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Traumatic brain injury (TBI) is common and costly. Although neuroimaging 
modalities such as resting-state functional MRI (rsfMRI) promise to differentiate 
injured from healthy brains and prognosticate long-term outcomes, the field 
suffers from heterogeneous findings. To assess whether this heterogeneity stems 
from variability in the TBI populations studied or the imaging methods used, and 
to determine whether a consensus exists in this literature, we performed the first 
systematic review of studies comparing rsfMRI functional connectivity (FC) in 
patients with TBI to matched controls for seven canonical brain networks across 
injury severity, age, chronicity, population type, and various imaging methods. 
Searching PubMed, Web of Science, Google Scholar, and ScienceDirect, 1,105 
manuscripts were identified, 50 fulfilling our criteria. Across these manuscripts, 179 
comparisons were reported between a total of 1,397 patients with TBI and 1,179 
matched controls. Collapsing across injury characteristics, imaging methods, and 
networks, there were roughly equal significant to null findings and increased to 
decreased connectivity differences reported. Whereas most factors did not explain 
these mixed findings, stratifying across severity and chronicity, separately, showed 
a trend of increased connectivity at higher severities and greater chronicities of 
TBI. Among methodological factors, studies were more likely to find connectivity 
differences when scans were longer than 360  s, custom image processing pipelines 
were used, and when patients kept their eyes open versus closed during scans. 
We offer guidelines to address this variability, focusing on aspects of study design 
and rsfMRI acquisition to move the field toward reproducible results with greater 
potential for clinical translation.
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Introduction

In 2014, the Center for Disease Control and Prevention (CDC) 
reported 2.53  million traumatic brain injury (TBI) emergency 
department visits, resulting in 288,000 TBI-related hospitalizations 
and 56,800 TBI-related deaths (1). TBI is a broad diagnostic 
category encompassing massive heterogeneity in the injured 
population as well as injury mechanisms, severities, and 
chronicities. Despite the prevalence of TBI, this heterogeneity has 
complicated the search for objective markers of injury and 
predictors of disability.

Advances in neuroimaging over the last decade have produced 
powerful tools to detect potential markers of brain injury and 
recovery. Though standard clinical neuroimaging is useful for 
identifying structural pathology in TBI, it has limitations in identifying 
pathophysiological mechanisms of injury-related symptoms and 
outcomes (2–4). Resting-state functional MRI (rsfMRI) has recently 
increased in popularity to detect functional alterations in large-scale 
brain networks (5) that are distinct from structural abnormalities, 
potentially providing insights into outcomes where other imaging has 
not. RsfMRI relies on correlated slow wave fluctuations in the blood 
oxygenation level dependent (BOLD) signal between brain regions as 
an index of functional connectivity (FC) (6–8). FC between regions 
has identified several reproducible, large-scale brain networks that 
map nicely onto groups of brain regions that co-activate in task-based 
fMRI studies and/or share structural connectivity in diffusion-based 
MRI in human and non-human primates, such as the default mode, 
executive, salience, and somatomotor networks (7, 9). Comparisons 
of FC within networks across healthy and diseased groups can provide 
insight into functional mechanisms of disease and targets for 
treatment (5, 10, 11).

In these ways, rsfMRI has the potential to capture diffuse 
connectional changes to the brain that may be a hallmark of the 
shearing forces of trauma (12). To date, hundreds of rsfMRI studies 
have been conducted in TBI, including several reviews on the topic. 
The prior reviews have been helpful in identifying patterns of 
connectional differences in specific subgroups of patients with TBI 
(e.g., chronic pain, headache, severe TBI, blast-related injury), using 
specific rsfMRI analysis methods, such as graph analysis, or in 
combination with other imaging modalities, such as diffusion 
imaging (13–20). Despite the growing popularity of rsfMRI in TBI, 
the field suffers from heterogeneous findings. Though the prior 
reviews provide valuable insights into niches within the field, they 
were not designed to resolve the massive heterogeneity in this 
literature, which might be  achieved through more liberal 
study inclusion.

We performed a comprehensive systematic review of rsfMRI 
studies that compared FC between patients with TBI and matched 
controls. Our primary goal was to perform a broader, more inclusive 
review of the literature to identify and characterize consistent FC 
differences that may only become apparent when collapsing across or 
parsing out the results by injury severity, chronicity, age, population 
type, as well as network and imaging methods. We selected these 
factors because they are commonly reported, have face validity, and 
have been studied as possible confounds or covariates to rsfMRI 
differences in TBI. For example, studies show that differences in FC 
occur over time since injury (21, 22), and outcomes vary as a function 
of injury severity, age, chronicity, and population type (23–27). 

We attempted to reduce the complexity in this review by organizing 
results into comparisons of FC within seven of the most commonly 
studied canonical ICA networks (28).

Methods

Identification

This literature review was conducted in accordance with the 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) guidelines (29), as depicted in Figure 1. PubMed, Web of 
Science, Google Scholar, and ScienceDirect were queried with 
keywords to generate articles. Articles prior to July 2020 were 
included, yielding 1,097 records (database search in Figure  1). 
Additional targeted searches were conducted to identify articles from 
known rsfMRI researchers prior to July 2020 that were not captured 
by the four database searches, yielding eight records (targeted author 
search in Figure 1). In total, we identified 1,105 records for screening.

Keywords for PubMed included: (traumatic brain injury [Title/
Abstract]) OR (tbi [Title/Abstract]) AND (rsfmri [Title/Abstract]) 
OR (resting-state [Title/Abstract]). Keywords for Web of Science 
included: TOPIC: (“resting state fMRI” “traumatic brain injury”) OR 
(“rsfMRI” “TBI”) OR (“resting state” “MRI” “traumatic brain 
injury”) OR (“rsfMRI” “traumatic brain injury”) OR (“resting state 
fMRI” “TBI”) across all years and databases. Keywords for Google 
Scholar included: “traumatic brain injury” “resting state functional 
MRI” -rats -dementia -"hepatic encephalopathy”  - “task based.” 
Keywords for ScienceDirect included: Title, abstract, keywords: 
(“Traumatic brain injury” or “TBI”) AND (“resting state” OR 
“rs-fmri”).

Exclusion criteria

Exclusion criteria included: non-human subjects, no TBI subjects, 
no matched controls, no rsfMRI performed, task-based fMRI only, 
abstracts, dissertations, case studies, case series, literature reviews, 
studies that only performed analyses using graph theory, machine 
learning, other novel methods, or did not report within-network FC 
results (Figure 1).

Screening

Query results were converted to the .bib format and imported into 
a shared folder in Mendeley. Two rounds of selection were performed 
by evaluating titles and abstracts. Among six reviewers, two 
independently reviewed each manuscript for inclusion/exclusion 
criteria. If they disagreed, Dr. Bickart made the final decision. After 
screening, 910 manuscripts were excluded, 75 of which were 
duplicates, leaving 195 papers for final eligibility screening (Figure 1).

Eligibility

Next, the reviewers read each paper completely and excluded an 
additional 145 papers based on the same inclusion/exclusion criteria 

https://doi.org/10.3389/fneur.2024.1487796
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Kashou et al. 10.3389/fneur.2024.1487796

Frontiers in Neurology 03 frontiersin.org

as above (Figure 1). In total, three papers via targeted search and 47 
papers via database search were included, yielding 50 papers.

Data extraction

The following information was extracted from each 
manuscript: mechanism of injury, TBI severity, TBI sample 
information (age statistics, gender, sample size), control sample 
information, time post-injury, cross-sectional and/or longitudinal 
results, scanner manufacturer, tesla strength, coil channel, scan 
duration, slice thickness, eyes open or closed, sequences acquired 
during fMRI acquisition, image processing pipeline, software 
used, rsfMRI metrics computed, analysis type, functional 
networks/regions investigated, and statistics reported. For 
longitudinal studies, we extracted the results of cross-sectional, 
between-group FC comparisons at different time points (i.e., 
acute, subacute, or chronic), but did not extract within-group FC 
comparisons over time.

Defining canonical resting-state networks

For comparison purposes, the data extracted from each paper was 
organized into seven canonical networks based on a widely used and 
previously defined parcellation scheme (30, 31). The networks included 
Default Mode (DMN), Executive Control (ECN), Limbic (LN), Dorsal 

Attention (DAN), Salience (SN) or Ventral Attention (VAN), Visual 
(VN), and Sensorimotor (SMN) (Figure 2). Findings reported for seed-
based or region-of-interest (ROI) analyses were assigned to the 
network that incorporated that seed or ROI according to the map 
depicted in Figure 2 and region assignment listed in Table 1. Most 
studies that outlined their own seed/ROI network assignments adhered 
to this model. With the data organized into these networks, we could 
then tabulate results on a comparison-by-comparison basis. Given that 
studies ranged in the number of networks they analyzed, we report 

FIGURE 1

Literature review flow diagram. Diagram depicting identification, screening, eligibility, and inclusion steps performed for this literature review.

FIGURE 2

Schematic of resting-state networks used in this review. Visual 
schematic depicting the anatomical location of each defined 
canonical brain network.
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findings for every comparison made across the 50 studies included 
(Table 2). We only extracted and reported results from the within-
network analyses and excluded graph, between-network, and other 
analyses to enable a semiquantitative summary of results—quantifying 
the proportion of comparisons per network that were significantly 
different between TBI and control populations.

Quality assurance

The original authors of all included papers were emailed to verify 
our interpretation of the results for this review and to obtain additional 
statistics for a meta-analysis. Nineteen of the lead authors were able to 
both verify our interpretation and provide the relevant statistics. This 
was, however, not enough to perform a meta-analysis.

After the data was validated, the number of reported significant 
increases, decreases, and no differences in connectivity were manually 
counted by the reviewers. To ensure accurate transmission of article 
annotation, code was written to count and organize the data into a 
database (Literature Review Toolkit: rsfMRI in TBI [Source code]).1 

1 https://github.com/danielfrees/rsfMRI_LitReview

The manual counts and code were compared and mistakes were 
corrected until both were in concordance.

Parsing the findings into categories

To determine if findings varied by injury characteristics, 
demographic variables, or methodological parameters, we parsed the 
findings into categories: injury severity, age, chronicity, population type, 
and a variety of imaging parameters (Figure 3). These categorizations 
are derived from the prevailing consensus across TBI literature.

For severity, we classified results pertaining to TBI patients based 
on their Glasgow Coma Scale (GCS) scores (32, 33). GCS scores 
greater than or equal to 13 were classified as mild, GCS scores ranging 
from 9 and 12 were considered moderate, and GCS scores less than or 
equal to 8 were considered severe. Some studies included TBI 
participants of varying severities. Therefore, we  also categorized 
findings as mild/moderate, moderate/severe, or mixed (i.e., mild, 
moderate, and severe for such cases).

For age, we classified studies involving subjects aged 12–18 as 
adolescent, age 18 and greater as adult, and otherwise as mixed. 
Studies that met the inclusion criteria did not identify participants 
younger than 12 years old.

TABLE 1 Canonical networks broken down by most commonly referenced brain regions and in accordance with previously defined parcellation 
schemes (30, 31).

Network Brain structures

A Default Mode Network (DMN)  • Medial Prefrontal Cortex (mPFC)

 • Posterior Cingulate Cortex (PCC)

 • Precuneus

 • Angular Gyrus

 • Temporal Poles

 • Temporoparietal Junction (TPJ)

B Executive Control Network (ECN)  • Dorsolateral Prefrontal Cortex (dlPFC)

 • Ventrolateral Prefrontal Cortex (vlPFC)

 • Anterior Cingulate Cortex (ACC)

C Limbic Network (LN)  • Hippocampus

 • Amygdala

 • Pregenual Anterior Cingulate (pgACC)

 • Cingulate Gyrus

D Salience Network (SN) or Ventral Attention Network (VAN)  • Anterior Insula (AI)

 • Dorsal Anterior Cingulate (dACC)

 • Amygdala

 • Ventral Tegmental Area (VTA) or Substantia Nigra

 • Ventral Prefrontal Cortex (vPFC)

 • Ventral Striatum

 • Periaqueductal Gray (PAG)

 • Supramarginal Gyrus

E Dorsal Attention Network (DAN)  • Intraparietal Sulcus (IPS)

 • Superior Parietal Lobule

 • Frontal Eye Fields

 • Ventral Premotor Cortex (vPMC)

F Visual Network (VN)  • Primary Visual Cortex

G Somatomotor Network (SMN)  • Supplementary Motor Area (SMA)

 • Precentral and Postcentral Gyri

 • Paracentral Lobule

In cases where authors did not clearly define the network, these listed structures were utilized to designate results to a network.

https://doi.org/10.3389/fneur.2024.1487796
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://github.com/danielfrees/rsfMRI_LitReview


Kashou et al. 10.3389/fneur.2024.1487796

Frontiers in Neurology 05 frontiersin.org

TABLE 2 Studies included in this review.

Study citation Severity Age Chronicity Population type TBI (n) HC (n)

Arenivas et al. (67) Moderate/severe Adult Chronic Civilian 25 17

Clough et al. (68) Mild Adult Chronic Sport 15 15

Dailey et al. (69) Mild Adult Chronic Civilian 15 14

De Simoni et al. (70) Moderate/severe Adult Acute/subacute Civilian 19 15

Dretcsh et al. (71) Mild Adult Chronic Military 25 21

Grossner et al. (72) Moderate/severe Adult Subacute/chronic Civilian 21 23

Guo et al. (73) Severe Adult Acute Civilian 21 21

Han et al. (74) Mild Adult Chronic Civilian 40 17

Hou et al. (75) Mild Adult Acute/subacute Civilian 47 30

Iraji et al. (76) Mild Adult Acute Civilian 9 15

Lancaster et al. (77) Moderate/severe Adult Chronic Civilian 21 27

Li et al. (78) Mild Adult Acute Civilian 58 32

Li et al. (79) Mild Adult Acute Civilian 50 43

Lu et al. (80) Mild Adult Acute/subacute Civilian 58 30

Manning et al. (42) Mild Adolescent Subacute/chronic Sport 14 26

Mayer et al. (44) Mild Adult Acute/subacute Civilian 26 25

Mayer et al. (81) Mild Adult Subacute Civilian 48 48

Meier et al. (82) Mild Adult Chronic Sport 24 44

Messé et al. (83) Mild Adult Subacute/chronic Civilian 55 34

Militana et al. (84) Mild Adult Acute Sport 7 11

Murdaugh et al. (46) Mild Adolescent Acute/subacute Sport 16 12

Nathan et al. (85) Mild Adult Subacute/chronic Military 15 12

Newsome et al. (86) Mild Adolescent Subacute Sport 13 13

Newsome et al. (87) Moderate/severe Adolescent Chronic Civilian 7 9

Newsome et al. (88) Mixed Adult Chronic Military 17 14

Orr et al. (89) Mild Mixed Chronic Sport 16 13

Pagulayan et al. (90) Mild Adult Chronic Military 22 15

Palacios et al. (50) Moderate/severe Adult Chronic Civilian 20 17

Plourde et al. (91) Mild Mixed Chronic Civilian 37 20

Rajesh et al. (92) Mild Adult Chronic Civilian 22 21

Rigon et al. (93) Mixed Adult Chronic Civilian 21 21

Roy et al. (94) Moderate/severe Adult Subacute/chronic Civilian 14 12

Santhanam et al. (95) Mild Adult Chronic Military 51 55

Sharp et al. (96) Mixed Adult Chronic Civilian 21 23

Shumskaya et al. (97) Mild Adult Acute/subacute Civilian 35 35

Shumskaya et al. (98) Moderate/severe Adult Chronic Civilian 43 34

Slobounov et al. (99) Mild Adult Subacute Sport 17 17

Sours et al. (43) Mixed Adult Subacute/chronic Civilian 28 28

Sours et al. (100) Mild Adult Subacute/chronic Civilian 32 31

Stevens et al. (101) Mild Mixed Subacute/chronic Civilian 27 30

Tang et al. (102) Mixed Adult Not stated Civilian 12 11

Threlkeld et al. (103) Severe Adult Subacute/chronic Civilian 17 16

Vakhtin et al. (104) Mild Adult Not stated Military 13 50

Venkatesan et al. (21) Moderate/severe Adult Chronic Civilian 22 18

(Continued)

https://doi.org/10.3389/fneur.2024.1487796
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Kashou et al. 10.3389/fneur.2024.1487796

Frontiers in Neurology 06 frontiersin.org

For chronicity, there is no standard or agreed-upon definition of 
acute, subacute, and chronic. We chose to classify TBI chronicity 
based on sources that use biomarkers to track injury progression. For 
example, such studies (34, 35) define acute TBI as within days, 
subacute within weeks, and chronic as months to years post-injury. 
Clinically, there is also some consensus around chronicity as it relates 

to post-concussion syndrome (PCS). Specifically, PCS refers to a 
characteristic cluster of symptoms lasting greater than or equal to 
3 months after injury (36). We therefore classified scans acquired 
within the first week post-injury as acute, between 1 and 12 weeks 
post-injury as subacute, and >12 weeks post-injury injury as chronic. 
Again, some studies included TBI participants of varying chronicities. 

TABLE 2 (Continued)

Study citation Severity Age Chronicity Population type TBI (n) HC (n)

Vergara et al. (105) Mild Adult Subacute Civilian 47 47

Zhang et al. (106) Mixed Adult Subacute/chronic Civilian 20 20

Zhou et al. (107) Mild Adult Acute/subacute Civilian 23 18

van der Horn et al. 

(108)

Mild Adult Subacute Civilian 54 20

van der Horn et al. 

(45)

Mild Adult Subacute/chronic Sport 49 20

van der Horn et al. 

(109)

Mild/Moderate Adult Subacute/chronic Civilian 68 19

FIGURE 3

Breakdown of sample characteristics and studies included in this review. Panels portray the distribution of included studies broken down by (a) severity, 
(b) age, (c) chronicity, (d) TBI population type, (e) control group, and (f) year published.
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Therefore, we  also categorized findings as acute/subacute and 
subacute/chronic to include these comparisons. For longitudinal 
studies with comparisons between TBI and matched control groups 
at various times since injury, we treated each comparison as unique, 
rather than reporting changes in FC over time for either 
group individually.

For population type, we  categorized studies by sport (Sport), 
military personnel (Military), civilians not injured in sport (Civilian), 
and mixed if participants were from an array of the aforementioned 
populations (Mixed).

Analysis

We pooled and parsed the findings from comparisons of TBI 
patients to matched controls, counting the number of reported 
significant increases and decreases in connectivity or no significant 
differences in connectivity. Significance was determined by the 
authors of each study. We would have preferred to perform a meta-
analysis to account for differences in effect sizes across studies, but 
very few studies reported or responded to our inquiries to produce 
the necessary statistics for this. Comparisons were first collapsed 
across injury characteristics, such that the connectivity differences 
could be  compared across each of the canonical networks 
(Figure  4). Next, comparisons were collapsed across networks, 
allowing for connectivity differences to be compared across injury 
characteristics (Figure  5). Lastly, connectivity differences were 
examined across both network and injury characteristics to allow 
for analysis of each TBI category or demographic within a specified 
network (Figure 6).

Alongside analysis collapsed by injury characteristics or network, 
percent global signal was calculated. Percent global signal was defined 
as the number of increases and decreases in connectivity relative to 
matched controls divided by the total number of connectivity 
comparisons. The goal was to use percent signal as a proxy for the 
degree to which networks reported any difference in connectivity 

following TBI compared to controls, regardless of whether the 
connectivity increased or decreased (Figures 4, 5).

Results

Studies included

From 1,105 manuscripts, 50 met inclusion criteria, reporting a total 
of 179 network connectivity comparisons between a total of 1,397 TBI 
patients and 1,179 matched controls; an average of 3.58 comparisons 
per manuscript. TBI cohorts primarily included civilian adults with a 
mild severity of TBI in the subacute to chronic stage (Figure 3).

Comparisons collapsed across injury 
characteristics

Of the 179 comparisons, the majority were conducted in DMN 
(44%) and the least in the DAN (4%) (Figure 4b). Collapsing across 
injury characteristics and networks, 25% of comparisons showed 
increased connectivity, 22% showed decreased connectivity, and 53% 
showed no significant differences between the TBI and control groups, 
yielding a percent signal of 47% (Figures 4a–c).

Comparisons collapsed across all networks

Severity
Across severity, the majority of comparisons (64%) were 

performed on patients with mild TBI (Figure 5). Parsing findings by 
TBI severity showed a trend toward increased connectivity with 
higher severity. In patients with mild TBI, connectivity differences 
were evenly split between increased and decreased connectivity (50% 
increased) with a percent signal of 52%. In higher severities however, 
more comparisons showed increased than decreased connectivity 

FIGURE 4

Connectivity comparisons collapsed across injury characteristics. Visual schematic depicting degree of network intensity corresponding to increased 
or decreased connectivity (a). Comparisons were summed across study and injury characteristics, then stratified by network to display the proportion 
of increased, decreased, or no (i.e., null) connectivity differences between TBI and control populations (b) and the percent signal of having any 
significant difference (c).
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(60% increased, collapsing across moderate/severe and severe) with 
roughly comparable percent signal to that of mild TBI (46–67%).

Age
Across age, the majority of comparisons (88%) involved adult 

participants (Figure 5). Percent signal within the adult TBI group was 
45%, with a slight tendency toward increased connectivity.

Chronicity
Across chronicity, the majority of comparisons (36%) were performed 

during the chronic phase (Figure 5). Parsing findings by TBI chronicity 
showed a trend toward increased connectivity with high chronicity. That 
is, comparisons performed in the acute and acute/subacute phase showed 
less increased than decreased connectivity (42% increased) whereas 
comparisons in the subacute through chronic phase showed more 
increased than decreased connectivity (60% increased). Percent signal 
across the chronicities was similar (range from 46 to 65%), except for the 
subacute, only, category (21%).

Population type
Across the population type, the majority of comparisons (75%) were 

performed in civilians (Figure 5). Percent signal across civilians was 46%, 
with a slight tendency toward increased connectivity (53% increased). 
Notably, comparisons in military samples yielded a relatively high (71%) 
chance of finding any difference in FC compared to controls.

Comparisons within networks

Default mode network (DMN)
Of the 78 comparisons between TBI and control groups within the 

DMN, 55% demonstrated a significant difference in connectivity 

across all categories of TBI and population factors (Figure 4c), with a 
slight majority showing increased connectivity (Figure 6, column 1). 
This pattern of mixed results generally persisted even when parsing 
the findings by age and population type. Notably, comparisons made 
in populations with moderate/severe TBI or in the subacute time 
frame were more likely to show increased connectivity.

Executive control network (ECN)
Of the 35 comparisons reported in the ECN, 43% demonstrated a 

significant difference across all categories of TBI and population 
factors (Figure 4c), with a nearly even split between increased and 
decreased connectivity (Figure 6, column 2). This pattern of mixed 
results persisted when parsing the data by severity, age, and population 
type. Notably, comparisons made in the acute/subacute time frame 
revealed solely increased connectivity when a significant difference 
was detected.

Limbic network (LN)
Of the 11 comparisons reported in the LN, 45% demonstrated a 

significant difference across all categories of TBI and population 
factors (Figure 3c), with a nearly even split between increased and 
decreased connectivity (Figure 6, column 3). This pattern of mixed 
results persisted when parsing the data by severity, age, chronicity, and 
population type.

Salience network (SN)
Of the 18 comparisons reported in the SN, 39% demonstrated a 

significant difference across all categories of TBI and population 
factors (Figure 4c), with a nearly even split between increased and 
decreased connectivity (Figure 6, column 4). This pattern of mixed 
results persisted when parsing the data by severity, age, chronicity, and 
population type. Notably, comparisons made in the SN showed the 

FIGURE 5

Connectivity comparisons collapsed across networks. Comparisons were summed across study and networks, then stratified by injury characteristics 
to display the proportion of increased, decreased, or no (i.e., null) connectivity differences between TBI and control populations (a) and the percent 
signal of having any significant difference (b). The most consistent findings were increased connectivity in the higher severities and chronicities of TBI 
(Highlight), independent of the other variables.
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second lowest percent signal of all the networks across all categories 
of TBI and population factors.

Dorsal attention network (DAN)
The DAN was the least studied network. Of the seven 

comparisons reported in the DAN, 14% demonstrated a 
significant difference across all categories of TBI and population 
factors (Figure  4c), showing only increased connectivity 
(Figure 6, column 5).

Visual network (VN)
Of the 14 comparisons reported in the VN, 43% demonstrated a 

significant difference across all categories of TBI and population 
factors (Figure 4c), with an even split between increased and decreased 
connectivity (Figure  6, column 6). This pattern of mixed results 
persisted when parsing the data by severity, age, chronicity, and 
population type.

Sensorimotor network (SMN)
Of the 16 comparisons reported in the SMN, 44% demonstrated 

a significant difference across all categories of TBI and population 
factors (Figure 4c), with a nearly even split between increased and 
decreased connectivity (Figure 6, column 7). This pattern of mixed 

results persisted when parsing data by severity, age, chronicity, and 
population type.

Comparisons organized by methodology

Eye methodology
The majority of studies (75%) reported whether subjects were 

instructed to keep their eyes closed, open, or fixated during the scan 
(Figure 7). Of the comparisons conducted from scans instructing 
subjects to have their eyes closed (53%), 33% showed a significant 
difference between TBI and control samples. Of those that found a 
difference, there was a slight majority of decreased connectivity (55%).

Number of volumes
Quartiles were generated based on the distribution of the number 

of volumes taken. Observations were then sorted according to the 
quartile range they fell into (Figure 7). 10% of the comparisons did not 
report the number of volumes acquired during the scan. Among the 
3rd quartile of scan volumes, percent signal was 72.5%, which was 
noticeably higher than the other quartiles. Of those that found a 
difference in the 3rd quartile, findings of increased or decreased 
connectivity were roughly equal.

FIGURE 6

Connectivity comparisons stratified by network and injury characteristics. Comparisons were summed across study, then stratified by networks and 
injury characteristics to display the proportion of increased, decreased, or no (i.e., null) connectivity differences between TBI and control populations 
(a) and the percent signal of having any significant difference (b).
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Scan time
Quartiles were generated based on the distribution of the scan 

duration in seconds. Observations were then sorted into the quartile 
range they fell into (Figure 7). 21% of the comparisons did not report 
the scan duration. Among the second quartile of scan duration, 
percent signal was 37%, which was noticeably lower than the other 
quartiles. Of those that found a difference in the 2nd quartile, 
findings of increased or decreased connectivity were equal.

Scanner manufacturer
Other than three studies (14 comparisons), all used a single 

scanner for acquisition, which included either GE, Philips, or Siemens 
(Figure 7). The majority used Siemens. Results were roughly equally 
mixed across increased, decreased, and null when organized by 
scanner manufacturer.

Coil channels
Only 30 studies (61% of comparisons) reported the number of coil 

channels used. The majority used the 32 channel coil followed by a 12 
channel coil (Figure 7). As above, the findings were roughly evenly 
mixed results across coil channel number.

Slice thickness
Thirty four studies (56% of comparisons) reported the slice 

thickness. Tertiles were generated based on the distribution of 
slice thickness in millimeters (Figure 7). Among the 3rd tertile of slice 
thickness, percent signal was 71%, which was noticeably higher than 
the other two tertiles.

Tesla strength and acquisition sequence
We did not parse findings by tesla strength or acquisition 

sequence given they did not differ across the studies. Specifically, all 
50 studies used a 3-Tesla MRI machine and acquired a T2 gradient-
echo, echo-planar (EPI) sequence. No other fMRI sequence was 
consistently reported.

Preprocessing software
A variety of preprocessing software was used across the 

literature. The five most common softwares used were SPM8 (28%), 
FSL (13%), AFNI (13%), SPM12 (11%), and FMRIB (6%) (Figure 8). 
Further, 23% of comparisons combined multiple preprocessing 
softwares or used their own custom pipelines, usually based 
in MATLAB.

FIGURE 7

Connectivity comparisons stratified by scanner methodology. Comparisons were summed across study, networks, and injury characteristics, then 
stratified by imaging methodology to display the proportion of increased, decreased, or no (i.e., null) connectivity differences between TBI and control 
populations (a) and the percent signal of having any significant difference (b). For the number of volumes and scan time, we stratified the comparisons 
by quartiles. For the slice thickness, we stratified comparisons by tertiles. All methodological variables listed refer to the rsfMRI sequence only.
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SPM8 yielded a percent signal of 45%, with nearly 70% of 
comparisons with connectivity differences showing increased 
connectivity. In contrast, SPM12 yielded a percent signal of just 
~10%. FSL and AFNI both yielded a percent signal of around 50%. 
Of the significant differences in studies that used FSL, 75% detected 
an increase in connectivity. Of the significant differences in studies 
that used AFNI, there was a near even split of increased and decreased 
connectivity. Studies that used mixed methods or custom pipelines 
yielded the highest percent signal of 67%.

Signal regression
Of the 179 comparisons, the authors only reported whether 

they performed signal regression in 119 comparisons (66%) 
(Figure  8). Overall, performing a signal regression in most 
categories, other than motion, revealed an increased sensitivity 
for finding a significant difference in connectivity between 
people with TBI and matched controls. Among those that 
performed white matter and cerebrospinal fluid (CSF) regression, 
percent signal was notably higher than those who did not 
perform these regression methods. Of those that did not perform 
white matter or CSF regression, all comparisons that yielded a 
signal showed increased connectivity. It should be  noted that 
nearly every study with the exception of 1 utilized white matter 
and CSF regression in tandem, and thus had roughly equal  
distributions.

Discussion

Traumatic Brain Injury (TBI) can cause both focal and diffuse 
brain changes. Whereas standard clinical neuroimaging identifies 
structural pathology, it does not reveal functional alterations that 
may underlie poorer outcomes. Resting-state fMRI has been used 
to detect functional alterations in network architecture unique to 
TBI, offering potential insights where other imaging methods have 
not. However, despite its growing use, there is no clear consensus 
on functional connectivity (FC) differences between TBI and 
control populations. To address this gap, we performed a systematic 
review to identify driving factors that may explain the heterogeneity 
when comparing FC between TBI and control populations. 
Specifically, we combined and stratified findings by injury severity, 
age, chronicity, as well as the studied population type, network, 
and imaging methods across 50 studies that performed 179 
comparisons in 1,397 TBI patients and 1,179 matched controls.

The most consistent findings were a trend toward increased 
connectivity in chronic stages of TBI and those with more severe head 
injuries, independent of the other variables (Figure  5). Increased 
connectivity may reflect compensatory processes that are only needed 
with more severe or chronic injury states (37–39). We also found a 
handful of trends when examining individual networks collapsed 
across all other factors. Otherwise, we found little consensus in the 
direction or significance of connectivity differences. Based on our 

FIGURE 8

Connectivity comparisons stratified by image analysis. Comparisons were summed across study, networks, and injury characteristics, then stratified by 
image analysis to display the proportion of increased, decreased, or no (i.e., null) connectivity difference between TBI and control populations and (a) 
and the percent signal of having any significant difference (b). NR, not reported; WM, white matter; CSF, cerebrospinal fluid.
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findings, we provide recommendations for future work in efforts to 
standardized rsfMRI imaging in TBI and lead the field toward more 
reproducible results.

Collapsing across all variables

When collapsing across all networks, injury characteristics, 
patient demographics, and imaging techniques (Figure 4b, “Total” 
row), the findings were generally mixed. There were about an equal 
number of comparisons showing a significant difference versus no 
difference in connectivity (47% signal) between patients with TBI and 
matched controls. Of the significant differences, again, the findings 
were fairly mixed, but with slight predominance of increased 
connectivity (45 increased and 39 decreased).

Severity

Parsing the comparisons by severity revealed that patients with 
severe and moderate/severe TBI were more likely to show increased 
(67%) over decreased connectivity (33%) as compared to controls, 
whereas patients with mild TBI showed a 50/50 split between 
increased and decreased connectivity as compared to controls 
(Figure 5). It may be that higher severity injuries disrupt more axonal 
connections, warranting compensatory processes (37–39), such as 
cortical reorganization, neurogenesis, axonal sprouting, and 
angiogenesis, which have been demonstrated in animal models 
(40, 41).

Surprisingly, however, studies show a similar likelihood of 
finding any significant difference in FC whether in mild TBI (52%) 
or moderate/severe TBI combined (56%) as compared to controls 
(Figure  5). Despite the obvious difference in structural and 
neurological consequences of injury between these TBI severities, 
the differences in FC as compared to controls is not as apparent. 
Studies directly comparing FC in patients across TBI severities 
are lacking.

Chronicity

Parsing the comparisons by chronicity revealed a cross-sectional 
trend of increased connectivity by time since injury. Because we dealt 
with longitudinal studies as discrete, between-group comparisons of 
FC at acute, subacute, or chronic times since injury, our descriptive 
findings do not enable conclusions about within group changes in FC 
over time. Nevertheless, cross-sectionally, patients with TBI who were 
imaged in the acute and acute/subacute window showed less increased 
(42%) than decreased connectivity (58%) as compared to controls 
(Figure  5). From the subacute to chronic window however, the 
differences flipped to more increased (60%) than decreased 
connectivity (40%) as compared to controls. Though these results are 
cross-sectional, this trend suggests connectivity may increase over 
time post-injury.

Several of the studies included in our review contained 
longitudinal data, the majority of which report a relative within-
group increase in connectivity at the chronic as compared to the 
more acute time points post-injury (21, 42, 43). Studies that did 

not find increased connectivity in the chronic time points showed 
no difference as a function of time since injury (44, 45) or revealed 
more complex findings, such as increased and decreased 
connectivity within a single network as a function of time since 
injury (e.g., increased connectivity at the left anterior prefrontal 
cortex, but decreased connectivity at the middle cingulate gyrus) 
(46). Most notably, however, no longitudinal study reported a 
whole-network decrease in connectivity in the chronic stage. 
Studies utilizing graph theory have also noted a pattern of initially 
decreased to subsequently increased connectivity over time since 
injury (15, 47, 48). Increased connectivity has correlated with 
better function (42) and worse function (49) demonstrating again 
that the direction of connectivity change or difference compared 
to control may not be as important as the finding of any change or 
difference. These longitudinal effects have been interpreted as 
adaptive or compensatory when relating to improved function (44, 
50, 51).

Age

Parsing the comparisons by age did not reveal any discernible 
pattern. Trends based on age alone (adolescent vs. adult) are 
difficult to draw given the large majority (90%) of studies included 
only adults. Furthermore, adult age ranges were restricted, with 
the first quartile less than 26.88 years and the fourth quartile 
greater than 38.49 years. Because most of the TBI patients were 
scanned in early adulthood, we cannot infer whether connectivity 
patterns emerge after injury in younger and older ages due to the 
paucity of studies overall, and in our study in particular, for these 
age groups.

Population type

Parsing comparisons by population type revealed a notably larger 
percent signal (71%) in the military population. Overall, however, 
the military population showed an even split of increased and 
decreased connectivity findings, which is consistent with the other 
populations studied. The military population was also the least 
studied (7.8% of total comparisons). Because injury in military 
personnel can include unique mechanisms and are often comorbid 
with sequelae of psychological trauma as compared to civilian and 
sport-related injuries (52), it is possible that the brain differences are 
more striking.

Networks

The DMN was the most studied network (78 comparisons) and 
had the highest signal of any of the networks included (55% 
signal). The ratio of increased to decreased connectivity between 
people with TBI and matched controls was, however, roughly equal 
(23–20, respectively). It is well known that the DMN plays a critical 
role in intrinsic cognitive processes. Though the DMN generally 
had mixed results across most patient characteristics, it trended 
toward increased connectivity in the moderate/severe TBI 
population and at the subacute time frame (Figure 6b, column 1). 
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Previous studies have interpreted this increased connectivity as a 
compensatory or adaptive mechanism because of its association 
with positive cognitive outcomes (44, 50, 51). It is possible 
compensatory processes do not readily occur unless the injury is 
sufficiently damaging. Perhaps such compensation does not occur 
until at least weeks to months after the injury, which may follow 
periods of increased metabolic activity (53, 54).

The DAN showed the lowest signal (14%) of all the networks, 
suggesting this network may not be affected by TBI and/or whatever 
changes that may occur are not sensitive to rsfMRI methods. Of note, 
the DAN also had the lowest number of total comparisons across the 
literature (Figure 4). Further investigation of the DAN may be required 
to rule out the DAN as a potential marker of TBI. Alternatively, this 
may be a network to leave out of analyses to retain valuable degrees 
of freedom.

The SN had the next lowest percent signal (39%) (Figure 4). Given 
the putative role of the SN in affective processes (55, 56), including 
affective dysregulation in some patients with TBI (57), its low signal 
is surprising. However, because the SN serves as a switch between 
intrinsic and extrinsic cognitive processes (58), rsfMRI may not 
be  sensitive enough to capture changes in connectivity without 
patients performing goal-directed activity or without looking at 
internetwork connectivity differences. Again, further investigation of 
this network at rest and during tasks will provide greater insight to its 
sensitivity as a potential biomarker of TBI.

Methodological factors

Parsing the comparisons by whether patients were instructed to 
keep their eyes open, fixated, or closed revealed a striking pattern. 
Eyes open or fixated showed 75 and 64% signal, respectively, whereas 
eyes closed only revealed 33% signal (Figure 7). Interestingly, about 
half of the studies instructed participants to close their eyes, despite 
newer evidence that eyes open may enhance connectivity 
strengths (59).

Generating quartiles of the number of volumes captured 
during scans revealed a notably higher percent signal among the 
third quartile (73%), which had a range of 182–245 volumes per 
scan (Figure 7). In contrast, all other quartiles had a markedly 
lower percent signal (<48%). These results suggest the number of 
volumes captured during scans may have an ideal value that could 
serve to increase the sensitivity of rsfMRI in detecting 
connectivity differences.

Generating quartiles of the scan duration revealed a notably 
lower percent signal among the second quartile (37%), which had 
a range of 315–360 s (Figure 7). In contrast, the first, third, and 
fourth quartiles all demonstrated markedly higher percent signals. 
Recent studies support greater reliability with increasing scan 
length, though that cutoff point is debated and not well defined 
(60, 61).

Other than GE, which was rarely used, scanner manufacturer 
and coil channel did not meaningfully impact the findings in that 
there were similar proportions of increased, decreased, and null 
findings no matter which scanner or head coil was used (Figure 7). 
GE did demonstrate a percent signal of 77% suggesting more likely 
to show some difference across groups as compared to null but only 
four studies utilized GE scanners, which is not enough to make a 

strong conclusion. However, the fact that the other two most 
commonly used scanner manufacturers did not appreciably impact 
the findings suggests that this pattern of findings are likely 
generalizable and could be  expected to hold across sites in 
future research.

Creating tertiles of the slice thickness demonstrated a 
substantially higher percent signal among the third tertile, which 
had a thickness of >4 mm per slice (Figure 7). The choice in slice 
thickness is determined by the time to acquire a set brain volume, 
spatial resolution, minimization of signal dropout, and BOLD 
signal-to-noise (SNR) ratio, which largely determines the statistical 
power to detect nodal activation. Therefore, any increase in spatial 
resolution with thinner slices will be offset by a reduction in the 
statistical significance due to increased SNR (62–64). Prior work 
demonstrates that thicker slices will yield more low-percentage 
signal changes, consistent with our results (63). However, the 
optimal slice thickness depends on the study, as certain brain 
regions may require higher resolution, which may come at the cost 
of sensitivity per unit time, to enhance localization and reduce 
signal dropout.

When evaluating preprocessing software as a factor, custom 
pipelines achieved a notably higher signal than the other softwares 
(Figure 8). It may be that custom pipelines are designed for the 
specific dataset obtained, and thus software can be designed to 
achieve higher sensitivity in detecting connectivity differences. 
However, because this study did not have access to the custom 
softwares, there is the possibility that a higher signal could result 
from poorly implemented pipelines that are not as rigorous at 
mitigating specious findings.

Parsing the comparisons by regression type revealed 
performing regression in all categories (global, white matter, CSF), 
except motion, increased the likelihood of detecting a significant 
difference between TBI and control populations (Figure  8). 
Because percent signal was similar between comparisons that did 
and did not perform motion regression, it appears that motion 
regression does not significantly affect sensitivity of finding a 
difference in connectivity in these studies.

Limitations

It is impossible to account for all the factors that contribute to 
the heterogeneity in neuroimaging of TBI. This study aimed to 
isolate individual variables across 50 studies, but it is important to 
acknowledge that many of these variables may influence one another 
(e.g., most moderate/severe TBI cases were studied in the chronic 
phase). MRI sequence parameters vary between sites, evolve over 
time, and may interact in ways that impact results. Inconsistent 
reporting of certain parameters (e.g., acquisition direction, 
reconstruction plane, slice thickness), made it difficult to extract and 
parse our findings by an exhaustive list of sequence parameters. 
Nevertheless, we  extracted the parameters we  found to be  most 
consistently reported and that previous work suggests may impact 
results. Therefore, careful consideration should be  taken when 
interpreting individual variables as interactions may 
confound results.

Given discrepancies in the number of comparisons within 
categories (e.g., majority of comparisons in mild TBI, middle age 

https://doi.org/10.3389/fneur.2024.1487796
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Kashou et al. 10.3389/fneur.2024.1487796

Frontiers in Neurology 14 frontiersin.org

range, civilian population, default mode network), we caution making 
strong conclusions for variables that received less attention (e.g., much 
less comparisons in more severe injuries, younger and older ages, 
dorsal attention network). This is a limitation of our study, but also 
reflective of the current assumptions for what might be  most 
biologically or clinically important in this field.

Given the large quantity of results generated in rsfMRI research, 
there exists a severe underreporting of null findings throughout the 
literature. However, reported results would be  unreadable if the 
entirety of results were explicitly reported. We chose not to infer null 
findings when primary authors did not clearly report null findings as 
interpretation would be prone to inconsistency. This aspect of rsfMRI 
literature makes it difficult to gather an accurate representation of 
percent signals across the literature, and thus our percent signals are 
likely skewed toward higher values.

Recommendations for future studies

As discussed throughout this review, there are multiple factors 
that may contribute to the heterogeneity of rsfMRI connectivity 
patterns in TBI. Parsing the findings by these factors, however, did not 
reveal a dramatic consensus, which strongly supports the need for 
consistency and best practices across studies. Below, we make several 
recommendations to establish greater consistency and reproducibility 
for future studies. We also identify areas of study where literature is 
lacking and therefore encourage greater investigation.

 1 Networks: The low percent signal observed in the DAN and 
SN suggest they may not be affected by TBI and/or are not 
sensitive to rsfMRI methods. We  recommend that future 
studies pay particular attention to the DAN and SN to provide 
greater insight into their sensitivity. However, their low 
sensitivity would make it reasonable to exclude these networks 
from analysis to preserve degrees of freedom.

 2 Demographics: Functional connectivity in TBI may be affected 
by multiple demographic factors, such as severity, chronicity, 
age, and population or mechanism of TBI. We encourage future 
studies to either narrow their demographic inclusion criteria to 
evaluate subgroups within heterogeneous populations or obtain 
large enough sample sizes to account for the heterogeneity. Some 
of these challenges are seemingly insurmountable. However, in 
the event that sample size is limited or heterogeneous, combining 
datasets across sites or with freely downloadable datasets might 
provide the power needed for more reliable analyses through 
techniques such as harmonization and meta-analysis. ENIGMA 
(65) and FITBIR (66) are both viable solutions for this challenge.

 3 Age: Age range was restricted to early-middle adulthood across 
the studies, and thus the current literature has yet to evaluate 
changes in connectivity across child and elderly populations. 
We encourage future studies to focus on these populations that 
may be potentially more vulnerable.

 4 Injury mechanism: Restricting studies to a specific injury 
mechanism, rather than population type, may help to reduce 
variability. For example, studies could focus on car accidents, 
blast exposure, or sport-related injuries. Thus, studies should 
narrow their inclusion criteria to obtain a more focused 
assessment of mechanisms’ role in functional alterations.

 5 Longitudinality: The vast majority of studies are cross-
sectional rather than longitudinal. Adding multiple imaging 
time points to study designs will effectively increase power, 
make it possible to derive changes over time, and reduce 
natural variability in rsfMRI patterns.

 6 Canonical network: We recommend future studies classify 
results to an established canonical network to facilitate 
interpretation. It is critical for replication that authors clearly 
indicate how regions of interest or networks were derived and 
what expected differences they hypothesize.

 7 Methodology: We recommend future studies utilize fixated or 
open eye scans as well as volume ranges between 182 and 245 
volumes given their relatively higher sensitivity in signal 
detection. Though scan duration had mixed findings, percent 
signal was consistently higher among longer scan durations. In 
line with previous literature, we also recommend utilizing scan 
durations of at least 360 s.

 8 Regression: All forms of regression, except motion regression, 
yielded higher sensitivity than studies that did not perform 
regression. In any case, we  recommend all studies clearly 
identify whether they performed global, CSF, white matter, and 
motion regression as this ensures future studies can either 
replicate or refute the findings in independent samples.

 9 Preprocessing software: Though recommendations on specific 
software is beyond the scope of this paper, FSL and SPM8 had 
the highest sensitivity in detecting a signal. Studies utilizing 
custom software are encouraged to also process their data with 
established software to compare and confirm results.

Conclusion

Despite the obvious potential for neuroimaging as a biomarker 
in TBI, there seems to be  no clear set of rsfMRI findings that 
universally differentiate the injured from healthy brain across all 
injury severities, mechanisms, chronicities, and population types. 
Although it is reasonable to hypothesize the heterogeneity in TBI 
populations studied drives the heterogeneity of findings, it is 
unclear from our study that any one factor (e.g., age, chronicity, 
population type, etc.) was a strong predictor of connectivity trends. 
Our study confirms that rsfMRI literature is largely mixed when 
considering connectivity differences between brain injured and 
healthy individuals no matter how the data is parsed. We identified 
a few patterns that may reflect mechanisms of brain injury or 
recovery, but ultimately our findings highlight the need for multi-
site and longitudinal studies, greater methodological consensus 
across studies, and/or consortia to combine data retrospectively 
using the same analysis methods. These findings will guide future 
research and should help clinicians understand the early state of 
advanced imaging modalities, like rsfMRI, which are not yet ready 
for clinical use in individual patients.
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