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Objective: The goal of this study was to develop a nomogram that integrates 
clinical data to predict the likelihood of severe postoperative peritumoral brain 
edema (PTBE) following the surgical removal of intracranial meningioma.

Method: We included 152 patients diagnosed with meningioma who were 
admitted to the Department of Neurosurgery at the Affiliated People’s 
Hospital of Jiangsu University between January 2016 and March 2023. Clinical 
characteristics were collected from the hospital’s medical record system. Factors 
associated with severe postoperative PTBE were identified through univariate 
and LASSO regression analyses of clinical, pathological, and radiological features. 
A multivariate logistic regression analysis was then performed incorporating all 
features. Based on these analyses, we developed five predictive models using 
R software: conventional logistic regression, XGBoost, random forest, support 
vector machine (SVM), and k-nearest neighbors (KNN). Model performance was 
evaluated by calculating the area under the receiver operating characteristic 
curve (AUC) and conducting decision curve analysis (DCA). The most optimal 
model was used to create a nomogram for visualization. The nomogram was 
validated using both a validation set and clinical impact curve analysis. Calibration 
curves assessed the accuracy of the clinical-radiomics nomogram in predicting 
outcomes, with Brier scores used as an indicator of concordance. DCA was 
employed to determine the clinical utility of the models by estimating net 
benefits at various threshold probabilities for both training and testing groups.

Results: The study involved 151 patients, with a prevalence of severe postoperative 
PTBE at 35.1%. Univariate logistic regression identified four potential risk factors, 
and LASSO regression identified four significant risk factors associated with severe 
postoperative PTBE. Multivariate logistic regression revealed three independent 
predictors: preoperative edema index, tumor enhancement intensity on MRI, 
and the number of large blood vessels supplying the tumor. Among all models, 
the conventional logistic model showed the best performance, with AUCs of 
0.897 (95% CI: 0.829–0.965) and DCA scores of 0.719 (95% CI: 0.563–0.876) 
for each cohort, respectively. We developed a nomogram based on this model 
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to predict severe postoperative PTBE in both training and testing cohorts. 
Calibration curves and Hosmer-Lemeshow tests indicated excellent agreement 
between predicted probabilities and observed outcomes. The Brier scores were 
10.7% (95% CI: 6.7–14.7) for the training group and 25% (95% CI: 15.2–34.8) for 
the testing group. DCA confirmed that the nomogram provided superior net 
benefit across various risk thresholds for predicting severe postoperative PTBE, 
with a threshold probability range from 0 to 81%.

Conclusion: Utilizing conventional logistic regression within machine learning 
frameworks, we developed a robust prediction model. The clinical-radiological 
nomogram, based on conventional logistic regression, integrated clinical 
characteristics to enhance the prediction accuracy for severe PTBE in patients 
following intracranial meningioma resection. This nomogram showed promise 
in aiding clinicians to create personalized and optimal treatment plans by 
providing precise forecasts of severe PTBE.
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Introduction

Meningiomas account for approximately 40% of primary central 
nervous system tumors (1), with most displaying indolent growth 
and being histologically classified as benign. Complete resection of 
benign meningiomas (WHO Grade I) often results in a curative 
outcome (2). However, postoperative peritumoral brain edema 
(PTBE) is a common complication following meningioma resection 
(3). Given that patients often present with mild symptoms upon 
admission, the development of PTBE can have severe consequences 
and significantly affect patient outcomes. Thus, it is crucial to address 
this complication effectively.

Research on predicting severe postoperative PTBE after 
meningioma resection remains limited. Venous injury is known to 
cause venous edema or infarction, potentially leading to local or 
distant venous congestion and subsequent PTBE (4). Some studies 
have proposed that “normal perfusion pressure breakthrough “may 
contribute to postoperative PTBE in meningiomas (5). This 
phenomenon could arise from disruptions in blood pressure 
autoregulation caused by the tumor mass in the surrounding brain 
tissue. The sudden increase in local blood flow following the removal 
of a large, vascularized meningioma could result in PTBE and 
intracerebral hemorrhages (6). Despite these insights, the exact 
pathogenesis of PTBE in meningiomas remains unclear. Therefore, 
this study investigated four main theories related to PTBE: brain 
parenchyma compression, secretory-excretory mechanisms, venous 
compression, and hydrodynamic factors (7). Additionally, various 
factors such as tumor location, margin characteristics, size, histology, 
sex hormones, tumor grade, vessel supply pattern, radiological 
features (e.g., degree of enhancement), and histopathological features 
(e.g., histological classification and Ki-67 labeling index [LI]) (5, 8–10) 
have been examined for their correlation with postoperative PTBE.

Machine learning (ML), a branch of artificial intelligence (AI), has 
increasingly been used in medical data analysis (11). ML techniques 
have been successfully applied in various clinical settings, including 
intensive care units (ICUs) (12, 13). In some cases, ML-based 
predictive tools have outperformed traditional statistical models in 
forecasting severe postoperative PTBE following meningioma 
resection. This study aimed to develop an ML-driven predictive model 

using preoperative and intraoperative clinical characteristics to 
estimate the likelihood of postoperative PTBE. Additionally, a 
nomogram was developed to visualize this predictive model.

Methods

Study design and patients

This study enrolled the patients diagnosed with intracranial 
meningioma, who were admitted to the neurosurgery department at 
the Affiliated People’s Hospital of Jiangsu University between January 
2016 and March 2023. Data were retrospectively collected from the 
clinical research data platform. After refining and extracting baseline 
information, these patients were randomly divided into training and 
validation groups in a 7:3 ratio (Figure  1). A random number 
generation algorithm was used to ensure the random allocation of 
patients between the training and validation groups. This retrospective 
study was approved by the Medical Ethics Committee of the Affiliated 
People’s Hospital of Jiangsu University (Approval No.K-20240115-W), 
in accordance with the Declaration of Helsinki. Informed consent was 
not required as all patient data were anonymized and de-identified 
prior to analysis.

Clinical and surgical data

Comprehensive patient information, including age, gender, 
admission symptoms, diagnosis, and underlying conditions, was 
extracted from the medical record system. To ensure accuracy and 
consistency, domain experts meticulously verified each data point.

Radiological data

Participants underwent standardized CT and MRI scans before 
and after meningioma resection using CUT 710 (United Imaging 
Healthcare Technology Co., Shanghai, China), Magnetom Skyra 3.0 T 
(Siemens, Erlangen, Germany), and UMR560 Imaging 1.5 T (United 
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Imaging Healthcare Technology Co., Shanghai, China). The images 
were uploaded to a Picture Archiving and Communication System 
(PACS) for comprehensive analysis and long-term storage. Two 
independent neuroradiologists assessed the radiological images 
without access to clinical or pathological information. In cases of 
disagreement, a third neuroradiologist was consulted to reach a 
consensus on binary data decisions.

The edema index (EI) was calculated by dividing the combined 
volume of PTBE and tumor volume prior to surgery by the tumor 
volume observed on T2-weighted imaging (T2WI). Edema severity 
was classified as “none” (EI = 1.0), “moderate” (EI = 1.0–2.0), or 
“severe” (EI > 2.0). Postoperative PTBE was defined as an increase in 
volume on postoperative head CT scans, indicating a worsening of 
PTBE compared to preoperative levels, following meningioma 
resection, with or without hemorrhage (3, 14). Tumor volume was 
calculated using the spheroid formula (V = 4/3π × a/2 × b/2 × c/2) (10).

Additionally, the neuroradiologists evaluated various MR imaging 
techniques, including T1-weighted (T1WI), T2WI, fluid-attenuated 
inversion recovery, and contrast-enhanced T1-weighted (CE-T1WI) 
imaging. They also included magnetic resonance venography (MRV) 
and CT scans in their analysis. Based on these comprehensive 
evaluations, they extracted and documented the relevant 
radiological characteristics.

 (a) Tumor Location: Tumors were identified at various intracranial 
sites, including the convexity, falcine, and parasagittal regions, 
as well as in the anterior, middle, and posterior cranial fossae. 
Less common locations included the clivus, cerebellopontine 
angle, and foramen magnum. Tumors were also found in the 
parasellar region and involved the olfactory groove. 
Additionally, involvement of the petroclival area, tentorium, 
sphenoid wing, and tuberculum sellae was noted.

 (b) Tumoral Calcification Assessment: In our investigation 
utilizing CT scans to detect calcifications, an attenuation value 
≥80 HU (Hounsfield units) was used as a diagnostic criterion.

 (c) Tumor Margin Classification: Tumor margins with lobulations 
or projections at the brain-tumor interface were classified as 
irregular. In contrast, margins that were smooth and lacked 
nodularity or indentation were categorized as smooth.

 (d) Dural Tail Sign: The dural tail sign has been recognized as a 
common radiological feature in meningiomas, characterized 
by thickening and enhancement of the dura mater extending 
beyond the primary tumor mass (Figure 2A).

 (e) Cerebrospinal fluid (CSF) Cleft: A CSF cleft is identified as a 
thin rim of CSF signal between the tumor and brain tissue. In 
this study, a CSF cleft was considered positive if visible in at 
least one imaging plane (axial, coronal, or sagittal) 
(Figures 2B,C).

 (f) Degree of Tumor Enhancement: The degree of tumor 
enhancement was assessed by measuring the difference in 
grayscale values on T1WI before and after contrast 
enhancement of the solid tumor components. This method 
provides insights into the microcirculation and perfusion 
within the tumor tissue (Figures 2D,G).

 (g) Assessment of Venous Sinus Invasion: The extent of venous 
sinus invasion was evaluated by analyzing the relationship 
between the tumor and the venous sinuses on MRV images. 
This analysis helps determine the degree of tumor infiltration 
into the venous structures (Figures 2E,F).

 (h) Assessment of the Number of Large Blood Arteries Responsible 
for Tumor Blood Supply: In this study, “large blood arteries” 
supplying the meningioma were defined as vessels showing 
prominent contrast enhancement and significant caliber visible 
on axial, coronal, and sagittal CE-T1WI images. These arteries 
were identified through a comprehensive analysis of the 
aforementioned MRI sequences. All vessels suspected to 
be feeding the tumor were counted. The enumeration of these 
vessels was further verified by neurosurgeons during surgery to 
ensure accuracy, particularly for vessels that could not be clearly 
identified as arteries or veins in preoperative imaging (51).

FIGURE 1

Recruitment pathway for eligible patients in this study.
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Histopathology and immunohistochemistry

Following the surgical removal of tumors, tissue samples were 
embedded in paraffin and prepared for histological examination using 
hematoxylin and eosin staining, in accordance with the WHO 
classification criteria for meningiomas (2007/2016). The histopathological 
analysis included the assessment of histological subtypes and grading 
based on WHO guidelines, as well as Ki-67 expression levels. 
Meningiomas were classified into common subtypes (meningothelial, 
transitional, fibrous, and psammomatous) and uncommon subtypes 
(angiomatous, microcystic, secretory, lymphoplasmacyte-rich, and 
metaplastic). Ki-67 immunohistochemistry staining was performed using 
a DM6000B microscope (Leica, Wetzlar, Germany) at ×400 magnification. 
The percentage of positively stained cells (Ki-67 LI [%]) was determined 
by analyzing six random fields from each slide with Image-Pro Plus 5.0 
software (Media Cybernetics, Rockville, Maryland), calculating the ratio 
of positively stained cells to total cells.

Risk factor selection and nomogram 
construction

Clinical parameters were initially analyzed using univariate 
logistic regression. Subsequently, all attributes were included in 
LASSO regression analysis, with the penalty parameter adjusted 
through tenfold cross-validation. Significant risk factors for severe 
postoperative PTBE identified by both LASSO and univariate 
analyses were then examined using multivariate logistic regression. 
These factors were combined using multivariate logistic regression 
along with ML algorithms, including extreme gradient boosting 
(XGBoost), random forest, support vector machine (SVM), and 
k-nearest neighbor (KNN). A user-friendly nomogram was 

developed for healthcare professionals based on these analyses 
(15, 16).

Statistical analysis

Statistical analyses were performed using SPSS 22.0 and R 
software (version 4.1). Continuous variables were reported as median 
(interquartile range) or mean ± standard deviation (SD), depending 
on the results of the Shapiro–Wilk test, while categorical data were 
presented as proportions. Differences between groups were assessed 
using the Chi-squared test, Fisher’s exact test, and Mann–Whitney U 
test. Logistic regression was utilized to identify risk factors associated 
with outcomes, considering variables with a p-value <0.05  in 
univariate analysis for inclusion in stepwise logistic regression models.

ML algorithms have been known for their exceptional 
performance and have demonstrated significantly superior results 
compared to traditional regression approaches when predicting 
outcomes from extensive datasets (17). We adopted a diverse range of 
ML algorithms, including extreme gradient boosting (XGBoost), 
logistic regression, random forest, SVM, and KNN, to model the data. 
For model training, 70% of samples were randomly selected, with the 
remaining 30% reserved for testing. To prevent overfitting, necessary 
adjustments were made during training, and 5-fold cross-validation 
was used to determine the best hyperparameters. Optimized models 
were then applied in R to predict the risk of PTBE. Model performance 
on test sets was evaluated by calculating the area under the receiver 
operating characteristic curve (AUC), sensitivity, specificity, and 
overall accuracy. A higher AUC indicated better classification 
performance. The optimal algorithm was used to construct the 
nomogram, with its discrimination assessed using the concordance 
statistic and calibration evaluated through calibration curves and the 

FIGURE 2

Radiological features are depicted in this study. (A) Dural Tail Sign in Weighted T1 MRI (white arrows pointed); (B,C) shows a CSF cleft in T1, and T2MRI 
image (white arrows pointed); (D,G) the degree of tumor enhancement was assessed by measuring the difference in grayscale values on T1WI before 
and after contrast enhancement of the solid tumor components (circles place); (E,F) the extent of venous sinus invasion was evaluated by analyzing 
the relationship between the tumor and the venous sinuses on MRV images (white arrows pointed).
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minimum Akaike’s information criterion (AIC) regression model 
formulation. The nomogram’s performance was further validated by 
calculating its AUC, comparing predicted incidences with observed 
outcomes, and using Brier scores to evaluate the performance of the 
calibration curve. Decision curve analysis (DCA) was performed to 
assess clinical utility across various probability thresholds. Statistical 
significance was defined as a p-value <0.05.

Results

Patient characteristics

A retrospective analysis was conducted on data from 152 patients. 
One patient declined surgery and was excluded from analysis, 
resulting in a final cohort of 151 patients. The cohort was randomly 
divided into training and testing groups in a 7:3 ratio. No statistically 
significant differences were observed between the training and testing 
groups for any variables (Table 1, p > 0.05). The overall incidence of 
severe postoperative PTBE was 35.1% (53/151), with rates of 31.4% 
(33/105) in the training group and 43.5% (20/46) in the testing group.

Selection of risk factors

A forest plot was used to visually represent the various risk factors 
associated with severe postoperative PTBE following meningioma 
resection, based on univariate logistic regression analyses (Figure 3). 
Four risk factors with a p-value less than 0.05 were identified and 
further analyzed using LASSO regression to highlight the most 
significant risk factors linked to severe PTBE (Figure 4). Multivariate 
logistic regression analyses (Table 2) isolated three key determinants 
for severe PTBE after meningioma resection: preoperative EI, tumor 
enhancement intensity on MRI, and the number of large blood vessels 
supplying the tumor. These associations were also illustrated in a forest 
plot (Figure 5).

Model construction and selection

Five ML classification techniques were employed to predict 
postoperative PTBE status in meningioma patients: logistic regression, 
random forest, XGBoost, SVM, and KNN. ROC curves were generated 
and AUC values calculated for each model using both training and 
testing datasets (Figure  6). The logistic regression-based model 
demonstrated superior predictive capabilities in testing set, indicating 
its robustness.

Model visualization and evaluation

The model developed in this study was visualized using a 
nomogram, a graphical tool designed to enhance its clinical utility 
(Figure 7). To estimate the probability of severe postoperative PTBE 
after meningioma resection for an individual, each factor in the 
nomogram was assigned a score ranging from 0 to 100 based on its 
regression coefficient related to severe PTBE. By drawing 
perpendicular lines from each factor’s axis to the points axis and 

summing these scores, we calculated a cumulative score. This total 
score was then mapped to the final score scale to estimate the 
likelihood of severe PTBE.

The nomogram’s predictive performance was evaluated using 
ROC analyses. The AUC values for the training and testing groups 
were 0.897 (95% CI: 0.829–0.965) and 0.719 (95% CI: 0.563–0.876), 
respectively (Figures 6A,B).

Brier scores were calculated to further assess the model’s accuracy. 
The scores were 10.7% (95% CI: 6.7–14.7) for the training group and 
25% (95% CI: 15.2–34.8) for the testing group, reflecting a good 
concordance between the nomogram’s predictions and actual 
outcomes, as shown by the calibration curve (Figure 8).

The results of DCA (Figure  9) indicated that the nomogram 
provided significant predictive advantages across a range of threshold 
probabilities from 0 to 80%.

Clinical impact curve (CIC) analysis (Figure 10) demonstrated 
that the nomogram offered a superior net benefit across a practical 
range of threshold probabilities, indicating its potential to improve 
patient outcomes substantially. These findings highlight the 
considerable predictive value of the logistic model used in this study.

Discussion

This study successfully developed a clinical nomogram that 
provided a valuable tool for predicting severe postoperative PTBE 
following meningioma resection. The nomogram offered clinicians a 
solid basis for assessing individual risk and tailoring personalized 
treatment plans for patients at risk of severe PTBE post-surgery. The 
model demonstrated high predictive accuracy, with AUC values of 
0.897 (95% CI: 0.829–0.965) for the training group and 0.719 (95% CI: 
0.563–0.876) for the testing group. Additionally, DCA showed 
substantial net clinical benefit for both training and validation cohorts.

Meningiomas are the most common non-glial brain tumors, 
accounting for approximately 14–19% of all intracranial lesions (18). 
Their incidence increases with age, particularly after 65 years (19). 
Older patients undergoing surgery for these benign tumors are at a 
significant risk of severe postoperative PTBE, which can lead to 
adverse outcomes. This condition has been described in various ways, 
such as “postoperative hemorrhagic infarction,” “venous edema,” or 
“brain swelling syndrome” related to meningioma (5). In our study, 
the most severe postoperative PTBE was found to be approximately 
11 times larger in volume compared to the tumor itself.

Previous research has indicated that venous infarction can be a 
complication of meningioma surgery, with occurrence rates reported 
between 2.0 and 4.0% (20, 21). Convexity and parasagittal 
meningiomas are especially prone to this due to the complex midline 
venous structure and the damage to seemingly minor cortical veins 
(20, 21). However, our investigation identified a post-surgical 
incidence of vein occlusion or damage at approximately 3.97%, which 
does not appear to significantly contribute to severe 
postoperative PTBE.

Although meningiomas primarily occur in extra-axial locations 
and exhibit slow growth, they can expand significantly, leading to 
PTBE and hydrocephalus, which pose severe risks of disability and 
life-threatening complications (22). PTBE is observed in 
approximately 50–67% of meningioma patients (23, 24), with the 
edema sometimes exceeding the tumor’s size by two to three times 
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TABLE 1 Baseline characteristics of the enrolled patients in the training and testing cohorts.

[ALL] N = 151 Test N = 46 Train N = 105 p overall

Gender, n (%) 0.034

  Female 105 (69.54%) 38 (82.61%) 67 (63.81%)

  Male 46 (30.46%) 8 (17.39%) 38 (36.19%)

Age (years), media[Q1;Q3] 63.00 [52.00;69.00] 62.50 [52.25;72.00] 64.00 [52.00;69.00] 0.442

Symptoms on admission

Headache, n (%) 0.864

  Negative 92 (60.93%) 29 (63.04%) 63 (60.00%)

  Positive 59 (39.07%) 17 (36.96%) 42 (40.00%)

Dizziness, n (%) 0.537

  Negative 99 (65.56%) 28 (60.87%) 71 (67.62%)

  Positive 52 (34.44%) 18 (39.13%) 34 (32.38%)

Vomit, n (%) 1.000

  Negative 138 (91.39%) 42 (91.30%) 96 (91.43%)

  Positive 13 (8.61%) 4 (8.70%) 9 (8.57%)

Limb weakness, n (%) 1.000

  Negative 120 (79.47%) 37 (80.43%) 83 (79.05%)

  Positive 31 (20.53%) 9 (19.57%) 22 (20.95%)

Tumor found by medical examination, n (%) 0.586

  Negative 147 (97.35%) 44 (95.65%) 103 (98.10%)

  Positive 4 (2.65%) 2 (4.35%) 2 (1.90%)

Medical history

Diabetes, n (%) 0.775

  Negative 136 (90.07%) 41 (89.13%) 95 (90.48%)

  Positive 15 (9.93%) 5 (10.87%) 10 (9.52%)

Hypertension, n (%) 0.888

  Negative 85 (56.29%) 25 (54.35%) 60 (57.14%)

  Positive 66 (43.71%) 21 (45.65%) 45 (42.86%)

Heart disease, n (%) 0.518

  Negative 149 (98.68%) 45 (97.83%) 104 (99.05%)

  Positive 2 (1.32%) 1 (2.17%) 1 (0.95%)

Brain trauma, n (%) 0.166

  Negative 146 (96.69%) 43 (93.48%) 103 (98.10%)

  Positive 5 (3.31%) 3 (6.52%) 2 (1.90%)

Epilepsy, n (%) 0.553

  Negative 137 (90.73%) 43 (93.48%) 94 (89.52%)

  Positive 14 (9.27%) 3 (6.52%) 11 (10.48%)

Number of large blood artery responsible for tumor blood supply, n (%) 0.734

  0 8 (5.30%) 3 (6.52%) 5 (4.76%)

  1 109 (72.19%) 32 (69.57%) 77 (73.33%)

  2 24 (15.89%) 9 (19.57%) 15 (14.29%)

  3 10 (6.62%) 2 (4.35%) 8 (7.62%)

Extracarotid artery (tumor blood supply), n (%) 0.244

  Negative 60 (39.74%) 22 (47.83%) 38 (36.19%)

  Positive 91 (60.26%) 24 (52.17%) 67 (63.81%)

(Continued)
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TABLE 1 (Continued)

[ALL] N = 151 Test N = 46 Train N = 105 p overall

Internal carotid artery (tumor blood supply), n (%) 0.553

  Negative 102 (67.55%) 29 (63.04%) 73 (69.52%)

  Positive 49 (32.45%) 17 (36.96%) 32 (30.48%)

Vertebral artery (tumor blood supply), n (%) 1.000

  Negative 132 (87.42%) 40 (86.96%) 92 (87.62%)

  Positive 19 (12.58%) 6 (13.04%) 13 (12.38%)

Drainage of venous disturbance, n (%) 0.429

  Negative 110 (72.85%) 36 (78.26%) 74 (70.48%)

  Positive 41 (27.15%) 10 (21.74%) 31 (29.52%)

Venous sinus disturbance, n (%) 0.577

  Negative 112 (74.17%) 36 (78.26%) 76 (72.38%)

  Positive 39 (25.83%) 10 (21.74%) 29 (27.62%)

The intensity of tumor 

enhancement on MRI, 

media[Q1;Q3] 447.00 [311.01;585.26] 450.88 [340.00;550.50] 425.90 [292.90;590.52] 0.527

Peritumoral Hypointensity on T2 Weighted MRI, n (%) 0.334

  Negative 88 (58.28%) 30 (65.22%) 58 (55.24%)

  Positive 63 (41.72%) 16 (34.78%) 47 (44.76%)

Meningoceal signs, n (%) 0.068

  Negative 10 (6.62%) 6 (13.04%) 4 (3.81%)

  Positive 141 (93.38%) 40 (86.96%) 101 (96.19%)

Operation time (hour), 

media[Q1;Q3]

5.00 [4.00;7.21] 5.00 [4.00;7.00] 5.00 [4.00;7.50] 0.857

Meningioma location

Foramen magnum, n (%) 1.000

  Negative 150 (99.34%) 46 (100.00%) 104 (99.05%)

  Positive 1 (0.66%) 0 (0.00%) 1 (0.95%)

Anterior fossa base, n (%) 0.166

  Negative 146 (96.69%) 43 (93.48%) 103 (98.10%)

  Positive 5 (3.31%) 3 (6.52%) 2 (1.90%)

Fossae temporalis, n (%) 1.000

  Negative 127 (84.11%) 39 (84.78%) 88 (83.81%)

  Positive 24 (15.89%) 7 (15.22%) 17 (16.19%)

Occipital lobe, n (%) 0.311

  Negative 140 (92.72%) 41 (89.13%) 99 (94.29%)

  Positive 11 (7.28%) 5 (10.87%) 6 (5.71%)

Sphenoid ridge, n (%) 0.462

  Negative 128 (84.77%) 37 (80.43%) 91 (86.67%)

  Positive 23 (15.23%) 9 (19.57%) 14 (13.33%)

Petroclival, n (%) 1.000

  Negative 146 (96.69%) 45 (97.83%) 101 (96.19%)

  Positive 5 (3.31%) 1 (2.17%) 4 (3.81%)

Cavernous sinus, n (%) 0.127

  Negative 137 (90.73%) 39 (84.78%) 98 (93.33%)

  Positive 14 (9.27%) 7 (15.22%) 7 (6.67%)

(Continued)

https://doi.org/10.3389/fneur.2024.1478213
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Bo et al. 10.3389/fneur.2024.1478213

Frontiers in Neurology 08 frontiersin.org

TABLE 1 (Continued)

[ALL] N = 151 Test N = 46 Train N = 105 p overall

Paracele, n (%) 1.000

  Negative 149 (98.68%) 46 (100.00%) 103 (98.10%)

  Positive 2 (1.32%) 0 (0.00%) 2 (1.90%)

Cerebellar peduncle, n (%) 0.775

  Negative 136 (90.07%) 41 (89.13%) 95 (90.48%)

  Positive 15 (9.93%) 5 (10.87%) 10 (9.52%)

Tentorium, n (%) 0.724

  Negative 141 (93.38%) 44 (95.65%) 97 (92.38%)

  Positive 10 (6.62%) 2 (4.35%) 8 (7.62%)

Falx cerebri, n (%) 0.436

  Negative 144 (95.36%) 43 (93.48%) 101 (96.19%)

  Positive 7 (4.64%) 3 (6.52%) 4 (3.81%)

Convexity, n (%) 0.124

  Negative 76 (50.33%) 28 (60.87%) 48 (45.71%)

  Positive 75 (49.67%) 18 (39.13%) 57 (54.29%)

Multiple meningiomas, n (%) 0.255

  Negative 135 (89.40%) 39 (84.78%) 96 (91.43%)

  Positive 16 (10.60%) 7 (15.22%) 9 (8.57%)

Venous not injury in surgery, 

n (%)

151 (100.00%) 46 (100.00%) 105 (100.00%)

Venous decompensation, n (%) 1.000

  Negative 145 (96.03%) 44 (95.65%) 101 (96.19%)

  Positive 6 (3.97%) 2 (4.35%) 4 (3.81%)

Postoperative bleeding, n (%) 0.590

  Negative 82 (54.30%) 27 (58.70%) 55 (52.38%)

  Positive 69 (45.70%) 19 (41.30%) 50 (47.62%)

Preoperative midline displacement, n (%) 0.825

  Negative 115 (76.16%) 34 (73.91%) 81 (77.14%)

  Positive 36 (23.84%) 12 (26.09%) 24 (22.86%)

Preoperative use of mannitol, n (%) 0.872

  Negative 95 (62.91%) 28 (60.87%) 67 (63.81%)

  Positive 56 (37.09%) 18 (39.13%) 38 (36.19%)

Recurrence, n (%) 1.000

  Negative 143 (94.70%) 44 (95.65%) 99 (94.29%)

  Positive 8 (5.30%) 2 (4.35%) 6 (5.71%)

Meningeal tumor volume 

(mm3), media[Q1;Q3]

21528.00 [9439.50;39910.50] 21903.75 [8000.00;45371.25] 21528.00 [9900.00;38000.00] 0.811

Preoperative edema index, 

media[Q1;Q3]

1.10 [1.00;1.35] 1.10 [1.00;1.48] 1.00 [1.00;1.30] 0.775

Pathology

Protruding nucleoli, n (%) 0.518

  Negative 149 (98.68%) 45 (97.83%) 104 (99.05%)

  Positive 2 (1.32%) 1 (2.17%) 1 (0.95%)

Classification of meningioma (WHO), n (%) 1.000

  1 148 (98.01%) 45 (97.83%) 103 (98.10%)

(Continued)
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TABLE 1 (Continued)

[ALL] N = 151 Test N = 46 Train N = 105 p overall

  2 3 (1.99%) 1 (2.17%) 2 (1.90%)

Meningoepithelial, n (%) 1.000

  Negative 124 (82.12%) 38 (82.61%) 86 (81.90%)

  Positive 27 (17.88%) 8 (17.39%) 19 (18.10%)

Angiomatous meningioma, n (%) 1.000

  Negative 131 (86.75%) 40 (86.96%) 91 (86.67%)

  Positive 20 (13.25%) 6 (13.04%) 14 (13.33%)

Transitional, n (%) 1.000

  Negative 129 (85.43%) 39 (84.78%) 90 (85.71%)

  Positive 22 (14.57%) 7 (15.22%) 15 (14.29%)

Fibrous, n (%) 0.838

  Negative 95 (62.91%) 30 (65.22%) 65 (61.90%)

  Positive 56 (37.09%) 16 (34.78%) 40 (38.10%)

Microcystic, n (%) 0.668

  Negative 145 (96.03%) 45 (97.83%) 100 (95.24%)

  Positive 6 (3.97%) 1 (2.17%) 5 (4.76%)

Psammomatous, n (%) 0.068

  Negative 141 (93.38%) 40 (86.96%) 101 (96.19%)

  Positive 10 (6.62%) 6 (13.04%) 4 (3.81%)

Mixed meningioma, n (%) 0.676

  Negative 144 (95.36%) 45 (97.83%) 99 (94.29%)

  Positive 7 (4.64%) 1 (2.17%) 6 (5.71%)

KI67(%), media[Q1;Q3] 2.00 [1.00;5.00] 2.00 [1.00;5.00] 2.00 [1.00;5.00] 0.323

Cystic meningioma, n (%) 1.000

  Negative 143 (94.70%) 44 (95.65%) 99 (94.29%)

  Positive 8 (5.30%) 2 (4.35%) 6 (5.71%)

Calcification, n (%) 0.668

  Negative 145 (96.03%) 45 (97.83%) 100 (95.24%)

  Positive 6 (3.97%) 1 (2.17%) 5 (4.76%)

EMA, n (%) 1.000

  Negative 5 (3.31%) 1 (2.17%) 4 (3.81%)

  Positive 146 (96.69%) 45 (97.83%) 101 (96.19%)

VIM n (%): Positive 151 (100.00%) 46 (100.00%) 105 (100.00%)

S100, n (%) 1.000

  Negative 139 (92.05%) 43 (93.48%) 96 (91.43%)

  Positive 12 (7.95%) 3 (6.52%) 9 (8.57%)

GFAP, n (%) 1.000

  Negative 150 (99.34%) 46 (100.00%) 104 (99.05%)

  Positive 1 (0.66%) 0 (0.00%) 1 (0.95%)

P53, n (%) 0.919

  Negative 129 (85.43%) 40 (86.96%) 89 (84.76%)

  Positive 22 (14.57%) 6 (13.04%) 16 (15.24%)

PR, n (%) 0.549

  Negative 29 (19.21%) 7 (15.22%) 22 (20.95%)

  Positive 122 (80.79%) 39 (84.78%) 83 (79.05%)
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(25). Our study supported these observations, finding a correlation 
between moderate preoperative PTBE (EI = 1.0–2.0) and an increased 
likelihood of postoperative PTBE, suggesting a non-linear relationship 
between preoperative and postoperative PTBE (3). The etiology of 
PTBE in meningiomas has been extensively studied since the 1980s 
(7). Research has explored various clinical and pathological factors 
such as gender, age, tumor location, size, histological subtypes, and 

venous obstruction. However, these studies have not identified 
statistically significant or conclusive associations (10). Four primary 
theories have been proposed to explain the occurrence of PTBE (7). 
Previous research has suggested that tumor size may play a crucial role 
in the development of PTBE through brain parenchyma compression 
theory (26). The Brain Parenchyma Compression Theory suggests that 
large meningiomas compress the brain, leading to ischemia and 

FIGURE 3

Forest plot illustrating the characteristics identified through univariate logistic regression analyses.

FIGURE 4

Parameter tuning for LASSO regression in the training cohort. (A) LASSO coefficient profiles for clinical features. (B) Optimal penalization coefficient 
(lambda) determined via 10-fold cross-validation. The lambda value corresponding to the minimum mean squared error for the training cohort is 
shown. (C) Positive characteristics identified by LASSO regression.
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TABLE 2 Results of univariate and multivariate logistic regression analyses.

Univariate analysis Multivariate analysis

β coefficient OR 95% CI p-value β coefficient OR 95% CI p-value

−0.381 0.683 0.683(0.275–1.62) 0.397

0.024 1.024 1.024(0.992–1.06) 0.158

−0.223 0.8 0.8(0.335–1.855) 0.607

−0.14 0.87 0.87(0.347–2.085) 0.758

0.095 1.1 1.1(0.221–4.47) 0.898

−0.549 0.578 0.578(0.175–1.636) 0.327

−14.814 0 0(NA–5.031) 0.989

0.417 1.517 1.517(0.365–5.719) 0.542

0.513 1.67 1.67(0.727–3.865) 0.227

16.377 12955078.93 12,955(0-NA) 0.991

0.797 2.219 2.219(0.086–57.29) 0.577

−0.795 0.452 0.452(0.066–1.886) 0.328

−0.755 0.47 0.47(0.196–0.961) 0.058 −2.752 0.064 0.063 (0.008–0.293) 0.002

−0.2 0.818 0.818(0.351–1.94) 0.644

−0.035 0.966 0.966(0.245–3.233) 0.956

0.194 1.214 1.214(0.491–2.917) 0.667

0.262 1.3 1.3(0.524–3.14) 0.563

0.193 1.213 1.213(0.477–2.978) 0.677

0.003 1.003 1.003(1.001–1.005) 0.002 0.003 1.003 1.003 (1.000–1.006) 0.024

0.757 2.133 2.133(0.929–5.003) 0.076

0.33 1.391 1.391(0.171–28.72) 0.779

−0.098 0.907 0.907(0.76–1.067) 0.255

−14.8 0 0(NA–2.362) 0.992

−14.814 0 0(NA–5.031) 0.989

0.806 2.24 2.24(0.763–6.518) 0.136

−0.87 0.419 0.419(0.021–2.739) 0.436

0.223 1.25 1.25(0.357–3.967) 0.711

−0.33 0.719 0.719(0.035–5.862) 0.779

0.531 1.7 1.7(0.319–8.172) 0.504

−14.814 0 0(NA–5.031) 0.989

−0.343 0.71 0.71(0.1–3.285) 0.685

−0.074 0.929 0.929(0.19–3.596) 0.919

0.815 2.258 2.258(0.261–19.52) 0.426

0.015 1.015 1.015(0.444–2.342) 0.971

0.095 1.1 1.1(0.221–4.47) 0.898

−0.78 NA(NA–NA) <0.01

1.96 7.1 7.1(0.87–146.7) 0.095

−14.8 0 0(NA–2.362) 0.992

−14.814 0 0(NA–5.031) 0.989

0.844 2.325 2.325(0.83–6.481) 0.104

−0.156 0.855 0.855(0.22–2.797) 0.805

0.442 1.556 1.556(0.48–4.753) 0.442

−0.916 0.4 0.4(0.151–0.975) 0.051

(Continued)
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cytotoxic edema (27, 28). Recent studies, however, have not 
consistently demonstrated a significant relationship between tumor 
size and edema formation, even considering age-related brain atrophy 

(29–31). Post-resection, severe PTBE can persist or worsen, indicating 
that tumor size alone may not be a definitive factor. The Secretory-
Excretory Theory posits that certain histological subtypes of 

TABLE 2 (Continued)

Univariate analysis Multivariate analysis

β coefficient OR 95% CI p-value β coefficient OR 95% CI p-value

0.395 1.484 1.484(0.188–9.387) 0.674

0.833 2.3 2.3(0.406–13.05) 0.324

−0.33 0.719 0.719(0.035–5.862) 0.779

−0.011 0.989 0.989(0.846–1.144) 0.883

0.405 1.5 1.5(0.657–3.469) 0.337

0.588 1.801 1.801(0.688–4.624) 0.222

0.011 1.011 1.011(0.421–2.364) 0.98

−0.87 0.419 0.419(0.021–2.739) 0.436

0 1 1(1–1) 0.199

2.956 19.22 19.22(5.389–99.54) <0.01 3.648 38.402 38.40 (8.054–307.3) <0.01

0.833 2.3 2.3(0.406–13.05) 0.324

0.395 1.484 1.484(0.188–9.387) 0.674

15.843 7595513.096 75,955(0-NA) 0.989

−0.78 NA(NA–NA) <0.01

−1.386 0.25 0.25(0.013–1.448) 0.2

−14.8 0 0(NA–2.362) 0.992

−1.319 0.267 0.267(0.04–1.039) 0.094

0.882 2.417 2.417(0.81–8.961) 0.141

FIGURE 5

Forest plot showing positive characteristics identified through multivariate logistic regression analyses.
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FIGURE 6

ROC curves for assessing the five ML classification techniques employed to predict postoperative PTBE status in meningioma patients. (A,B) Logistic 
regression Training set and Testing set. ROC: Receiver Operating Characteristic (bootstrap replicates = 500). (C) ROC curves for random forest, 
(D) ROC curves for XGBoost, (E) ROC curves for SVM, (F) ROC curves for KNN.
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meningiomas (32) secrete eosinophilic and periodic acid-Schiff (PAS) 
positive inclusions into perivascular spaces, contributing to PTBE 
through osmotic mechanisms. Given that these subtypes account for 
less than 3% of all meningiomas (33), and our study did not include 
such cases, it is unlikely that this subtype significantly contributes to 
postoperative PTBE. The Venous Compression Theory suggests that 
tumors obstructing veins and sinuses can impair blood flow, 
potentially exacerbating PTBE (7). In our study, MRV scans did not 
definitively prove venous obstruction as a major contributing factor 
to PTBE. The Hydrodynamic Theory posits that when the blood 
supply to a meningioma is insufficient, it secretes angiogenic factors 
leading to the formation of immature and highly permeable neovessels 
within the tumor (34, 35). These vessels leak plasma proteins into the 
tumor. If there is permeability at the tumor-brain interface (absence 
of an intact arachnoid barrier), these factors diffuse into surrounding 
brain tissue, promoting vasogenic edema (36). The similarities 
between PTBE and experimentally induced vasogenic edema support 
this theory. Hypoplastic efferent tumoral veins (37) may also play a 

crucial role, allowing diffusion of edema-inducing factors such as 
vascular endothelial growth factor (VEGF)-A, endothelin-1, and 
caveolin-1 into adjacent brain tissue (38). This may contribute to both 
preoperative and postoperative PTBE, particularly in areas adjacent 
to white matter (14). In summary, while each theory provides insight 
into the mechanisms of PTBE, the hydrodynamic theory and the role 
of efferent tumoral veins appear to offer the most comprehensive 
explanation for the observed edema in meningioma cases.

Previous studies have indicated that the presence of edema in 
the surrounding brain tissue may suggest compromised integrity of 
the blood–brain barrier (BBB) and the arachnoid plane, which act 
as protective barriers against edema formation. While the pia mater 
allows water and electrolyte permeability, it restricts the passage of 
plasma proteins. Similarly, the impermeability of the cerebral cortex 
contributes to maintaining BBB function. Disruption of 
leptomeningeal and cortical layers can increase vascular 
permeability, resulting in edema by allowing the influx of plasma 
proteins and water into white matter (24). Given that meningiomas 

FIGURE 7

Nomogram based on multivariate logistic regression analysis for predicting the occurrence of chronic hydrocephalus in patients with aneurysmal 
subarachnoid hemorrhage.

FIGURE 8

Calibration curve analysis of the nomogram in (A) the training set and (B) the testing set.
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are typically well-defined tumors located outside brain tissue, they 
often exhibit a distinct boundary composed of connective tissues 
such as the pia-arachnoid mater and tumor stroma. This boundary 
potentially limits the influence that intra-tumoral factors (e.g., 
VEGF or MMP) may exert on adjacent peri-tumoral brain regions. 
Therefore, investigating this interface and identifying potential 
disruptors are crucial for understanding PTBE pathogenesis (39). 
An anatomical investigation revealed an increased number of vessels 
crossing the brain-tumor interface in meningiomas associated with 
preoperative PTBE (39). Surgeons may use bipolar diathermy more 
frequently at this interface to mitigate post-surgical rebleeding risks 
due to its higher vascularity. Repositioning retractors during surgery 
and using bipolar diathermy can potentially induce mechanical 

trauma and thermal injury, respectively, to the surrounding brain 
tissue. These factors further compromise blood flow within the 
already impaired BBB (5). Damage to the surgical cleavage plane 
between the tumor and cerebral cortex may also result in venous 
infarction after surgery (40), leading to an enlargement of 
postoperative PTBE. Previous studies have demonstrated a 
significant association between the absence of peritumoral rims and 
a higher risk of PTBE (26, 41, 42). Moreover, having multiple 
arachnoid layers could potentially mitigate the occurrence of PTBE 
(7). Our study observed that regions with increased blood supply 
were more susceptible to medical injury at the brain-tumor interface, 
which likely played a crucial role in the development of severe PTBE 
following surgery.

FIGURE 9

Decision curve analysis of the nomogram. (A) Training set; (B) testing set. The decision curve indicates that using this model to predict the occurrence 
of severe postoperative PTBE after meningioma resection is more effective when the threshold probability is between 0 and 80%.

FIGURE 10

Clinical impact curve (CIC) analysis in (A) the training set and (B) the testing set.
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Meningiomas exhibit a high degree of vascularity and blood flow 
(34). The presence of microvessels with increased permeability within 
the tumor facilitates surgical and chemotherapy management (43). 
Nearly all meningiomas show the characteristic “tail of mouse sign,” 
indicating enhanced meningeal permeability. The vascular properties 
of meningiomas have been associated with PTBE (44). Although 
tumor neovascularization is not evident in the edematous region, the 
hydrostatic pressure exerted by circulating fluid surpasses that of 
interstitial fluid, resulting in extracellular edema caused by water 
leakage. Several studies suggest that the increased water content in 
these tumors may contribute to their growth (41). Recent research has 
also indicated that cortical blood stealing could play a role. 
Investigations have revealed the presence of pial arterial blood supply 
in meningiomas and observed how blood supply from cortical arteries 
can divert blood from surrounding areas near the tumor (45, 46). This 
diversion can result in ischemia in the brain tissue surrounding the 
tumor, leading to PTBE. The dysfunction of the BBB and heightened 
permeability of capillaries within brain tissue contribute to plasma 
components and water overflowing into the vicinity of the tumor, 
thereby causing PTBE with vasogenic origins (45). Significant leakage 
of contrast agent from the tumor into peritumoral brain tissue is only 
evident when meningiomas are accompanied by surrounding edema 
(47). While biopsy can provide insights into the characteristics of tight 
endothelial junctions and facilitate the evaluation of the microvascular 
area through immunohistological examination, it requires an invasive 
procedure (29–31). Our objective was to establish a correlation 
between the pathology of vascularized meningiomas and post-surgical 
PTBE, although it could not be considered the primary risk factor.

However, unlike high-grade gliomas, meningiomas typically do 
not compromise the integrity of BBB unless there is direct brain 
invasion (26). In meningiomas, a physical barrier often exists between 
the tumor and the surrounding edematous brain. This observation 
was consistent with current theories on tumor invasiveness. We also 
considered factors such as microvascular permeability (48, 49), 
irregular tumor margins attributed to cortical tumor penetration, 
tumors with prominent nucleoli producing growth factors like VEGF 
(9), and a high Ki67 LI indicating active tumor proliferation (34, 50). 
Our findings were consistent with previous research suggesting that 
the resolution of PTBE after surgery was not significantly influenced 
by the proliferative characteristics or invasive behavior of intracranial 
meningiomas (28).

Our findings suggest that post-surgery PTBE might be associated 
with BBB disruption and increased tumor water content rather than 
tumor vascularity. However, this factor provided only an 
approximate estimate of tumor vascularity, and further research 
would be  needed for additional validation. Previous hypotheses 
proposed that edema originated from the tumor periphery and 
propagated through loosely interconnected fibers in the white 
matter. The higher water content within the tumor might facilitate 
enhanced fluid diffusion into adjacent brain structures due to 
pressure gradients, contributing to the development of PTBE (41). 
However, there has been currently insufficient understanding 
regarding the relationship between PTBE and surrounding 
white matter.

Our study faced limitations due to a restricted sample size, 
necessitating larger sample sizes to prevent overfitting models and 
ensure consistent results when examining the impact of these 
prognostic factors. The retrospective nature of our study and its single-
center design with a small sample size. In the same time, we faced the 

post operative CT is not the ideal for estimate the PTBE. Due to the 
national conditions, in China, most of the patients are poor, and 
we will try to reduce the treatment costs of patients. Although we hope 
to improve postoperative examinations such as MRI, we often have to 
do more than CT to assess the changes in the condition. Although 
MRI was performed in patients with aggravated PTBE, CT was chosen 
as the postoperative method in our predictive study. Last but not least, 
we observed the treatment of steroid and mannitol did not control the 
PTBE, more studies should do in dealing with this complication.

Conclusion

Our innovative nomogram, which integrated clinical 
characteristics, radiological features, and pathological findings, 
significantly enhanced the accuracy in predicting severe PTBE 
following meningioma resection. This pioneering tool demonstrated 
substantial potential in assisting healthcare professionals in developing 
precise and personalized treatment strategies by providing reliable 
forecasts regarding severe PTBE after meningioma resection.
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