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Objective: To develop a deep learning (DL) model for carotid plaque detection 
based on CTA images and evaluate the clinical application feasibility and value 
of the model.

Methods: We retrospectively collected data from patients with carotid 
atherosclerotic plaques who underwent continuous CTA examinations of the 
head and neck at a tertiary hospital from October 2020 to October 2022. The 
model combined ResUNet with the Pyramid Scene Parsing Network (PSPNet) 
to enhance plaque segmentation. Patient plaques were divided into training, 
validation, and testing sets in a ratio of 7:1.5:1.5. We  analyzed recall (lesion-
level sensitivity), sensitivity (patient-level), and precision to evaluate the model’s 
diagnostic performance for carotid plaques. The two stepwise early-stage 
clinical validation study (Comparison study and Model-human study) was used 
to simulate real clinical plaque diagnostic scenarios.

Results: In total, 647 patients were included in the dataset, including 475 for training, 
86 for validation, and 86 for testing. The DL model based on CTA images showed good 
precision in plaque diagnosis (validation set: precision = 80.49%, sensitivity = 90.70%, 
recall = 84.62%; test set: precision = 78.37%, sensitivity = 91.86%, recall = 84.58%). 
In addition, subgroup analysis of the plaque was carried out in the test set. The 
model had high accuracy in identifying plaques at different locations (Recall: 83.72, 
76.32, 89.25, and 83.02%) and with different morphologies (Recall: 86.03, 79.17%). 
This model also analyzed the results of different types of plaques and showed 
good to moderate plaque diagnostic accuracy for different plaque types (Recall: 
70.00, 86.87, 84.29%). Especially, in the clinical application scenario analysis, the 
model’s diagnostic results for plaques were found to be higher than those of 4 out 
of 6 radiologists (p < 0.001). Furthermore, in Model-human Real Clinical Scenarios 
study, we found that the model improved the radiologists’ sensitivity in diagnosing 
plaques. Additionally, the model’s diagnostic time for plaques (6 s) was found to 
be significantly shorter than that all of radiologists (p < 0.001).

Conclusion: This AI model demonstrated strong clinical potential for carotid 
plaque detection with improved clinician diagnostic performance, shortening 
time, and practical implementation in real-world clinical cases.
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Introduction

Stroke remains the leading cause of death and disability worldwide 
(1). Clinically, atherosclerosis of the carotid artery is closely related to 
stroke and cerebral infarction (2). Moreover, atherosclerosis of the 
carotid artery is mainly manifested by the formation of atherosclerotic 
plaques in the carotid artery, and the presence of plaques can lead to 
stenosis or occlusion of the carotid artery in the corresponding 
segments, thereby resulting in the emergence of ischemic clinical 
symptoms. In addition, vulnerable plaques are prone to rupture and 
dislodgement due to their unstable composition, which can cause 
clinical symptoms and increase the burden on patients. Therefore, 
early assessment and clinical intervention are crucial for the 
prevention of cerebrovascular events in patients with 
vulnerable plaques.

Arteriosclerotic plaques in the carotid artery can be diagnosed by 
a variety of imaging methods, such as ultrasound, CTA, MRI, DSA 
etc., which can achieve qualitative and quantitative analysis of plaque 
components, detect and monitor the progress of the plaque at the early 
stage, provide medical staff with the opportunity to implement 
preventive measures, and reduce the risk of stroke and 
related complications.

CTA is less operator-dependent than ultrasound, and imaging is 
faster than MRI, and has been widely used to evaluate carotid plaques. 
Traditionally, the detection of carotid plaques relies on manual 
inspection of the images by an experienced radiologist for a detailed 
assessment of all vascular structures, which takes a relatively long 
time. In addition, CTA image analysis also requires expertise in 
cerebrovascular imaging, which relies on the subjective diagnosis of 
the reader. Therefore, the analysis process of the plaque is time-
consuming and subjective, and artificial intelligence (AI) is of 
utmost importance.

In recent years, AI algorithms have been increasingly applied 
to improve the efficiency and precision of image analysis and have 
shown high performance as well as quick and precise evaluation 
on large quantities of data with reduced personal errors. Chen et al. 
(3) reported a study in which an AI model outperformed a visual 
assessment model by a reader, thus suggesting that AI algorithms 
can be  used as a clinical tool to provide objective insights for 
disease diagnosis (4). Deep learning (DL) is an AI form that uses 
artificial neural networks to generate automatic predictions 
directly from image data, which can realize image detection, 
classification, reconstruction and other tasks (5), and has been 
widely and successfully applied in the field of medicine to assist in 
the clinical diagnosis and prognosis of diseases (6). DL methods 
are based on various artificial neural networks to gain knowledge 
of relevant and effective features from image data, which 
completely changes the detection and segmentation of plaques 
compared with machine learning. Previous studies (7, 8) have 
shown the potential of various DL models on the detection of 
coronary artery stenosis and plaque quantification, and several DL 
models of carotid plaque based on MRI (9–12) and ultrasound 
(13–15) have great potential.

Due to its widespread application and rapid imaging speed, CTA 
has been widely utilized to assess carotid plaques. In this study, a DL 
model is proposed based on carotid plaque on CTA image architecture 
to build an automatic plaque detection model using the CTA images. 
The subgroup analysis of plaque location, morphology and types was 
conducted on the test set, with the objective of verifying the accuracy 
of the model different subgroups. Furthermore, a two stepwise early-
stage clinical validation study was done with the intention of providing 
assistance in the clinical assessment of carotid plaque.

Materials and methods

Participants

Patients with atherosclerotic plaques in the carotid artery who 
continuously underwent CTA examination of head and neck from 
October 2020 to October 2022 at one tertiary hospital were selected.

Inclusion criteria were: (1) patients suspected of cerebrovascular 
disease (typical symptoms including ischemic cerebrovascular events) 
in the ipsilateral eye (transient monocular blindness or retinal 
infarction) or in the cerebral hemisphere (transient ischemic attack 
(TIA) or stroke); (2) patients diagnosed with carotid plaques by CTA; 
(3) age > 18 y.

Exclusion criteria were: (1) patients with a history of interventional 
or surgical treatment, such as carotid artery stenting or carotid 
endarterectomy; (2) patients with carotid hemangioma or carotid 
vascular malformation; (3) patients with unclear or incomplete CTA 
images for subsequent image processing; (4) missing clinical data.

Patients were randomized into a training set, validation set, and 
test to the ratio of 7:1.5:1.5 (Supplementary Figure 1). Because this was 
a retrospective study, informed consent of the participants was waived 
after ethical review (KY-20220726002-01).

CTA image acquisition

Equipment and reagents
A Siemens Somatom Definition Flash dual source CT scanner was 

selected, and the scanning parameters were set as follows: current: 
125 mA, voltage: 100 kV, collimation: 16 × 0.6 mm, and layer 
thickness: 0.75 mm. In addition, an intravenous indwelling needle, 
double barrel syringe, iodixanol contrast agent (320 mg I/ml, Jiangsu 
Hengrui Pharmaceuticals Co., Ltd., Jiangsu, China), and 40 mL 
normal saline were prepared.

Scanning protocol
During the examination, the patient was placed in a supine 

position with his head tilted backward and scanned when the breath 
was held at the end of exhalation. The scanning range was from the 
aortic arch to the skull top, and the scanning direction was from the 
foot to the head. Post-contrast enhanced scanning was performed 
after routine scanning, with a scanning duration of 8.5 ± 1.5 s. 
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Imaging of all patients was performed by the same experienced 
imaging technician who advised patients not to swallow before the 
scan and their heads were immobilized during scanning.

Model development

Criteria for plaque outlining
Each image was reviewed by two radiologists who have been 

engaged in head and neck imaging diagnosis for more than 5 years. 
When two reviewers disagreed on the results, a discussion would follow 
to make a consensus. The plaque at the bifurcation of the carotid artery 
were selected, and ITK-SNAP software1 was employed to set the 
boundary of the carotid artery plaque and the region of interest  
from the distal end to the proximal end on the axial image 
(Supplementary Figure 2). Determination of plaque delineation range: 
the entire range involved in the plaque at the bifurcation of the common 
carotid artery was delineated. If the plaque was extensive, the lowest 
delineation was drawn to the aortic arch, and the highest delineation to 
the skull base. The vessels on the occluded side of the carotid artery were 
not delineated, but the plaques on the contralateral vessels were.

DL algorithms
In this study, ResUNet with the Pyramid Scene Parsing Network 

(PSPNet) were combined for plaque segmentation. The architecture 
combining ResUNet and PSPNet was designed to leverage the 
strengths of both models for effective plaque segmentation tasks. 
The 3D-CNN ResNet-50 was the main architecture of the network. 
The ResUNet architecture comprises an encoder, a jump connection 
and a decoder. The encoder employs ResNet residual blocks. In the 
encoder section, a series of residual blocks (ResNet-50) gradually 
reduces the spatial resolution and increases the depth of the feature 
map. We combine the encoder part of ResUNet with the Pyramid 
Pooling Module (PPM) module of PSPNet. The encoder part of 
ResUNet is combined with the Pyramid Pooling Module (PPM) of 
PSPNet in order to enhance the encoder by utilizing the PPM 
module to enhance the feature maps. In this section, a number of 
pooling operations are applied at different scales (1×1, 3×3, and 
7×7) from the last layer of the residual module. The results of these 
pooling operations are then up-sampled to the dimensions of the 
original feature maps and spliced to the original feature map. 
Finally, the ResUNet decoder combines the pyramidal pooling with 
the final segmentation results through the convolutional layer. The 
encoder was used to extract high-level features from the input 
image, whereas a decoder incorporated a decoder inspired by the 
UNet structure to progressively restore resolution and fuse low-level 
and high-level features through skip connections, thereby 
preserving detailed information. PSPNet can capture global context 
information at different scales through pyramid pooling. This 
module can fuse the features of receptive fields of different sizes to 
improve the network’s ability to understand the overall context of 
the image. The decoder output of ResUNet was fused with the 
output of the pyramid pooling module of PSPNet, usually using 
element-wise addition or concatenation. This ensured effective 

1 www.ITK-SNAP.org

fusion of local and global information. The output layer of the 
network was processed by a segmentation head, which outputs 
plaque prediction segmentation masks through convolutional layers 
and activation functions. This structure enabled the network to not 
only obtain high-resolution features in local areas using ResUNet, 
but also obtain contextual information on a global scale through 
PSPNet, thereby achieving better performance in plaque 
segmentation tasks. In practical applications, the network structure 
may be adjusted and optimized according to the characteristics of 
specific tasks and data sets.

Model training
First, the original CTA image was normalized to 0–1 according to 

the window level of 400 and the window width of 1,200. Second, for 
large volumetric CTA images, extract smaller patches to facilitate 
training and mitigate memory constraints. A patch size of 256*256*128 
was used to facilitate our input data with half the overlap on the 
preprocessed CTA image. These preprocessing steps aimed to ensure 
that the CTA data were well-suited for training and evaluation with 
ResUNet and PSPNet architectures.

The model was trained on the PyTorch framework, thereby 
employing a combination of ResUNet and PSP modules. The initial 
learning rate was set to 0.0005 with the incorporation of a warm-up 
strategy. The Adam optimizer was utilized with betas set to (0.9, 0.99) 
and a weight decay of 0.001. The loss function was a combination of 
Cross-Entropy (CE) loss and Dice loss, with equal weights assigned 
(1:1) to achieve a balanced optimization approach (Figure 1).

Subgroup analysis of model performance
In the test set, the location of plaques (anterior, posterior, internal, 

external), plaque morphology (smooth plaques, non-smooth plaques) 
and plaque type (soft plaque, calcified plaque, mixed plaque) on a 
patient’s CTA images were marked by two senior professional 
radiologists. If there was a disagreement, the two professionals 
negotiated the final decision.

Plaque location
The maximum cross-sectional layer of carotid plaque on the axial 

image was selected, and the cross-sectional lumen was divided into 
four 90° sectors, namely anterior wall, lateral wall, posterior wall, and 
medial wall. If the plaque spanned 2 sections, the area where the 
thickest part of the plaque was located was chosen.

Plaque morphology
According to the intersection surface between the plaque and the 

residual vessel lumen, there were two types of morphology: smooth 
and non-smooth. Non-smooth plaques referred to plaques with an 
irregular surface.

Plaque type
Based on the density of plaques, they are divided into three types: 

soft plaques, calcified plaques, and mixed plaques.

Model stepwise validation

Comparison study
We adopted the test dataset to compare the detection performance 

between the AI model alone and 6 radiologists. Furthermore, no 
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clinical information or other comparative images were provided for 
each CTA examination. Among the 6 radiologists, 3 junior radiologists 
worked for less than 5 years (D1, D2, D3) and the other 3 junior 
radiologists worked for more than 5 years (D4, D5, D6). Radiologists 
diagnosed Plaque relying on their clinical expertise. The radiologists’ 
detection results and timing were recorded and used for comparison 
with the model (Figure 1).

Model-human real clinical scenarios study
Another 6 radiologists interpreted each CTA case with the 

assistance of the AI model in reading process. Furthermore, no clinical 
information or other comparative images were provided for each CTA 

examination. 3 of them were junior with working time less than 
5 years, which were D7, D8, D9, and the other 3 were senior worked 
for more than 5 years (D10, D11, D12). Final detection results and 
reading time (recorded automatically) were recorded. This study was 
used to simulate the gain of the model for the radiologists in a real 
clinical scenario (Figure 1).

Statistical analysis

Quantitative variables were utilized to express the 
mean ± standard deviation (SD), while categorical variables were 

FIGURE 1

The main structure of the work. It introduces the flow of the deep learning algorithm and the two-step clinical scenario validation of the algorithm 
model.
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presented as frequencies/percentages. Continuous variables were 
analyzed using either the Student’s t-test or the Wilcoxon test, 
while class-based variables were assessed using the Chi-square 
test or Fisher’s exact test. Model performance was evaluated on 
the test datasets using metrics such as recall (lesion-level 
sensitivity, representing the proportion of plaques correctly 
classified by the model), sensitivity (patient-level, representing 
the proportion of plaques correctly classified by the model in 
different patients) and precision. Furthermore, the McNemar test 
was used to determine if there were significant differences in 
sensitivity in the different data groups. A significance level of 
p < 0.05 was considered statistically significant. Statistical 
analysis was conducted using R software (version 3.5.2, R 
Foundation for Statistical Computing, Vienna, Austria).

Results

Clinical features

A total of 647 patients with 1982 plaques were included in the 
study and patients were randomly divided into training set 
(N = 475), validation set (N = 86), and test set (N = 86) according 
to the ratio, with the average age of 65.08 ± 9.73 years, 
64.77 ± 9.41 years, and 66.94 ± 9.85 years. The patients included 
221 (34.16%) females and 426 (65.84%) males, with 158 (33.26%) 
females and 317 (66.74%) males in the training set, 28 (32.56%) 
females and 58 (67.44%) males in the validation set, 35 (40.70%) 
females and 51 (59.30%) males in the test set (Table 1). Clinical 

baseline information of the patient, such as the presence of 
symptoms, medical history (including hypertension, diabetes), and 
life history (such as smoking and alcohol consumption), was also 
recorded in the Table 1.

Model evaluation

Test performance of the model
The CTA images of 647 patients were included in the data set, 

including 475 for training, 86 for validation, and 86 for test. The 
DL model based on CTA images presented good plaque diagnosis 
precision (validation set: precision = 80.49%, sensitivity = 90.70%, 
recall = 84.62%; test set: precision = 78.37%, sensitivity = 91.86%, 
recall = 84.58%) (Table 2). In addition, partial presentation of 
modeling results were shown in Figure 2.

Subgroup analysis on the results of the model in 
the test set

Subgroup analysis of plaques in the test set was performed to 
evaluate the precision of the model based on plaque location, 
plaque morphology and plaque type, respectively. According to the 
location of the plaques, four groups were made, including an 
anterior group, posterior group, internal group, and external 
group. Through comparing the plaque location identified by model 
with that identified manually, it was discovered that the recall of 
the plaque location in the anterior, posterior, internal, and external 
groups was 83.72, 76.32, 89.25, and 83.02%, respectively. According 
to the surface morphology, plaques were divided into a smooth 

TABLE 1 Clinical features.

Parameter Training cohort Validation cohort Test cohort

No. of patients (N/%) 475 (73.42) 86 (13.29) 86 (13.29)

Mean age (y) mean ± SD 65.08 ± 9.73 64.77 ± 9.41 66.94 ± 9.85

No. of patients with symptoms (N/%) 356 (74.95) 55 (63.95) 58 (61.63)

Gender

Male (N/%) 317 (66.74) 58 (67.44) 51 (59.30)

Female (N/%) 158 (33.26) 28 (32.56) 35 (40.70)

Medical history

Hypertension (N/%) 327 (68.84) 58 (67.44) 27 (31.40)

Diabetes (N/%) 113 (23.79) 14 (16.28) 24 (27.91)

Life history

Smoking (N/%) 145 (30.53) 33 (38.37) 18 (20.93)

Drinking (N/%) 122 (25.68) 24 (27.91) 13 (15.12)

No. of plaques (N) 1,521 234 227

TABLE 2 Diagnostic results of deep learning model.

TP FN FP Count Recall (lesion-
level)

Precision Sensitivity 
(patient-level)

Train 1,324 197 230 1,521 0.8705 0.8520 0.9516

Val 198 36 48 234 0.8462 0.8049 0.9070

Test 192 35 53 227 0.8458 0.7837 0.9186
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group and non-smooth groups, and the results indicated that the 
recall of the plaque morphology in smooth and non-smooth 
groups was 86.03 and 79.17%, respectively. The model showed 
good lesion diagnostic accuracy for different types (soft plaque: 
recall = 70.00%，calcified plaque: recall = 86.87%, mixed plaque: 
recall = 84.29%) (Table 3).

Model stepwise validation results

Comparison study
For plaque diagnosis, the results showed that the recall of plaque 

diagnosis was low among 3 junior radiologists, and the model recall 
value was higher than that of 3 radiologists (p < 0.001); for 3 senior 

FIGURE 2

Partial presentation of modeling results. As shown in the Figure, the red border lines indicate the model’s recognition of the boundary of the plaques. 
(A,B) The models exhibited high recognition precision of calcified plaque and soft plaque on the left side of the neck. (C) The calcified plaque on the 
left side of the neck was not precisely identified, which may be due to its smaller size. (D) The plaque at the right carotid bifurcation was not 
completely and precisely identified, which may be attributed to the larger size and the location of partial plaque components near the edge.

TABLE 3 Subgroup analysis on the results of the model in the test set.

TP FN Count Recall

Location

Anterior 36 7 43 0.8372

Posterior 29 9 38 0.7632

Internal 83 10 93 0.8925

External 44 9 53 0.8302

Morphology

Smooth 154 25 179 0.8603

Non-smooth 10 38 48 0.7917

Type

Soft 14 6 20 0.7000

Calcified 119 18 137 0.8687

Mixed 59 11 70 0.8429
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radiologists, the plaque diagnostic recall values were all high, with 
only D5 radiologists having higher plaque recall values than the 
model, indicating that the model has higher performance in plaque 
diagnosis and can assist physicians in improving the accuracy of 
plaque diagnosis. The model diagnosis time for plaques was 6 s, 
significantly shorter than the diagnosis time of 6 radiologists 
(97.50 ± 15.24 s) (p < 0.001) (Figure 3).

Model-human real clinical scenarios study
For plaque diagnosis, the results showed that 6 radiologists 

(D7-D12) had improved diagnostic recall. The radiologists’ diagnoses 
(D7 D10 and D12), when aided by the model, exhibited a markedly 
higher degree of accuracy than model. Junior radiologist (D7) took 
longer to achieve a higher diagnostic performance. Senior radiologists 
spent less time and achieved better performance. The model diagnosis 

time for plaques was 6 s, which was still significantly shorter than the 
diagnosis time of 6 radiologists (74.67 ± 36.12 s) (p < 0.001) 
(Figure 4).

Discussion

This study demonstrates that the DL model holds significant 
clinical potential for plaque detection. Subgroup analysis revealed 
high identification accuracy for plaques at different locations, different 
morphologies and various plaque types. Particularly in clinical 
scenarios, the model outperformed 4 out of 6 radiologists in plaque 
diagnosis. Furthermore, in real-world clinical settings, the model 
increased radiologists’ sensitivity and reduced the time to diagnosis 
(6 s, significantly faster than radiologists).

FIGURE 3

Diagnostic results of comparison study. Among 6 radiologists, only D5 radiologists having higher plaque recall values than the model, indicating that 
the model has higher performance in plaque diagnosis and can assist physicians in improving the accuracy of plaque diagnosis. The model diagnosis 
time for plaques is 6 s, significantly shorter than the diagnosis time of 6 radiologists.

FIGURE 4

Diagnostic results of Model-human study. For plaque diagnosis, the results showed that 6 radiologists had improved diagnostic recall. The radiologists’ 
diagnoses (D7, D10 and D12), when aided by the model, exhibited a markedly higher degree of accuracy than model. Junior radiologist (D7) took 
longer to achieve a higher diagnostic performance and senior radiologists spent less time and achieved better performance. The model diagnosis time 
for plaques was 6 s, which was still significantly shorter than the diagnosis time of 6 radiologists.
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Atherosclerosis of the carotid artery is a common mechanism of 
ischemic stroke (16, 17). Relevant studies (18, 19) have summarized the 
effectiveness of DL algorithm models in assessing high-risk carotid 
plaque, judging plaque stability, and identifying responsible plaque. Zhu 
et al. (20) used DL algorithm to segment CTA images of the head and 
neck of 93 patients to study the plaque images. Their study included only 
one training set and one validation set, and did not further evaluate the 
algorithm’s accuracy in the test set. In this study, a new DL model was 
developed with a total of 647 patient images, and our findings suggest 
that using AI as a diagnostic aid has a positive impact on the diagnosis 
of carotid plaque, which is consistent with previous results (21).

Most prior studies have focused on stenosis (22), but plaque type 
is also a crucial factor for vulnerability. This study assessed various 
plaque types, revealing good to moderate diagnostic accuracy: soft 
plaques (recall = 70.00%), calcified plaques (recall = 86.87%), and 
mixed plaques (recall = 84.29%). Calcified plaques show high CT 
density and CT is considered as the gold standard for identifying 
calcification, which likely accounts for the model’s high accuracy in 
diagnosing them. The lower accuracy for soft plaques may be due to 
their density being closer to surrounding tissue, making them harder 
to distinguish. Additionally, the small number of soft plaques in the 
test set could influence performance. Plaque vulnerability is also 
related to morphology and distribution location (23). The model 
performed well in diagnosing plaques different morphologies and 
locations (recall: 86.03, 79.17, 83.72, 76.32, 89.25%, 83. 02%). 
Irregular plaques, with uneven surfaces, yielded slightly lower recall 
compared to smooth plaques. The study (23) have also shown that 
carotid plaques in the posterior wall were longer in length, with larger 
cross-sectional area and hardening artifacts in the surrounding skull, 
which may be related to the lower model recall of posterior wall 
plaques than plaques in other sites.

In exploring the clinical application of the model, two validation 
studies were conducted: a comparative study and a model-human 
study. These studies simulated real-world clinical scenarios, 
confirming the model’s value in improving plaque detection rates and 
reducing diagnosis time. The results align with previous research (20), 
suggesting that DL models can assist in plaque diagnosis and lessen 
radiologists’ workload. Many studies (24) have shown that AI models 
can outperform detecting plaques, particularly in CT-based 
assessments. However, most studies (25, 26) have focused on plaque 
segmentation, classification, and plaque-induced lumen stenosis. Few 
have examined DL algorithms for plaque detection in clinical settings. 
Our study, which emphasizes plaque detection and its clinical 
applicability, compared the diagnostic accuracy of the model with 
radiologists at various experience levels and evaluated its impact on 
plaque detection rates.

Current plaque analysis is time-consuming, relying heavily on 
expert review. DL methods automate complex tasks, such as vascular 
wall profiling and adaptive Hounsfield unit thresholds, which improve 
plaque identification. This reduces the time radiologists spend on 
analysis and aids clinical diagnosis. UNet is a full convolutional 
network semantic segmentation algorithm commonly used in imaging 
to automatically segment and support the diagnosis of a range of 
vascular diseases (24). No new is an advanced DL neural network that 
utilizes UNet technology with adaptive capabilities to adapt to 
different image properties and target structures (27–29). However, the 
use of UNet assisted segmentation of atherosclerotic plaques in CTA 
remains uncommon. A recent study (20) used the off-the-shelf 

algorithm nnUnet for carotid plaque segmentation. Since the network 
structure is not specifically designed for the patch segmentation task, 
the segmentation performance is not very good.

In our study, we combined ResUNet with the Pyramid Scene 
Parsing Network (PSPNet) for more effective patch segmentation. 
This hybrid architecture leverages both models’ strengths, improving 
segmentation accuracy. Our findings suggest that the DL algorithm 
holds significant potential for carotid plaque recognition, supporting 
its use as an auxiliary diagnostic tool. Although the model shows 
considerable accuracy, further validation in larger cohorts is 
necessary to confirm its clinical applicability. Prospective studies are 
warranted to assess the model’s categorical ability and evaluate its 
clinical impact. Ultimately, our study highlights the potential of 
DL-based carotid CTA models to improve diagnostic accuracy 
and efficiency.

This study has some limitations. First, this study was developed based 
on data from a single center. In a subsequent study, multicenter data with 
a larger sample size will be collected to update the model, aiming to 
improve the precision and generalizability of the model. Second, the 
relatively small sample size of this study may limit the generalizability of 
our findings. Although we have attempted to reduce this limitation by 
carefully selecting our cohorts and applying rigorous statistical methods, 
future studies with larger and more diverse cohorts are needed to validate 
and extend the study results. Finally, the retrospective enrollment used in 
this study was artificially determined, which may cause some selection bias 
and limit the generalizability of the results.

Conclusion

In conclusion, in this study, ResUNet and PSPNet were 
combined to segment carotid plaque CTA images. The results 
showed that the DL model has high precision in plaque 
recognition as well as in recognizing plaques with different 
locations, morphologies and types. This AI model demonstrated 
strong clinical potential for carotid plaque detection with 
improved clinician diagnostic performance, shortening time, and 
practical implementation in real-world clinical cases. Future 
studies with larger data sets from multi-centers will be performed 
to further improve the application robustness of this plaque 
diagnosis model.
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The flowchart of the patient inclusion process.
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