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Introduction: Repeat imaging when regional and remote stroke patients arrive 
at a comprehensive stroke center (CSC) can delay endovascular thrombectomy 
(EVT). We  examined which clinical and imaging parameters predict infarct 
progression and perfusion core growth during transport.

Methods: We included patients recruited from 2017 to 2023  in a prospective 
database who were transferred from remote sites with large vessel occlusion, 
had CT perfusion imaging at the primary stroke center (PSC), and had repeat 
CT on arrival at the CSC demonstrating persistent occlusion. The key imaging 
characteristics were perfusion core change (rCBF < 30%) and ASPECTS 
change. Multiple and ordinal logistic regression analyses were used to assess 
the relationship between background clinical and imaging variables and the 
CT-perfusion core and ASPECTS on arrival. DEFUSE 3 criteria (ASPECTS ≥ 6, 
perfusion core < 70  mL) were used to define “favorable imaging.”

Results: In 90 patients with CT perfusion at both PSC and CSC and persistent 
occlusion, the median time from onset to PSC presentation was 279  min (IQR 
143–702). The median time from PSC presentation to CSC arrival was 243.5  min 
(IQR 186–335), and the median distance traveled was 186.5  km (IQR 101–258). 
Lower baseline ASPECTS (per point) was associated with a 7  mL increase (95%CI 
2–11  mL) in perfusion core between scans (p  =  0.004). The time from onset, the 
time between PSC and CSC, and the distance traveled were not significantly 
associated with either ASPECTS or perfusion core growth during transport. In 
total, 11 out of 78 patients (14%) had deterioration of initially favorable imaging 
profiles during transport.

Conclusion: Perfusion core growth during transport was uncommon and most 
strongly associated with lower ASPECTS at the PSC. Initially, favorable PSC 
imaging May predict whether repeat imaging is necessary at the CSC.
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Introduction

Early reperfusion with endovascular therapy is of substantial 
benefit in ischemic stroke patients with large vessel occlusion (LVO). 
Due to geographical challenges, many patients May have delayed 
access. Systems must be optimized to improve how endovascular 
therapy is provided to patients who are from regional/rural areas 
without a local comprehensive (endovascular-capable) stroke center 
(CSC). Different models have been proposed for managing stroke 
patients, including direct bypass to the Comprehensive Stroke Center, 
the drip-and-ship approach (1), and pre-hospital stroke scoring scales 
for triage (2). For remote patients, the drip-and-ship model is the 
most appropriate. This approach involves initial imaging performed 
at the primary stroke center (PSC). Repeat imaging May be performed 
once patients arrive at the CSC due to concern for either infarct 
progression or recanalization. It is possible that unnecessary imaging 
May contribute to further recanalization delays (3).

Direct to endovascular suite transfer is generally ideal (3, 4). 
However, in practice, patients May be  reassessed on arrival due to 
concerns regarding deterioration or improvement. This is primarily due 
to the significant cost and workforce required to activate the 
endovascular suite. Despite concerns regarding inter-transport 
deterioration, expansion of the ischemic core May be  relatively 
uncommon (5) and unlikely to result in a patient becoming ineligible for 
endovascular therapy (6). In particular, a decline in the Alberta Stroke 
Program Early CT Score (ASPECTS) is uncommon in patients with high 
baseline ASPECTS and favorable collateral grades (5, 7, 8). Transport 
time also appears to have less association with infarct progression (5–7).

The framework of fast and slow infarct progressors has been 
understood for decades, but more recently has become a focus with 
the longer time windows for reperfusion therapies (9). Fast and slow 
progressors are terms that have been used to describe both baseline 
collateral status and infarct growth. Hypoperfusion intensity ratio 
(HIR) (Tmax > 10 s volume/Tmax > 6 s volume) and delay time index 
(DT > 6/DT > 2 s) quantify poor collateral flow and are associated with 
ischemic core growth (8, 10, 11). It is possible that a longer time to 
recanalization has less effect on outcomes in slow progressors (12).

We hypothesized that baseline clinical and imaging variables 
would be associated with whether remote patients continued to have 
favorable imaging profiles after long transfer (ASPECTS or perfusion 
core growth during transport).

Methods

Patients

Patients with LVO who were referred for endovascular therapy to 
the Royal Melbourne Hospital between June 2020 and February 2023 
were prospectively recorded. Historical data from 2017 to 2020 was 
also reviewed for patients who had persistent occlusion on arrival. A 
summary of how patients were analyzed has been included in Figure 1. 
Data from 18 referral hospitals across Victoria and Tasmania were 
included. Multimodal stroke imaging was performed at the primary 
stroke center (CTB, CTA, and CTP) as part of a statewide telehealth 
protocol (13).

The clinical and imaging data of patients used for this study were 
extracted from The Monitoring of Stroke Endovascular Services study 

(MOSES) registry (HREC 2019.060). This registry includes patients 
being referred for endovascular thrombectomy (EVT) at the study 
center, a significant proportion of whom were transferred from 
regional centers. The baseline clinical data included age, sex, National 
Institutes of Health Stroke Scale (NIHSS), treatments received, 
premorbid modified Rankin Scale (mRS), and time from symptom 
onset. All data were collected in compliance with local ethics 
committee and institutional guidelines. Patients consented to the 
collection of their data. All management of patients (including 
whether they had repeat CT perfusion on arrival) was at the discretion 
of the treating physicians. Patients who had repeat CT perfusion at the 
CSC were considered to have “repeat imaging” for the purpose of this 
study. The data from this study are available from the corresponding 
author on reasonable request and with appropriate ethical approval.

CT perfusion was analyzed using the commercial software MIStar 
(Apollo Medical Imaging Technology, Melbourne, Australia). Automated 
maps were generated for delay time (a delay and dispersion corrected 
Tmax), cerebral blood flow (CBF), cerebral blood volume (CBV), and 
mean transit time (MTT). CTP penumbra was the total volume of delay 
time greater than 3 s (critical hypoperfusion volume) (14). The delay 
time index (DT index) was calculated on the PSC perfusion scan as delay 
time > 6 volume divided by delay time > 2 volume (11). In patients where 
raw perfusion data were unavailable for re-analysis using MIStar, 
historical documentation of thresholds was used to ensure that all 
patients were included. The ASPECTS evaluation was performed by the 
author (MV) with 5 years of experience as a stroke physician. DEFUSE 
3 protocol (ASPECTS ≥ 6, perfusion core < 70 mL, mismatch 
volume > 15 mL, ratio > 1.8) was used to define “favorable imaging” (15).

Statistics

The primary analysis focused on temporal changes in imaging and 
their association with baseline clinical characteristics in patients with 
persistent vessel occlusion. The key imaging characteristics were 
perfusion core change (CBF < 30%) and ASPECTS change in patients 
with repeat multimodal imaging (both remote PSC and repeat CSC 
imaging). Differences between patients who did and did not receive 
repeat imaging were summarized using medians and interquartile 
range (IQR). A paired t-test was used to compare the PSC mean 
perfusion core to the CSC mean perfusion core. In-table comparisons 
were performed using a two-tailed Fisher’s exact test or Mann–
Whitney U test as appropriate.

For patients with persistent occlusion who had repeat CTP, multiple 
regression analysis was used to assess the relationship between 
background clinical and imaging variables and the presence of perfusion 
core on arrival. The dependent variable was set as the absolute change 
in perfusion core (CBF < 30%) and the independent variables included 
were PSC CT ASPECTS, PSC CTP core, PSC CTP penumbra, age, sex, 
onset to referral time, transport distance, transport time, NIHSS at 
onset, and thrombolysis usage. A further model was used to assess 
differences between occlusion types. Homoscedasticity and linearity 
were confirmed by plotting a scatter plot of the studentized residuals 
against the predicted values. Normality was assessed using a histogram 
with a superimposed normal curve and a P–P plot. The independence 
of residuals was assessed using the Durbin–Watson statistic.

Ordinal logistic regression was performed to explore associations 
with decreased ASPECTS on repeat scans. Change in ASPECTS was 
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trichotomized into an ordinal dependent variable with three categories: 
decreased ASPECTS of 0–1, 2–3, and 4 or more. Independent variables 
included were PSC CT ASPECTS, PSC CTP core, PSC CTP penumbra, 
DT index, age, sex, onset to referral time, transport distance, transport 
time, NIHSS at onset, and thrombolysis usage. The independent 
variables were entered using a forward stepwise selection procedure. 
Bayesian information criterion (BIC) was used to assess the overall 
goodness-of-fit for each model. The assumption of proportional odds 
was assessed with full likelihood ratio testing comparing the fit of the 
proportional odds to a model with varying location parameters. 
Statistics were performed using SPSS.

Results

Between June 2020 and Feb 2023, 228 remote patient transfers 
with LVO were referred for EVT. A total of 110 patients did not receive 
repeat imaging, 55 had repeat imaging with recanalization, and 63 
patients had persistent occlusion on repeat CT perfusion (Figure 1). 
In total, 16 (19%) did not have CT perfusion at the PSC. The median 
age of transfers was 69 (IQR 58–79), with a NIHSS score of 14 (IQR 
8–18), perfusion core of 17 mL (IQR 5–40), and penumbra of 96 mL 
(IQR 57–138). Clinical and imaging variables have been summarized 
in Tables 1, 2. Patients with recanalization during transport have been 
summarized in Supplementary Table S1. A total of 27 patients were 

identified from 2017 to 2020 with repeat imaging and persistent LVO 
for inclusion in the regression analysis (Supplementary Table S2).

Repeat CTP and persistent occlusion on 
arrival

Patients with persistent occlusion had a median initial PSC 
perfusion core of 20 mL (IQR 3–44 mL) and penumbra of 102 mL 
(IQR 61–159 mL) (Table 2). The mean increase in perfusion core from 
PSC to CSC imaging was 11 mL (95%CI −6 mL to 28 mL, p = 0.21). Of 
those with initially favorable imaging, 4 out of 78 patients (5.6%) had 
an increase in perfusion core above 70 mL during transport. In total, 
7 out of 78 (9.0%) patients also had ASPECTS decrease during 
transport, resulting in a score less than 6 on repeat scans. When 
combined, 11 out of 78 (14%) patients had deterioration of initially 
favorable imaging profiles during transport.

Factors associated with perfusion core 
growth on repeat CTP

Multiple regression analysis was performed to examine factors 
associated with an increase in perfusion core volume. The overall 
model (with all independent variables included) fitted with an R2 of 

FIGURE 1

Study summary. *Retrospective cases from 2017 to 2020 identified.
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11%. ASPECTS was the only variable that significantly added to the 
association. A single point reduction in ASPECTS was associated with 
a 7 mL (95% CI 2–11 mL) increase in perfusion core on repeat scans 
(p = 0.004). Other independent variable relationships are summarized 
in Figure 2. There was no difference between occlusion types: MCA, 
ICA/Tandem, and posterior circulation (Supplementary Figure S1).

Factors associated with ASPECTS 
progression on repeat scan

The final ordinal regression model included the perfusion core 
and DT index. The perfusion core and DT index were significantly 
associated with ASPECTS progression, χ2(2) = 15.0, p = <0.001. The 
odds of decreasing ASPECTS with perfusion core (1 mL) was 1.02 
(95% CI 1.01–1.04) and for DT index was 2.00 (95% CI 0.02–183). A 
summary of the perfusion core and DT index vs. ASPECTS increase 
is demonstrated in Figure 3.

Discussion

The main finding of this study was a 14% rate of inter-transport 
deterioration of initially favorable imaging among patients with 
persistent large vessel occlusion. Although it was more likely for 
patients with longer transport delays to receive repeat imaging, time 
and distance traveled were not associated with either ASPECTS or 
perfusion core growth during transport. Early lower ASPECTS 
scores (<6) were associated with perfusion core growth in patients 
with persistent LVO (Supplementary Figure S2). ASPECTS 
deterioration was strongly associated with CT perfusion core volume 
at the PSC. The association between initial perfusion core volume 
and ASPECTS deterioration is best visualized in Figure 3, with the 
largest increases (>3 point ASPECTS increase) seen in patients with 
initial perfusion core above 50 mL. A higher delay time collateral 
index (indicating poorer collaterals) was associated with ASPECTS 
growth; however, the association was not as strong as the CT 
perfusion core.

Given the low rate of inter-transport infarct growth among 
patients with ‘favorable’ baseline imaging, the advantages of repeat 
assessment May not sufficiently outweigh the overall workflow delays. 
Patients transferred from remote regions provide an opportunity for 
endovascular laboratories to prepare their staff in advance of the 
patient’s arrival. When reassessment is planned, staff preparation May 
not occur until the decision to treat, which further compounds 
workflow delays. The MR CLEAN Registry (Multicenter Randomized 
Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke 
in The Netherlands) demonstrated that each hour of delayed 
revascularization results in a 5% absolute reduction in the probability 
of a good functional outcome (16). Small institutional benefits that 
May be  incurred by reducing angiography suite activation May 
be outweighed by the patient outcome benefits from minimizing 
revascularization delays. In addition to patient benefit, a direct-to-
angio strategy May also be cost-effective (17).

Although repeat imaging should generally be minimized, low 
ASPECTS and high perfusion core (>50 mL) on remote scan predicted 
collateral failure and infarct progression. Interestingly, ASPECTS was 
a better predictor of collateral failure than other measures, which May 
be due to the negative effects of swelling on leptomeningeal collaterals 
(18). This is important due to recent large core trials (19, 20) 
demonstrating that endovascular therapy results in improved 
outcomes for patients with larger areas of established ischemic change. 
With these results being known, it is likely more remote patients will 

TABLE 1 Clinical variables (transferred patients with persistent occlusion).

Repeat imaging (N  =  90) Without repeat (N  =  110) p-value

Age (IQR), years 70 (60–79) 68 (57–78) 0.74

Male (%), N 43 (48) 60 (55) 0.39

NIHSS at onset (IQR) 14 (8–19) 14 (10–20) 0.42

Onset to referral (IQR), minutes 279 (143–702) 170 (114–367) <0.05

Referral to repeat scan (IQR), minutes 243.5 (186–335) n/a n/a

Distance (IQR), km 186.5 (101–258) 161 (101–214) 0.08

Premorbid MRS 0–1 (%) 84 (93) 105 (95) 0.55

Thrombolysis (%), N 36 (40) 65 (59) 0.01

ECR (%), N 56 (62) 105 (95) <0.01

TABLE 2 Imaging variables (transferred patients with persistent 
occlusion).

Repeat 
imaging 
(N  =  90)

Without 
repeat 

(N  =  110)

p-value

Occlusion site

M1 (%) 36 (40) 48 (44) 0.67

M2 (%) 14 (16) 9 (8) 0.12

ICA (%) 24 (27) 14 (13) 0.02

Tandem (%) 12 (13) 24 (22) 0.14

Basilar/PCA (%) 4 (4) 15 (13) 0.03

Remote CT

ASPECTs (IQR) 8 (7–10) 9 (7–10) 0.4

Perfusion core, ml (IQR) 20 (3–44) 20 (8–39) 0.59

Penumbra, ml (IQR) 102 (61–159) 103 (70–138) 0.9

DT index 0.20 (0.12–0.32) n/a

Repeat CT

ASPECTs (IQR) 8 (4–9) n/a n/a

Perfusion core, ml (IQR) 17 (4–52)

Penumbra, ml (IQR) 111 (62–173)
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be transferred with lower ASPECTS and thus larger cores. Given our 
results, as well as others (5–8), patients with lower ASPECTS May 
be more suitable for repeat imaging as their collateral profile is more 
likely to degrade during transport.

CTP-based DT collateral index or hypoperfusion intensity ratio 
has been suggested as a way to triage patients who are remote to the 
ECR center to predict whether tissue will remain salvageable (21). In 
our patient group, the baseline DT index was associated with 
ASPECTS growth. However, the association did not appear to be as 
strong as the baseline perfusion core (CBF < 30%). The DT index was 
higher in those with ASPECTS growth but its association did not 
reach statistical significance within the multi-regression model. 

Nonetheless, the overall prediction model performed better with the 
addition of the DT index, which suggests that it can be used as a 
supplementary measure during initial patient triage [in addition to 
ASPECTs and perfusion core (CBF < 30%)].

Our findings are generally supported by other literature. Within 
an experimental model for collateral failure after 90 min, the initial 
degradation of collaterals plateaued (22). Within our study population, 
there was no association between perfusion core or ASPECTs growth 
and any time-related measure, suggesting that collateral failure is not 
a linear time-related process (predominantly occurring in the 
prehospital period). Minimal ischemic core expansion over time was 
also confirmed in a study of ultra-long transfers for EVT in Australia, 

FIGURE 2

Forest plot. Multiple regression analysis of perfusion core increase. *Variables (HIR, lysis) excluded from the figure due to wide CI interval. No lysis beta 
11 (95%CI −7 to 28). HIR beta −28 (95%CI −118 to 58). Time is measured in minutes. Penumbra/core measured in milliliter. Age is measured in years. 
Distance in kilometer.

FIGURE 3

Box and Whisker plot: perfusion core and delay. Time index vs. ASPECTS decrease. Box and Whisker plot summarizes the relationship between initial 
primary stroke center (PSC) imaging (perfusion core and delay time index) and the absolute amount of ASPECTS decrease on the repeat scan at the 
comprehensive stroke center (CSC). The odds of decreasing ASPECTS with perfusion core (1  mL) was 1.02 (95% CI 1.01–1.04) and for DT index was 
2.00 (95% CI 0.02–183).
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with similarly low rates of inter-transport collateral deterioration 
among patients traveling 300 km+ (23).

Patients who received repeat imaging typically traveled further, 
had longer onset to presentation time, ICA occlusion, and less use of 
thrombolysis. They were, however, quite similar with regard to age, 
premorbid status, stroke severity, penumbra/core, and 
ASPECTS. Although an observational design could be  prone to 
selection bias, observed similarities between groups are reassuring. 
However, this remains a limitation due to other unmeasured variables 
involved in physician selection, e.g., frailty. Another limitation is that 
all patients in the study were “selected” to be transferred for EVT, 
therefore potentially excluding patients with poor collateral circulation 
and/or large core at PSC for consideration of referral for EVT. Given 
recent large core trials this patient group May be a future area of 
interest. Larger, multicenter data would strengthen our findings 
further; however, PSC-level perfusion imaging was not widely 
performed outside our region.

Conclusion

Repeat multimodal CT after long interhospital transfer 
demonstrated a relatively low rate of perfusion core growth among 
patients with LVO who had an initially favorable perfusion profile. 
Since changes in the CTP profile during transport are uncommon in 
the absence of recanalization, the benefit of repeat imaging upon 
arrival at the CSC is questionable. It May be more reasonable to 
consider repeat imaging only in patients with lower baseline 
ASPECTS (<6) or larger CT core (>50 mL). The need to repeat 
imaging should be weighed with workflow improvements in door-
to-reperfusion times, which are strongly linked to better 
patient outcomes.
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