225:33–7. doi: 10.1016/j.jns.2004.06.016

68. Ishibashi T, Nobukawa S, Tobe M, Kikuchi M, Takahashi T. Alterations in
the hub structure of whole-brain functional networks in patients with drug-naïve
schizophrenia: insights from electroencephalography-based research. Psychiat Clin
Neurosci Rep. (2024) 3:e164. doi: 10.1002/pcn5.164

69. Sporns O, Honey CJ, Kötter R. Identification and classification of hubs in brain
networks. PLoS ONE. (2007) 2:e1049. doi: 10.1371/journal.pone.0001049

70. Misic B, Vakorin VA, Paus T, McIntosh AR. Functional embedding
predicts the variability of neural activity. Front Syst Neurosci. (2011) 5:90.
doi: 10.3389/fnsys.2011.00090

71. Iinuma Y, Nobukawa S, Mizukami K, Kawaguchi M, Higashima M, Tanaka Y,
et al. Enhanced temporal complexity of EEG signals in older individuals with high
cognitive functions. Front Neurosci. (2022) 16:878495. doi: 10.3389/fnins.2022.878495

72. Hutchison RM, Womelsdorf T, Allen EA, Bandettini PA, Calhoun VD, Corbetta
M, et al. Dynamic functional connectivity: promise, issues, and interpretations.
Neuroimage. (2013) 80:360–78. doi: 10.1016/j.neuroimage.2013.05.079

73. Gonzalez-Castillo J, Bandettini PA. Task-based dynamic functional
connectivity: recent findings and open questions. Neuroimage. (2018) 180:526–33.
doi: 10.1016/j.neuroimage.2017.08.006

74. Song H, Rosenberg MD. Predicting attention across time and contexts
with functional brain connectivity. Curr Opin Behav Sci. (2021) 40:33–44.
doi: 10.1016/j.cobeha.2020.12.007

75. Jalilianhasanpour R, Ryan D, Agarwal S, Beheshtian E, Gujar SK, Pillai JJ, et al.
Dynamic brain connectivity in resting state functional MR imaging. Neuroimag Clin.
(2021) 31:81–92. doi: 10.1016/j.nic.2020.09.004

76. Cattarinussi G, Di Giorgio A, Moretti F, Bondi E, Sambataro F. Dynamic
functional connectivity in schizophrenia and bipolar disorder: a review of the evidence
and associations with psychopathological features. Progr Neuro-Psychopharmacol Biol
Psychiat. (2023) 2023:110827. doi: 10.1016/j.pnpbp.2023.110827

77. Guan K, Zhang Z, Chai X, Tian Z, Liu T, Niu H. EEG based dynamic
functional connectivity analysis in mental workload tasks with different
types of information. IEEE Trans Neural Syst Rehabil Eng. (2022) 30:632–42.
doi: 10.1109/TNSRE.2022.3156546

78. Nobukawa S, Kikuchi M, Takahashi T. Changes in functional connectivity
dynamics with aging: a dynamical phase synchronization approach. Neuroimage.
(2019) 188:357–68. doi: 10.1016/j.neuroimage.2018.12.008

79. Nobukawa S, Ikeda T, Kikuchi M, Takahashi T. Atypical instantaneous spatio-
temporal patterns of neural dynamics in Alzheimer’s disease. Sci Rep. (2024) 14:88.
doi: 10.1038/s41598-023-50265-3

80. Garrett DD, Samanez-Larkin GR, MacDonald SW, Lindenberger U,
McIntosh AR, Grady CL. Moment-to-moment brain signal variability: a next
frontier in human brain mapping? Neurosci Biobehav Rev. (2013) 37:610–24.
doi: 10.1016/j.neubiorev.2013.02.015

81. Sharon O, Fahoum F, Nir Y. Transcutaneous vagus nerve stimulation in humans
induces pupil dilation and attenuates alpha oscillations. J Neurosci. (2021) 41:320–30.
doi: 10.1523/JNEUROSCI.1361-20.2020

82. Liu Y, Rodenkirch C, Moskowitz N, Schriver B, Wang Q. Dynamic
lateralization of pupil dilation evoked by locus coeruleus activation results from
sympathetic, not parasympathetic, contributions. Cell Rep. (2017) 20:3099–112.
doi: 10.1016/j.celrep.2017.08.094

83. Sobczak F, Pais-Roldán P, Takahashi K, Yu X. Decoding the brain state-
dependent relationship between pupil dynamics and resting state fMRI signal
fluctuation. Elife. (2021) 10:e68980. doi: 10.7554/eLife.68980

84. Kret ME, Sjak-Shie EE. Preprocessing pupil size data: guidelines and code. Behav
Res Methods. (2019) 51:1336–42. doi: 10.3758/s13428-018-1075-y

85. Fink L, Simola J, Tavano A, Lange E, Wallot S, Laeng B. From pre-processing
to advanced dynamic modeling of pupil data. Behav Res Methods. (2024) 56:1376–412.
doi: 10.3758/s13428-023-02098-1

86. Shirama A, Takeda T, Ohta H, Iwanami A, Toda S, Kato N. Atypical alert
state control in adult patients with ADHD: a pupillometry study. PLoS ONE. (2020)
15:e0244662. doi: 10.1371/journal.pone.0244662

87. Johansson B, Balkenius C. A computational model of pupil dilation. Connect Sci.
(2018) 30:5–19. doi: 10.1080/09540091.2016.1271401

88. Poynter WD. Pupil-size asymmetry is a physiologic trait related to gender,
attentional function, and personality. Lateral Asymmetr Body Brain Cogn. (2017)
22:654–70. doi: 10.1080/1357650X.2016.1268147

Frontiers inNeurology 08 frontiersin.org

https://doi.org/10.3389/fneur.2024.1489822
https://doi.org/10.1098/rsfs.2019.0098
https://doi.org/10.1038/s12276-021-00705-9
https://doi.org/10.1146/annurev.neuro.28.061604.135709
https://doi.org/10.3389/fncir.2023.1151847
https://doi.org/10.1523/ENEURO.0060-21.2022
https://doi.org/10.7554/eLife.84822
https://doi.org/10.1093/cercor/bhad309
https://doi.org/10.1016/j.cub.2020.09.090
https://doi.org/10.1038/s41598-021-88191-x
https://doi.org/10.3389/fphys.2021.614479
https://doi.org/10.3389/fnins.2019.00965
https://doi.org/10.1016/j.neuroimage.2020.117412
https://doi.org/10.3389/fnins.2019.00407
https://doi.org/10.1162/neco_a_01545
https://doi.org/10.1002/hbm.20346
https://doi.org/10.3389/fnagi.2022.793298
https://doi.org/10.3389/fnhum.2020.583049
https://doi.org/10.1016/j.clinph.2017.11.004
https://doi.org/10.3389/fpsyt.2020.00255
https://doi.org/10.1073/pnas.0705843104
https://doi.org/10.1385/NI:2:2:145
https://doi.org/10.1016/0378-8733(78)90021-7
https://doi.org/10.3389/fnagi.2023.1130428
https://doi.org/10.1016/j.jns.2004.06.016
https://doi.org/10.1002/pcn5.164
https://doi.org/10.1371/journal.pone.0001049
https://doi.org/10.3389/fnsys.2011.00090
https://doi.org/10.3389/fnins.2022.878495
https://doi.org/10.1016/j.neuroimage.2013.05.079
https://doi.org/10.1016/j.neuroimage.2017.08.006
https://doi.org/10.1016/j.cobeha.2020.12.007
https://doi.org/10.1016/j.nic.2020.09.004
https://doi.org/10.1016/j.pnpbp.2023.110827
https://doi.org/10.1109/TNSRE.2022.3156546
https://doi.org/10.1016/j.neuroimage.2018.12.008
https://doi.org/10.1038/s41598-023-50265-3
https://doi.org/10.1016/j.neubiorev.2013.02.015
https://doi.org/10.1523/JNEUROSCI.1361-20.2020
https://doi.org/10.1016/j.celrep.2017.08.094
https://doi.org/10.7554/eLife.68980
https://doi.org/10.3758/s13428-018-1075-y
https://doi.org/10.3758/s13428-023-02098-1
https://doi.org/10.1371/journal.pone.0244662
https://doi.org/10.1080/09540091.2016.1271401
https://doi.org/10.1080/1357650X.2016.1268147
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Nobukawa et al. 10.3389/fneur.2024.1489822

89. Reimer J, Froudarakis E, Cadwell CR, Yatsenko D, Denfield GH, Tolias AS. Pupil
fluctuations track fast switching of cortical states during quiet wakefulness. Neuron.
(2014) 84:355–62. doi: 10.1016/j.neuron.2014.09.033

90. Reimer J, McGinley MJ, Liu Y, Rodenkirch C, Wang Q, McCormick DA, et al.
Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex.
Nat Commun. (2016) 7:1–7. doi: 10.1038/ncomms13289

91. Raut RV, Snyder AZ, Mitra A, Yellin D, Fujii N, Malach R, et al. Global waves
synchronize the brain’s functional systems with fluctuating arousal. Sci Adv. (2021)
7:eabf2709. doi: 10.1126/sciadv.abf2709

92. van der Wel P, van Steenbergen H. Pupil dilation as an index of effort
in cognitive control tasks: a review. Psychon Bullet Rev. (2018) 25:2005–15.
doi: 10.3758/s13423-018-1432-y

93. Murphy PR, Vandekerckhove J, Nieuwenhuis S. Pupil-linked arousal determines
variability in perceptual decision making. PLoS Comput Biol. (2014) 10:e1003854.
doi: 10.1371/journal.pcbi.1003854

94. Nakamura NH, Fukunaga M, Oku Y. Respiratory fluctuations in pupil diameter
are not maintained during cognitive tasks. Respirat Physiol Neurobiol. (2019) 265:68–
75. doi: 10.1016/j.resp.2018.07.005

95. Schriver BJ, Perkins SM, Sajda P, Wang Q. Interplay between components
of pupil-linked phasic arousal and its role in driving behavioral choice in
Go/No-Go perceptual decision-making. Psychophysiology. (2020) 57:e13565.
doi: 10.1111/psyp.13565

96. Gotham KO, Siegle GJ, Han GT, Tomarken AJ, Crist RN, Simon DM, et al. Pupil
response to social-emotional material is associated with rumination and depressive
symptoms in adults with autism spectrum disorder. PLoS ONE. (2018) 13:e0200340.
doi: 10.1371/journal.pone.0200340

97. Artoni P, Piffer A, Vinci V, LeBlanc J, Nelson CA, Hensch TK, et al. Deep
learning of spontaneous arousal fluctuations detects early cholinergic defects across
neurodevelopmental mouse models and patients. Proc Natl Acad Sci USA. (2019)
2019:201820847. doi: 10.1073/pnas.1820847116

98. Bast N, Banaschewski T, Dziobek I, Brandeis D, Poustka L, Freitag CM. Pupil
dilation progression modulates aberrant social cognition in autism spectrum disorder.
Aut Res. (2019) 2019:aur.2178. doi: 10.1002/aur.2178

99. Hong L,Walz JM, Sajda P. Your eyes give you away: prestimulus changes in pupil
diameter correlate with poststimulus task-related EEG dynamics. PLoS ONE. (2014)
9:e91321. doi: 10.1371/journal.pone.0091321

Frontiers inNeurology 09 frontiersin.org

https://doi.org/10.3389/fneur.2024.1489822
https://doi.org/10.1016/j.neuron.2014.09.033
https://doi.org/10.1038/ncomms13289
https://doi.org/10.1126/sciadv.abf2709
https://doi.org/10.3758/s13423-018-1432-y
https://doi.org/10.1371/journal.pcbi.1003854
https://doi.org/10.1016/j.resp.2018.07.005
https://doi.org/10.1111/psyp.13565
https://doi.org/10.1371/journal.pone.0200340
https://doi.org/10.1073/pnas.1820847116
https://doi.org/10.1002/aur.2178
https://doi.org/10.1371/journal.pone.0091321
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org

	Recent trends in multiple metrics and multimodal analysis for neural activity and pupillometry
	1 Introduction
	2 Analysis of neural data
	3 Analysis of pupil data
	3.1 Metrics for pupillometry
	3.2 Computational models for pupil data

	4 Multimodal analysis for neural and pupillometry sata
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


