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Objective: MVN GABAergic neurons is involved in the rebalance of commissural 
system contributing to alleviating acute peripheral vestibular dysfunction 
syndrome. This study aims to depict monosynaptic inputs to MVN GABAergic 
neurons.

Methods: The modified rabies virus-based retrogradation method combined 
with the VGAT-IRES-Cre mice was used in this study. Moreover, the commissural 
connections with MVN GABAergic neurons were analyzed.

Results: We identified 60 nuclei projecting to MVN GABAergic neurons 
primarily distributed in the cerebellum and the medulla. The uvula-nodulus, 
gigantocellular reticular nucleus, prepositus nucleus, intermediate reticular 
nucleus, and three other nuclei sent dense inputs to MVN GABAergic neurons. 
The medial (fastigial) cerebellar nucleus, dorsal paragigantocellular nucleus, 
lateral paragigantocellular nucleus and 10 other nuclei sent moderate inputs to 
MVN GABAergic neurons. Sparse inputs to MVN GABAergic neurons originated 
from the nucleus of the solitary tract, lateral reticular nucleus, pedunculopontine 
tegmental nucleus and 37 other nuclei. The MVN GABAergic neurons were 
regulated by the contralateral MVN, lateral vestibular nucleus, superior vestibular 
nucleus, and inferior vestibular nucleus.

Conclusion: Our study contributes to further understanding of the vestibular 
dysfunction in terms of neural circuits and search for new strategies to facilitate 
vestibular compensation.
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1 Introduction

The medial vestibular nuclei (MVN), is a crucial processor of vestibular inputs (1). These inputs 
primarily originate from crista ampullaries of two lateral semicircular canals (2). The MVN 
integrates information regarding the head movement in space. In addition, visual, and 
proprioceptive signals also converge in the MVN (3, 4). The MVN sends ascending axonal fibers 
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to the oculomotor nuclei mediating the vestibuloocular reflex (VOR) and 
bilateral descending projections to the cervical ventral horn to control the 
vestibular-spinal reflex. Thus, it is essential in maintaining posture, clear 
vision and static and dynamic balance (5, 6). Furthermore, it is also 
involved in cognition, such as navigation, spatial memory and learning 
(7). Normal vestibular function is essential for daily life. When patients 
suffer from vestibular dysfunction, they complain acute vestibular 
syndrome (8). It is characterized by vertigo, gaze instability, vegetative 
disorders, and cognitive alterations which strongly limit daily activities (9, 
10). Certain syndrome can alleviate over time is known as vestibular 
compensation (11). However, the mechanisms underlying vestibular 
compensation remain unclear.

In the rhombomeric perspective, the MVN in mouse extends at least 
from rhombomere r5 to r6. The MVN is comprised of two heterogeneous 
divisions: small dorsal neurons and larger ventral neurons. Cells in both 
divisions of the MVN express GAD67 mRNAs which labels cell bodies of 
GABAergic neurons (12, 13). Previous immunohistochemical studies 
demonstrated that dorsal neurons in the MVN synthesize gamma-
aminobutyric acid (GABA) and are intensely stained by GABA-antibody, 
supporting a functional GABAergic system exists within the MVN (14–
16). GABA is considered as a common inhibitory neurotransmitter 
within brain (17). Further studies had revealed that GABAergic neurons 
produced regular firing in electrophysiological recording technology 
(18–20).

GABAergic neurons within the MVN send axons to the cervical 
ventral horn and the oculomotor nuclei to mediate the inhibitory 
influence (21, 22). MVN GABAergic neurons project primarily to the 
caudal ventrolateral medulla (CVLM) to mediate vestibulosympathetic 
reflex, showing a target preference (23). Moreover, MVN GABAergic 
neurons are essential for vestibular compensation by involving in the 
commissural system between the bilateral MVN (17, 24–26).

Taken together, GABAergic neurons within the MVN are involved 
in controlling posture, balance, and gaze stabilization, particularly in 
vestibular compensation. Thus, investigating the afferent inputs to MVN 
GABAergic neurons will facilitate the search for optional circuits that 
manipulate GABAergic neurons. The connectivity of MVN neurons have 
been previously investigated using classic retrograde and anterograde 
tracers. These studies showed that projections to MVN originated from 
the dorsal raphe nucleus, inferior olivary, and parabrachial nucleus (27–
31). However, specific inputs to MVN GABAergic neurons remain 
unelucidated. Unlike traditional tracers that cannot distinguish neuron 
types, the current modified rabies virus (RV) method and the Cre/LoxP 
system enable to identify specific neurons without affecting passing 
neural tracts. Accordingly, it allows us to explore neural connectivity of 
a well-defined neuron type rather than a specific brain region (32–35). 
In this study, we used modified RV and VGAT-IRES-Cre mice to map 
out monosynaptic inputs targeting MVN GABAergic neurons.

2 Materials and methods

2.1 Animals

Adult VGAT-IRES-Cre mice and their wild-type littermates were 
used in this study. All mice were housed under suitable environment 
(constant temperature: 22 ± 0.5°C and relative humidity: 60% ± 2%) and 
ensured an adequate supply of food and water. All animal experiments 
were approved by the Animal Experiments Ethics Committee at 
Shanghai Public Health Clinical Center, Fudan University.

2.2 Virus

All viruses used in the retrograde tracing study were acquired 
from BrainVTA (Wuhan, China). rAAV2/9-Ef1α-DIO-EGFP-TVA-
WPRE (5 × 1012 genomic copies/mL) and rAAV2/9-Ef1α-DIO-RVG-
WPRE (5 × 1012 genomic copies/mL) were combined in equal 
proportions as the helper virus. And the titer of the RV-ENVA-ΔRG-
DsRed (RV) was 2 × 108 genomic copies/mL.

2.3 Virus injection and histological 
preparation

Virus injection and histological preparation were performed as 
previously described (32, 33). All mice undergone twice injections 
of virus injections, respectively. Brief description as following, 
anesthetized VGAT-IRES-Cre and wild-type mice (pentobarbital 
sodium, 50 mg/kg, intraperitoneal) were securely positioned on a 
stereotaxic instrument (RWD Life Science, China). And its skull 
was aligned to make it parallel to the reference plane. Firstly, 
100 nL of the AAV-helper virus mixture were injected into the 
unilateral MVN (−6.0 mm AP, +0.8 mm ML, −3.2 mm DV). Three 
weeks afterward, double volume of RV was injected into the same 
position as before. An additional 10 min of holding the pipette was 
required to ensure full diffusion of virus particles into the 
target nuclei.

One week later, the anesthetized mice were perfused with 0.1 M 
phosphate-buffered saline, then with 4% paraformaldehyde. The brain 
samples were post-fixed in 4% paraformaldehyde overnight. 
Subsequently, they were dehydrated in various gradients (10, 20, 30%) 
of sucrose. Brain samples were coronally sectioned (30-μm thick). All 
samples were divided into three series.

2.4 Imaging and data analysis

All sections were imaged by virtual-slide microscope 
(Olympus, Tokyo, Japan). The Olympus analysis software (OlyVIA 
v.2.9, Tokyo, Japan) and ImageJ software (v.2.1.0, Bethesda, MD, 
United States) were utilized for detailed analyses. Starter cells were 
identified by co-expressing DsRed and GFP, whereas afferent 
neurons only expressed DsRed. Brain structures were recognized 
based on the standard atlas of mouse brain (36). The neurons 
labeled with DsRed were counted. To quantify ipsilateral afferent 
inputs, the input from each nucleus was quantified relative to the 
total number of input neurons. All data are presented in the form 
of mean ± standard error of the mean (SEM).

3 Results

3.1 Approaches for identifying 
monosynaptic inputs to MVN GABAergic 
neurons

The modified RV-based tracing system was utilized with VGAT-
IRES-Cre mice in this study. The helper viruses were Cre-dependent, 
they can only infect the GABAergic neurons with Cre recombinase. 
Thus, the enhanced green fluorescent protein (EGFP), avian-specific 

https://doi.org/10.3389/fneur.2024.1484488
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Kong et al. 10.3389/fneur.2024.1484488

Frontiers in Neurology 03 frontiersin.org

retroviral receptor (TVA), and the rabies glycoprotein G (RG) were 
specifically expressed on GABAergic neurons. The modified RV with 
an avian virus envelope protein (EnvA) only infects neurons with TVA 
and spread retrogradely with the help of RG. Accordingly, the 
genetically modified RV retrograde tracing system combined with 
VGAT-IRES-Cre mice were used to map the afferent inputs to MVN 
GABAergic neurons (32–35).

On the first day, the helper virus (100 nL) was administered into 
the unilateral MVN of the wide-type and VGAT-IRES-Cre mice. 

These Cre-dependent viruses can exclusively infect GABA neurons 
where the Cre recombinase was present. Then GABA neurons 
infected with helper virus express TVA-GFP and RG proteins. After 
3 weeks, double volume of RV was administered into the previous 
location. One week later, all mice were sacrificed and perfused 
(Figure 1).

The starter neurons were described as expressing both GFP and 
DsRed. Three types of neurons (GFP-labeled neurons, DsRed-labeled 
neurons, and start neurons labeled by both GAP and DsRed) were 
observed in the MVN of VGAT-Cre mice. Wild-type littermates 
without the Cre recombinase were used to verify virus specificity. In 
the MVN of wild-type mouse, neither GFP nor DsRed-positive cells 
were found (Figure 2).

3.2 Overview of monosynaptic inputs to 
MVN GABAergic neurons

Serial coronal brain sections were imaged and brain structures 
were manually recognized by the atlas of mouse brain (36). 
We discovered that DsRed-labeled neurons were primarily located in 
the cerebellum and medulla. Only a few DsRed-labeled neurons were 
observed in the pons, midbrain, hypothalamus, thalamus, and cerebral 
cortex. Notably, DsRed-labeled neurons were primarily observed in 
the ipsilateral brain regions (Figure 3). To provide a detailed review of 
the presynaptic inputs, representative images were selected and 
enlarged, such as deep mesencephalic nucleus (DpMe), ventrolateral 
periaqueductal gray (VLPAG), parvicellular reticular nucleus (PCRt), 
dorsal raphe nucleus (DR), intermediate reticular nucleus (IRt), 
gigantocellular reticular nucleus (Gi), prepositus nucleus (Pr), locus 

FIGURE 1

Experimental strategy for RV-based retrograde tracing in MVN 
GABAergic neurons. (A) A schematic diagram illustrating the viral 
vectors and injection steps for virus; (B) A schematic diagram 
showing the injection site into the MVN of VGAT-IRES-Cre mice.

FIGURE 2

Representative images of MVN GABAergic neurons injected with tracing virus. (A) Injection site of the unilateral MVN of VGAT-IRES-Cre mice. 
(B) Injection site of the unilateral MVN of wide-type mice. (C,D) Representative images displaying starter neurons (yellow), helper viruses-labeled 
neurons (green) and input neurons (red). The white arrows show the starter neurons.
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coeruleus (LC), and dorsal paragigantocellular nucleus (DPGi) 
(Figure 4).

3.3 Commissural connections of 
GABAergic neurons in the MVN

The contralateral vestibular nuclei complex (VNC), which 
includes the MVN, superior vestibular nucleus (SVN), lateral 
vestibular nuclei (LVN) and descending vestibular nucleus (DVN) 
was observed to reveal the commissural connection (37). The 
proportion of inputs from subnucleus was calculated as the count 
of DsRed-labeled cells in each subnucleus divided by the total 
count of DsRed-labeled cells in VNC. The MVN GABAergic 
neurons received most inputs from the contralateral MVN 
(68.54% ± 3.58%), as well as the contralateral DVN 
(13.68% ± 4.23%), SVN (10.87% ± 0.28%) and LVN (6.90% ± 1.79%) 
(Figure 5).

3.4 Analysis of afferent neurons providing 
input to MVN GABAergic neurons

We calculated the radio for each nucleus by dividing the count of 
DsRed-labeled neurons in a region by the total count of DsRed-
labeled neurons ipsilaterally. We identified 60 nuclei projecting to 

MVN GABAergic neurons, each contributing over 0.1% of the total 
labeled neurons on the ipsilateral side. And proportions above 3% 
were defined as dense inputs, between 1 and 3% were defined as 
moderate inputs, and below 1% were defined as sparse inputs (35).

Dense inputs (>3% of total DsRed-labeled neurons) to MVN 
GABAergic neurons originated from following nucleus: uvula-
nodulus (40.675 ± 6.76%), Gi (6.48% ± 1.31%), Pr, (4.39 ± 1.27%), IRt 
(3.28% ± 0.93%), pontine reticular nucleus, caudal part 
(4.10% ± 0.73%), pontine reticular nucleus, oral part (3.28 ± 0.66%), 
central gray of the pons (3.25% ± 1.49%). Besides, MVN GABAergic 
neurons also received moderate monosynaptic inputs (more than 1% 
of total DsRed-labeled neurons) from several nuclei, such as: 
vestibulocerebellar nucleus, medial (fastigial) cerebellar nucleus 
(Med), dorsal cochlear nucleus, DPGi, raphe magnus nucleus, spinal 
trigeminal nucleus, lateral paragigantocellular nucleus (LPGi), PCRt, 
laterodorsal tegmental nucleus (LDTg), LC, DpMe, VLPAG, DR, 
lateral periaqueductal gray (LPAG) (Figure 6). A schematic diagram 
displaying the monosynaptic inputs to the MVN GABAergic neurons 
is shown in Figure 7.

4 Discussion

To gain a deeper insight of how MVN GABAergic neurons 
mediate physiological behaviors, it is necessary to explore the 
monosynaptic inputs to them which modulate their activity. In this 

FIGURE 3

Representative images of monosynaptic inputs to MVN GABAergic neurons. Brain structures were determined according to the standard mouse atlas. 
Only the ipsilateral hemisphere was shown. Scale bar: 500  μm. CGPn, central gray of the pons; CnF, cuneiform nucleus; DC, dorsal cochlear nucleus; 
Dk, nucleus of Darkschewitsch; DMC dorsomedial hypothalamic nucleus, compact part; DMPAG, dorsomedial periaqueductal gray; DPGi, dorsal 
paragigantocellular nucleus; DpMe, deep mesencephalic nucleus; DR, dorsal raphe nucleus; DRD dorsal raphe nucleus, dorsal part; EW, Edinger-
Westphal nucleus; Fl, flocculus; Gi, gigantocellular reticular nucleus; IRt, intermediate reticular nucleus; LC, locus coeruleus; LH, lateral hypothalamic 
area; LPAG, lateral periaqueductal gray; Med, medial (fastigial) cerebellar nucleus; PH, posterior hypothalamic area; PMnR, paramedian raphe nucleus; 
PnO, pontine reticular nucleus, oral part; PPTg, pedunculopontine tegmental nucleus; Pr, prepositus nucleus; RPO, rostral periolivary region; VeCb, 
vestibulocerebellar nucleus; VLPAG, ventrolateral periaqueductal gray.
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study, a modified RV-based tracing system and VGAT-Cre mice were 
utilized. Our results revealed the presynaptic inputs to MVN 
GABAergic neurons, providing insight into the mechanisms 
mediating their activity. Additionally, we explored the commissural 

system and found that MVN GABAergic neurons are influenced by 
inputs from the contralateral MVN, LVN, SVN and DVN. These 
findings contribute to understanding commissure system and 
providing strategies to facilitate vestibular compensation.

FIGURE 4

Schematic images of the functional regions with monosynaptic inputs to MVN GABAergic neurons. Primary inputs to MVN GABAergic neurons 
originated from brain regions associated with oculomotor controlling [e.g., flocculus, medial (fastigial) cerebellar nucleus and prepositus nucleus], 
sleep–wake regulation (e.g., dorsal paragigantocellular nucleus, lateral paragigantocellular nucleus and ventrolateral periaqueductal gray) and 
sympathetic response (e.g., gigantocellular reticular nucleus and intermediate reticular nucleus). Scale bar: 100  μm. CGPn, central gray of the pons; 
CnF, cuneiform nucleus; Dk, nucleus of Darkschewitsch; DMC,dorsomedial hypothalamic nucleus, compact part; DpG, deep gray layer of the superior 
colliculus; DPGi, dorsal paragigantocellular nucleus; DpMe, deep mesencephalic nucleus; DRD, dorsal raphe nucleus, dorsal part; DRV, dorsal raphe 
nucleus, ventral part; DRVL, dorsal raphe nucleus, ventrolateral part; Gi, gigantocellular reticular nucleus; GiA, gigantocellular reticular nucleus, alpha 
part; InWh, intermediate white layer of the superior colliculus; IRt, intermediate reticular nucleus; LC, locus coeruleus; LDTg, laterodorsal tegmental 
nucleus; LH, lateral hypothalamic area; LPAG, lateral periaqueductal gray; MPB, medial parabrachial nucleus; PCRt, parvicellular reticular nucleus; PH, 
posterior hypothalamic area; PnC, pontine reticular nucleus, caudal part; PnO, pontine reticular nucleus, oral part; PPTg, pedunculopontine tegmental 
nucleus; Pr, prepositus nucleus; RC, raphe cap; Sp5I spinal trigeminal nucleus, interpolar part; VLPAG, ventrolateral periaqueductal gray.
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4.1 Comparison with earlier tracing studies

Previous research in rats has revealed connectivity between the 
MVN and DR by using both the anterograde transport of biotinylated 
dextran amine and retrograde transport of Fluoro-Gold (27). This 
pathway was also confirmed on mice in our study. The traditional 
retrograde method using horseradish peroxidase showed the inferior 
olive (IO) projects to the MVN in rabbits (28, 30). However, we did 

not find specific inputs from the IO to the MVN GABAergic neurons, 
suggesting the IO may project to other neuron types of the MVN. This 
highlighted a limitation of traditional tracer methods which cannot 
identify cell type-specific neurons in the target nucleus. Genetically 
modified RV has been extensively used in anatomical studies, 
particularly in neurosciences, due to its effectiveness in labeling 
presynaptic inputs of defined neuronal cell-types in transgenic mice 
(38, 39).

FIGURE 5

Connectivity between MVN GABAergic neurons and the contralateral VNC. (A) (B) Images showing dsRed-labeled neurons in contralateral MVN, LVN, 
SVN and DVN; (C) Statistical analysis of commissure connection (n  =  3). VNC, vestibular nuclei complex; MVN, medial vestibular nucleus; LVN, lateral 
vestibular nucleus; SVN, superior vestibular nucleus; DVN, descending vestibular nucleus.

FIGURE 6

Statistical analysis of ipsilateral monosynaptic inputs to MVN GABAergic neurons. The average proportion of monosynaptic inputs from brain regions 
contributing more than 0.1% of the total inputs to MVN GABAergic neurons was analyzed and listed. Brain regions are categorized into seven general 
structures and presented at the top, Sample size: n  =  3. Arc, arcuate hypothalamic nucleus; Bar, Barrington’s nucleus; Au1, primary auditory cortex; 
CGPn, central gray of the pons; CnF, cuneiform nucleus; Cu, cuneate nucleus; DC, dorsal cochlear nucleus; DM, dorsomedial hypothalamic nucleus; 
DMPAG, dorsomedial periaqueductal gray; DMTg, dorsomedial tegmental area; DpG, deep gray layer of the superior colliculus; DPGi, dorsal 
paragigantocellular nucleus; DpMe, deep mesencephalic nucleus; DR, dorsal raphe nucleus; EW, Edinger-Westphal nucleus; Fl, flocculus; Gi, 
gigantocellular reticular nucleus; IntP, interposed cerebellar nucleus, posterior part; IRt, intermediate reticular nucleus; LC, locus coeruleus; LDTg, 
laterodorsal tegmental nucleus; LH, lateral hypothalamic area; LPAG, lateral periaqueductal gray; MPB, medial parabrachial nucleus; LPGi, lateral 
paragigantocellular nucleus; LPO, lateral preoptic area; LRt, lateral reticular nucleus; LVPO, lateroventral periolivary nucleus; M1, primary motor cortex; 
M2, secondary motor cortex; Med, medial (fastigial) cerebellar nucleus; MPB, medial parabrachial nucleus; Pa6, paraabducens nucleus; PAG, 
periaqueductal gray; PCGS, paracochlear glial substance; PCRt, parvicellular reticular nucleus; PDTg posterodorsal tegmental nucleus; PMnR, 
paramedian raphe nucleus; PnC, pontine reticular nucleus, caudal part; PnO, pontine reticular nucleus, oral part; PPTg, pedunculopontine tegmental 
nucleus; Pr, prepositus nucleus; PR, prerubral field; PSTh, parasubthalamic nucleus; RC, raphe cap; RMg, raphe magnus nucleus; Ro, nucleus of Roller; 
Rob, raphe obscurus nucleus; RPO, rostral periolivary region; RtTg, reticulotegmental nucleus of the pons; RVL, rostroventrolateral reticular nucleus; 
S1BF, primary somatosensory cortex, barrel field; Sol, nucleus of the solitary tract; Sp5, spinal trigeminal tract; SPF, subparafascicular thalamic nucleus; 
SubC, subcoeruleus nucleus; VeCb, vestibulocerebellar nucleus; VLPAG, ventrolateral periaqueductal gray; ZI, zona incerta.

https://doi.org/10.3389/fneur.2024.1484488
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Kong et al. 10.3389/fneur.2024.1484488

Frontiers in Neurology 07 frontiersin.org

To address this limitation, our group previously used the RV 
retrograde tracing system to investigate the monosynaptic inputs to 
GABAergic neurons in the VNC (32). However, heterogeneous 
subnuclei which performed distinct functions and commissure 
connections which attributed to vestibular compensation were not 
considered. In this study, we  focused on the MVN, the largest 
subnucleus of the VNC. The RV-based retrograde system combined 
with VGAT-IRES-Cre mice was utilized to investigate the presynaptic 
inputs to GABAergic neurons of the MVN in this study. 
We discovered 60 upstream nuclei that innervated MVN GABAergic 
neurons, as well as inputs from the contralateral VNC that formed 
the commissural system. In conclusion, our study offered a more 
detailed and systematic mapping of inputs to MVN 
GABAergic neurons.

4.2 Implications for MVN GABAergic 
neurons in physiological behavior

The MVN neurons bilaterally travel through the medial 
longitudinal fasciculus to the medial ventral horn of the cervical cord. 
These neurons control the contraction of neck muscles to adjust the 
head and neck movements to maintain balance forming the 
vestibulospinal reflex. The MVN send ascending fibers to the 
ipsilateral oculomotor nucleus (CN 3) and contralateral abducens 
nucleus (CN 6) along with the SVN mediating the vestibuloocular 
reflex. This coordinate horizontal eye movements (40, 41).

Increased evidences have shown that the neurons connecting the 
MVN and the oculomotor nucleus was GABAergic, and these 
GABAergic neurons were also regulated by brain regions associated 
with oculomotor control (42, 43).

Results of this study confirmed this finding. The cerebellum gains 
direct projections from the vestibular end-organs and project to the 
MVN, acting as an adaptive processor (44–46). Direct inputs from the 
flocculus (Fl) and uvula-nodulus to the MVN have been revealed in 
cats and rabbits (1, 47–50). The cerebellum regulated the MVN 
through inhibitory inputs. Different regions projecting to MVN 
GABAergic neurons played distinct roles in regulating VOR. The 
unipolar brush cells within the uvula-nodulus receive vestibular 
inputs via mossy fibers from the vestibular end-organs and the 
vestibular nuclei. As feedback, these cells mediate the activity of the 
mossy fibers to control the vestibular inputs (51–55). Previous studies 
have shown damage of the uvula-nodulus affected the speed of the 
slow phase of eye movements relative to the head position, rather than 
the spatial orientation of the nystagmus (56, 57). Unlike the uvula-
nodulus, the flocculus participated in the gain of the VOR (58). The 
Pr integrated the velocity and position signals of horizontal eye 
movements to maintain stable gaze (59). Researches in monkeys and 
humans have revealed the lesions of Pr results in defects in maintaining 
stable gaze (60–62). These indicated the uvula-nodulus, flocculus, and 
Pr are crucial components of the VOR circuits.

Additionally, sleep–wake system and vestibular system also 
interact. Clinically, patients with vestibular dysfunction often 
exhibit sleep disturbances, however, activation by electricity or 
rocking movements of the vestibular system can facilitate non-rapid 
eye movement (NREM) sleep (63–66). Franken and his colleagues 
found NREM sleep was increased and wakefulness episodes were 
shortened through stimulating the vestibular system by rocking 
movements at 1.0 Hz (67). Further studies revealed that 
neurotensinergic neurons in the MVN promoted NREM sleep, and 
these neurons were primarily GABAergic (68). By contrast, 
Yanagisawa et al. found that GABAergic neurons in the lateral MVN 

FIGURE 7

Schematic illustration showing the distribution of monosynaptic inputs to MVN GABAergic neurons. This figure provides a schematic illustration of the 
distribution patterns of monosynaptic inputs to MVN GABAergic neurons. The color density represents the amount of input neurons. CGPn, central 
gray of the pons; DC, dorsal cochlear nucleus; DMTg, dorsomedial tegmental area; DPGi, dorsal paragigantocellular nucleus; DpMe, deep 
mesencephalic nucleus; DR, dorsal raphe nucleus; Gi, gigantocellular reticular nucleus; IRt, intermediate reticular nucleus; LC, locus coeruleus; LDTg, 
laterodorsal tegmental nucleus; LPGi, lateral paragigantocellular nucleus; Med, medial (fastigial) cerebellar nucleus; PCRt, parvicellular reticular 
nucleus; PnC, pontine reticular nucleus, caudal part; PnO, pontine reticular nucleus, oral part; Pr, prepositus nucleus; RMg, raphe magnus nucleus; Sp5, 
spinal trigeminal tract; VeCb, vestibulocerebellar nucleus; VLPAG, ventrolateral periaqueductal gray.
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contributed to stabilizing wakefulness and regulating the transition 
into rapid eye movement (REM) sleep based on vestibular 
information (42). This may be reasonable because MVN GABAergic 
neurons were linked to various brain regions involved in not only 
improving sleep but also developing wakefulness. Likewise, MVN 
GABAergic neurons received direct projections from brain area 
related to sleep/wake cycle control. The LC and DR have been 
demonstrated to facilitate arousal (69, 70). Previous experiments 
showed there are projections from LC and DR to the vestibular 
nuclei (71, 72). In the present study, we further revealed the LC and 
DR send moderate projections to MVN GABAergic neurons. Inputs 
from the LC and DR can influence the gain of the vestibular reflexes 
and cerebellar-vestibular pathway, respectively (27, 73–75). In 
addition, afferent inputs to MVN GABAergic neurons also arose 
from NREM sleep-developing brain structures, such as the VLPAG 
and DpMe. The excitation of VLPAG GABAergic neurons increased 
NREM sleep and decreased REM sleep (76, 77). Chen et al. revealed 
that exciting GABAergic neurons in the dorsal part of DpMe 
promoted NREM sleep via the sublaterodorsal nucleus pathway 
(78). Brain nuclei that enhance REM sleep, such as the DPGi, LPGi, 
and LDTG, were found to send moderate inputs to the MVN 
GABAergic neurons in this study. DPGi GABAergic neurons 
enhanced REM sleep through the suppression of the LC and DR 
(79–81). Similarly, LPGi may hyperpolarize REM-off neurons in the 
LC to generate REM sleep (82). Electrical stimulation of LDTG also 
increased REM sleep (83).

GABAergic neurons in the MVN also participate in the 
vestibulosympathetic reflex to moderate blood distribution during 
postural change and movement. The MVN GABAergic neurons 
projected primarily to the caudal ventrolateral medulla (CVLM) which 
influenced sympathetic nerve activity by influencing the rostral 
ventrolateral medulla (23, 84). MVN GABAergic neurons receive 
feedback signals from sympathetic-related brain structures, such as the 
Gi and IRt. Kuo et al. found that activation of certain regions of the Gi 
induced a decrease in heart rate and caused hypotension in cats (85). 
The IRt served as a hub transmitting post-inspiratory activity to 
sympathetic and motor outputs (86, 87).

Our results revealed that MVN GABAergic neurons integrated 
multisensory signals related to oculomotor control, sleep/wakefulness 
regulation, and sympathetic responses. These findings established a 
basis for deeper investigation into the neural pathways mediating the 
physiological functions of MVN GABA neurons.

4.3 Implications for MVN GABAergic 
neurons in vestibular compensation

Normal vestibular system is essential for visual stabilization, 
postural maintenance, and equilibrium control, by relying on 
symmetrical afferent inputs to the vestibular nuclei (88). Several 
researches have shown that there are inter-nuclear connections 
between the bilateral vestibular nuclei (20, 89, 90). The inhibitory 
commissural system linking the MVN and its contralateral 
counterpart is fundamental to complete vestibular reflexes (91). 
Partial or total interruption of unilateral inputs, such as unilateral 
vestibular deafferentation (UVD) and unilateral labyrinthectomy led 
to postural and oculomotor deficits (92–94). These deficits were 

induced by the imbalance in activity between bilateral MVNs (95). 
The resting discharges of neurons in the ipsilesional MVN were 
almost silenced, whereas the contralesional MVN neurons became 
hyperactive (92, 96, 97). Another study demonstrated the resting 
potential of MVN neurons only decreased by 50% compared to 
normal situation after bilateral labyrinthectomy (98). These findings 
indicated that the silence of ipsilesional MVN neurons was primarily 
caused by enhanced suppression from contralesional MVN neurons 
(92). The vestibular dysfunction was characterized by static (without 
movement) and dynamic symptoms (with movement) (96). Static 
symptoms gradually disappeared within days known as vestibular 
compensation (91, 96, 99). Inhibitory commissural connections were 
crucial for the recovery of spontaneous resting potential of the 
lesioned side and rebalancing neural discharge between the bilateral 
MVN during vestibular compensation (91, 96).

Our findings showed that GABAergic neurons in the MVN were 
heavily innervated by projections from the contralateral MVN as well 
as the contralateral LVN, SVN, and DVN. These patterns were similar 
to the connections observed in hamsters, in contrast to the 
commissural connections in cats and monkeys showing afferents to 
the MVN arising from all parts of contralateral MVN, parts of 
contralateral SVN and DVN (71, 100). These discrepancies may 
be due to the differences between species. The commissural system to 
MVN GABAergic neurons revealed in the present study suggests that 
these neurons may be  regulated by contralateral VNC to achieve 
bilateral balance, which was crucial for normal vestibular function.

In conclusion, we  illustrated monosynaptic inputs to MVN 
GABAergic neurons. It suggested that MVN GABAergic neurons 
received information from various brain regions. This finding 
underscores the crucial role of MVN GABAergic neurons in 
integrating multiple signals. In addition, the confirmation of the 
commissure system provides provided evidences that MVN 
GABAergic neurons were involved in facilitating 
vestibular compensation.
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