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Objective: To develop a machine learning-based clinical and/or radiomics 
model for predicting the primary site of brain metastases using multiparametric 
magnetic resonance imaging (MRI).

Materials and methods: A total of 202 patients (87 males, 115 females) with 439 
brain metastases were retrospectively included, divided into training sets (brain 
metastases of lung cancer [BMLC] n = 194, brain metastases of breast cancer 
[BMBC] n = 108, brain metastases of gastrointestinal tumor [BMGiT] n = 48) and 
test sets (BMLC n = 50, BMBC n = 27, BMGiT n = 12). A total of 3,404 quantitative 
image features were obtained through semi-automatic segmentation from 
MRI images (T1WI, T2WI, FLAIR, and T1-CE). Intra-class correlation coefficient 
(ICC) was used to examine segmentation stability between two radiologists. 
Radiomics features were selected using analysis of variance (ANOVA), recursive 
feature elimination (RFE), and Kruskal–Wallis test. Three machine learning 
classifiers were used to build the radiomics model, which was validated using 
five-fold cross-validation on the training set. A comprehensive model combining 
radiomics and clinical features was established, and the diagnostic performance 
was compared by area under the curve (AUC) and evaluated in an independent 
test set.

Results: The radiomics model differentiated BMGiT from BMLC (13 features, 
AUC = 0.915 ± 0.071) or BMBC (20 features, AUC = 0.954 ± 0.064) with high 
accuracy, while the classification between BMLC and BMBC was unsatisfactory 
(11 features, AUC = 0.729 ± 0.114). However, the combined model incorporating 
radiomics and clinical features improved the predictive performance, with AUC 
values of 0.965 for BMLC vs. BMBC, 0.991 for BMLC vs. BMGiT, and 0.935 for 
BMBC vs. BMGiT.

Conclusion: The machine learning-based radiomics model demonstrates 
significant potential in distinguishing the primary sites of brain metastases, 
and may assist screening of primary tumor when brain metastasis is suspected 
whereas history of primary tumor is absent.
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Highlights

 • Machine learning radiomics models can predict the tumor types 
of brain metastases.

 • Quantitative features from multiparametric MR images may 
serve as biomarkers for tumor classification.

 • Combining clinical features with radiomics models can enhance 
diagnostic performance.

Introduction

Brain metastasis (BM) is the most common central nervous 
system tumor in adults. Patients with BM have a poor prognosis and 
are still associated with lower overall survival rates, with 2-year OS 
rates of 8.1% and 5-year OS rates of 2.5% for all tumor types after 
diagnosis (1–3). The exact incidence rate of BM is currently unclear, 
although some research reports suggest occurrence rates of 9–17% 
among cancer patients. However, the aging population leads to an 
increasing number of cancer diagnoses each year, which in turn raises 
the likelihood of developing BM, further exacerbated by the 
widespread application of more sensitive imaging technologies (4).

Reportedly, the incidence rates of BM vary significantly depending 
on the primary cancer site, with lung cancer (LC) at 41–56%, breast 
cancer (BC) at 13–30%, malignant melanoma (MM) at 6–11%, and 
gastrointestinal tumors (GI) at 6–9%. Nevertheless, some studies 
indicated that a certain proportion of patients (2–14%) present with BM 
as the initial manifestation of an unknown primary tumor (5, 6). 
Asymptomatic BM are typically only detectable through screening or 
postmortem examinations (7). Current guidelines from the European 
Neurological Society and the European Neuro-Oncology Association 
highlight the clinical challenges faced in the diagnosis and treatment of 
brain metastasis patients with unknown primary tumors (8). Due to the 
need for additional imaging modalities (such as chest CT, abdominal CT, 
and whole-body PET) and invasive biopsies for more precise diagnosis, 
patients with unclear primary lesions at the time of brain metastasis 
diagnosis often undergo multiple steps and extensive technical setups 
(9). For these patients, rapidly and efficiently determining the primary 
lesion site is crucial for their individual treatment planning.

Radiomics utilizes quantitative features extracted from segmented 
images, which are difficult or even impossible to be identified through 
visual inspection, to find associations with clinically relevant 
outcomes. In the context of metastatic tumors, radiomics has been 
evaluated for determining the primary tumor types and mutation 
status, as well as assessing tumor response post-treatment (10–12). 
We hypothesize that radiomics models from different MR sequence 
images can help differentiate BM originating from different primary 

sites. Our study aimed to explore the feasibility of multi-class machine 
learning for predicting the primary site of BM based on MRI features.

Materials and methods

Study participants

Retrospectively collected data from patients with BM at our 
institution over a five-year period (December 2017 to December 
2022). Primary tumors of BM included lung cancer, breast cancer, 
gastrointestinal tumors, melanoma, renal cancer, reproductive system 
tumors, and other malignant tumors. Inclusion criteria were as 
follows: (1) pathologically confirmed LC, BC, or GI, with only one 
primary tumor; (2) no specific treatment for their BMs (radiotherapy, 
surgery, chemotherapy, or targeted therapy); (3) all BM confirmed 
through imaging and clinical follow-up. Exclusion criteria were as 
follows: (1) metastases were too small (longest diameter < 9 mm), as 
texture information could not be accurately captured within small 
areas by radiomics analysis software; (2) no pathological diagnosis 
results or more than one primary tumor; (3) pathological types were 
melanoma, renal cancer, or other tumors rather than the 
aforementioned three kinds of primary tumors; (4) received treatment 
for BM; (5) incomplete image sequences, poor image quality, low 
resolution, and significant image artifacts.

The clinical and radiological data of these patients were 
independently reviewed by two experienced neuroradiologists (with 
over 10 years of diagnostic experience), who were blinded to the 
pathological results. In instances of discordance in radiological 
observations, consensus was achieved through deliberation between 
the two clinicians, and the outcomes were subsequently documented 
by a third physician for statistical scrutiny. The imaging features 
included single/multiple BM, infratentorial and supratentorial 
distribution of BM, peritumoral edema, enhancement patterns, tumor 
shape, cystic degeneration/necrosis of BM, and low signal intensity on 
T2WI. (1) Whether BMs are single or multiple; (2) The infratentorial 
and supratentorial distribution of BM; (3) Whether there is 
peritumoral edema in BM; (4) Enhancement patterns are defined as 
heterogeneous (mixed irregular areas of tumor enhancement), 
rim-like enhancement (enhancement at the periphery of the tumor), 
and indistinct enhancement; (5) The shape of BM is defined as the 
interface between the tumor and normal brain parenchyma, 
categorized into single nodular, multi-nodular fusion, and fuzzy edge 
(indistinct) margins; (6) Tumor cystic degeneration/necrosis refers to 
areas lacking enhancement; and (7) Whether there are areas of low 
signal intensity on T2-weighted imaging in tumors.

A total of 202 patients were finally included (115 females [mean 
age 61.3 years; range 34–81 years], 87 males [mean age 60.5 years; 
range 38–86 years]), with a total of 439 brain metastatic lesions 
(Table 1): 244 originated from LC, 135 from BC, and 60 from GI. The 
process of patients’ enrollment is shown in Figure 1.

MR image acquisition

MRI images of the brain were acquired using a 3.0 T MRI scanner 
(Skyra from Siemens Healthineers; Ingenia from Philips Medical 
Systems, Best, Netherlands). The protocol included the following 

Abbreviations: BM, brain metastasis; ANOVA, analysis of variance; RFE, recursive 

feature elimination; SVM, support vector machine; LR-Lasso, lasso regularized 

logistic regression; GLCM, gray level co-occurrence matrix; GLRLM, gray-level 

run length matrix; GLSZM, gray-level size zone matrix; NGTDM, neighborhood 

gray-tone difference matrix; ROC, receiver operator characteristic curves; AUC, 

area under the curve; PRAUC, precision-recall area under the curve.

https://doi.org/10.3389/fneur.2024.1474461
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Yang et al. 10.3389/fneur.2024.1474461

Frontiers in Neurology 03 frontiersin.org

sequences: non-enhanced fast T1-weighted pulse sequence (T1W), 
fast T2-weighted pulse sequence with fat suppression (T2W_FS), and 
T2-weighted axial FLAIR sequence. Enhanced axial T1-weighted 
pulse sequence and flow-compensated or three-dimensional 
T1-weighted gradient echo sequence were performed after injection 
of gadolinium-based contrast agent at a dose of 0.1 millimoles per 
kilogram adjusted for body weight. Sequence parameters varied 
between different MRI devices, reflecting the heterogeneity of imaging 
data in clinical practice.

Image preprocessing and tumor 
segmentation

Prior to feature extraction, various preprocessing techniques were 
applied to improve texture recognition in the images. Firstly, 3D Slicer 

image processing software1 was used to remove all cranial bones from 
the images and align them to a unified coordinate system. Then, linear 
image registration tools within 3D Slicer were employed to register 
each patient’s T1-weighted imaging (T1WI), T2-weighted imaging 
(T2WI), T2-FLAIR sequence images with contrast-enhanced 
T1-weighted imaging (CE-T1WI). Subsequently, all registered images 
were resampled to a pixel size of 1x1x1 mm to ensure consistency in 
scale and orientation during the extraction of 3D texture features. 
Additionally, Z-score standardization was applied to normalize each 
MRI image to zero mean and unit standard deviation using 3D Slicer.

For segmenting intracranial metastatic lesions, 3D Slicer 
facilitated a semi-automatic contouring algorithm to assist in manually 

1 https://www.slicer.org/

TABLE 1 Baseline demographic and clinical characteristics of all patients.

Characteristic Lung cancer 
(n = 127, 244a)

Breast cancer 
(n = 59, 135a)

Gastrointestinal cancer 
(n = 16, 60a)

p value

Gender

  Male 72 (56.7%) 5 (8.5%) 10 (62.5%) <0.001

  Female 55 (43.3%) 54 (91.5%) 6 (37.5%)

Age (years old) 63.7 ± 11.3 56.2 ± 10.5 60.4 ± 12.6 0.27

Average metastases size (mm)a 14.5 ± 7.8 16.3 ± 8.6 16.8 ± 10.2 0.16

Average metastases volume (cm3)a 1.55 ± 4.9 2.31 ± 6.4 2.48 ± 6.7 0.08

Number of metastases

  Single 21 (16.5%) 13 (22.0%) 2 (12.5%) 0.558

  Multiple 106 (83.5%) 46 (78.0%) 14 (87.5%)

Supratentorial\Infratentoriala

  Supratentorial 176 (72.1%) 78 (57.8%) 39 (65.0%) 0.017

  Infratentorial 68 (27.9%) 57 (42.2%) 21 (35.0%)

Edemaa

  Present 193 (79.1%) 109 (80.7%) 46 (76.7%) 0.807

  Absent 51 (20.9%) 26 (19.3%) 14 (23.3%)

Contrast-enhancementa

  Heterogeneous 31 (12.7%) 95 (70.4%) 52 (86.7%) <0.001

  Rim-like 207 (84.8%) 38 (28.1%) 8 (13.3%)

  Non-enhancement 6 (2.5%) 2 (1.5%) 0 (0.0%)

Shapea

  Single nodule type (round) 182 (74.6%) 34 (25.2%) 14 (23.3%) <0.001

  Multi-nodular fusion type 47 (19.3%) 82 (60.7%) 41 (68.3%)

  Fuzzy edge type 15 (6.1%) 19 (14.1%) 5 (8.4%)

Cystic necrosisa

  Present 56 (23.0%) 81 (60.0%) 37 (61.7%) <0.001

  Absent 188 (77.0%) 54 (40.0%) 23 (36.2%)

Low T2WI signal intensitya

  Present 15 (6.1%) 3 (2.2%) 26 (43.3%) <0.001

  Absent 229 (93.9%) 132 (97.8%) 34 (56.7%)

Age, size and volume are shown as mean ± standard deviation; other data are the number of brain metastases with the percentage in parentheses.
aData are brain metastases for each patient.
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delineating tumor regions. Two radiologists with over 10 years of 
neuroimaging diagnostic experience outlined tumor regions of 
interest (ROIs) based on layered review of all images, without 
knowledge of clinical or pathological details, to ensure accuracy in the 
final volume of the lesion. The tumor core (encompassing enhanced 
areas, non-enhanced regions, and possible necrotic tissue) was 
delineated (13). Tumor boundaries were determined based on 
enhanced edge on CE-T1WI images. Additionally, cross-verification 
among T1WI, T2WI, T2-FLAIR, and CE-T1WI was performed to 
fine-tune tumor contours (14, 15). To ensure reliability in radiomics 
feature extraction, the same radiologist repeated the segmentation 
process 2 months later, and intra-observer and inter-observer 
correlation coefficients (ICC) were calculated. The extraction of 
radiomic features from ROIs for further analysis was considered only 
when the ICC coefficient was ≥0.8.

Feature extraction

Feature extraction was performed using the Radiomics package, 
an extension plugin in the 3D Slicer software. Extracted features 
included 18 first-order features, 14 shape features, and 75 texture 
features (as shown in Table 1). The 75 texture features comprised gray-
level co-occurrence matrix (GLCM), gray-level run length matrix 
(GLRLM), gray-level size zone matrix (GLSZM), and neighborhood 
gray-tone difference matrix (NGTDM). Additionally, first-order and 
texture features were calculated based on eight wavelet decompositions 
(four decompositions of two-dimensional features), resulting in a total 
of 744 features. Altogether, there were 851 image features. 
Furthermore, radiomic features were extracted from all registered 
MRI images, including T1WI, T2WI, T2-FLAIR, and CE-T1WI 
sequences, resulting in a total of 3,404 image features (851 × 4). For 

each training dataset, algorithm-based feature selection methods were 
employed, considering Gini impurity metrics for individual 
feature selection.

Model development with machine learning

Before starting the modeling process, 20% of the samples were 
randomly selected as an independent validation set, while the 
remaining 80% were used as an independent training set. To address 
the imbalance issue in the training dataset, Synthetic Minority Over-
sampling Technique (SMOTE) was applied to introduce synthetic 
feature samples and rebalance the minority class data. This data 
balancing method has been proven to prevent overfitting and enhance 
model generalization. Data balancing was only applied to the 
independent training set obtained from the previous random split, 
while the independent validation set remained unchanged. Z-score 
standardization was applied to the feature matrix. For each feature 
vector, the mean and standard deviation were calculated, and then 
each feature vector was zero-centered and scaled to have unit variance. 
To avoid selection bias, a Pearson correlation test was conducted on 
the texture features of BM. Features with a Pearson correlation 
coefficient exceeding 0.99 were removed to ensure no discrimination 
among BM from the same patient.

In the feature selection step, a p-value-based filtering method was 
used to rank the features with the strongest discriminative power 
independently assessing the statistical significance of each feature 
without analyzing relationships between features. Three feature 
selection methods—Analysis of Variance (ANOVA), Recursive 
Feature Elimination (RFE), and Kruskal-Wallis (KW) test—were 
employed to select features. ANOVA identified significant features 
related to the labels, RFE selected a subset of features based on the 

FIGURE 1

Flowchart of patients’ enrollment process.
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classifier, and KW test excluded the most probable features from the 
same distribution between two groups. To mitigate overfitting, feature 
selection was integrated into the model construction process. 
Specifically, within each group, different feature rankings were 
obtained using only the training samples. Subsequently, subsets of 
features were incrementally added from highest to lowest rank. Each 
feature subset was used to tune model parameters through an internal 
five-fold cross-validation loop, facilitating model training and 
evaluation using metrics computed on test samples within the same 
group (16).

To ensure robustness, three classifiers—Support Vector Machine 
(SVM), Logistic Regression (LR), and Lasso regularized Logistic 
Regression (LR-Lasso)—were used to build the model. These machine 
learning-based classifiers have low tendency for overfitting and are 
suitable for datasets with numerous heterogeneous predictors and 
cluster-related observations (e.g., patients with multiple metastases). 
Linear kernel functions were employed to aid in interpreting the 
feature parameters of the final model. Additionally, the kernel function 
mapped features into higher dimensions to find hyperparameters that 
could differentiate between metastases from different primary sites.

Model validation was conducted based on five-fold cross-
validation using independent training and validation sets, which is an 
external model validation method. Compared to internal cross-
validation for model performance estimation, external model 
validation methods demonstrate stronger robustness for cluster-
related data. The Receiver Operating Characteristic (ROC) curve and 
precision-recall analysis accurately assessed the model’s performance. 
Performance metrics including sensitivity, specificity, accuracy, area 
under the curve (AUC), precision-recall area under the curve 
(PRAUC), positive predictive value (PPV), and negative predictive 
value (NPV) were computed. Performance metrics (PRAUC and 
AUC) obtained from the five-fold cross-validation process were 
compared to select the best model. Feature preprocessing and model 
exploration were performed using Feature Explorer Pro (FAE) on 
Python 3.7.6 (V 0.5.8, https://github.com/salan668/FAE). The 
complete workflow to establish the radiomic model is summarized in 
Figure 2.

After selecting the optimal radiomic model, clinical variables were 
incorporated, and the radiomic model was compared with a combined 
model including both radiomic features and clinical parameters. For 
each patient, a radiomic score (Rad-score) was generated using a 
linear combination formula: Rad-score = (value of feature 1 * 
coefficient of feature 1) + (value of feature 2 * coefficient of feature 
2) + … + (value of feature n * coefficient of feature n). Clinical 
parameters were identified through univariate and multivariate 
logistic analyses.

Statistical analysis

In this study, statistical analysis was performed using SPSS 
software (version 24) (17). Mann–Whitney U test and Student’s t-test 
were employed to compare continuous variables, while Pearson’s 
chi-squared test and Fisher’s exact test were utilized for comparing 
categorical variables. Logistic regression analysis was conducted to 
identify significant clinical parameters.

For multi-class scenarios, the area under the Receiver Operating 
Characteristic curve (AUC) was calculated by assessing the predictive 

performance of the positive class (i.e., corresponding metastatic tumor 
type) against all other classes. The ROC curve was generated based on 
the mean value computed from all cross-validation folds. Given that 
each machine learning classifier was trained on a unique training 
dataset and tested using a distinct external validation dataset, the 
mean AUC serves as an effective estimate of the model’s classification 
performance in a generalized context. The instability of model 
predictions (i.e., standard deviation of the ROC curve) was derived 
from 10 randomly sampled five-fold cross-validation sets. ROC curves 
and Precision-Recall (PR) curves (utilizing the “precrec” package) 
were employed for model evaluation, including the calculation of 
sensitivity and specificity for each diagnostic model. The Youden 
index is calculated as sensitivity + specificity − 1 (i.e., the Y-axis minus 
the X-axis of the ROC curve). The maximum value of the Youden 
index corresponds to the optimal diagnostic cutoff value for the 
model; the higher its value, the better the diagnostic performance of 
the model. Performance differences between two models were 
compared using the DeLong test. Results with a p-value below 0.05 
were deemed statistically significant.

Results

Demographic characteristics of the patient 
cohorts

Table  1 presents the clinical and MRI characteristics of 202 
patients, with a mean age of 60.8 ± 10.3 years, including 87 males and 
115 females. Among a total of 439 BMs, the average maximum 
diameter was 15.7 ± 8.9 mm, with an average volume of 1.8 ± 5.2 cm3. 
Population demographics for the training and validation sets are 
summarized in Table 2.

In all three cohorts, six clinical and MR features exhibited 
statistically significant differences (all p < 0.05; Table 1). Among the 
three cohorts of LC, BC, and GI, the highest proportion of female 
patients was observed in the BC cohort, with a statistically significant 
difference (p < 0.05). There were no statistically significant differences 
observed in age distribution, lesion size, or volume (p > 0.05). Patients 
with BM from three distinct primary sites frequently present with 
multiple intracranial lesions, often accompanied by peritumoral 
edema (p > 0.05). BMLC predominantly localize supratentorially (176 
[72.1%]), typically appearing as round, nodular lesions (182 [74.6%]), 
with enhancement patterns commonly characterized by peripheral 
rim enhancement (207 [84.8%]) and infrequent cystic degeneration/
necrosis (56 [23.0%]). Conversely, BMBC may also occur in the 
infratentorial compartment (57 [42.2%]), displaying lobulated, multi-
nodular fusion morphology (82 [60.7%]), heterogeneous enhancement 
post-contrast (95 [70.4%]), and more frequent internal necrosis/cystic 
degeneration (81 [60.0%]). BMGiT may exhibit a typical low signal 
intensity on T2-weighted imaging (26 [43.3%]) (p < 0.05). Figure 3 
illustrates representative cases of BM from different primary 
sites on MRI.

Diagnostic performance of clinical models

Univariate and multivariate logistic analyses were conducted on 
basic clinical data (age and sex) and MRI image features of the three 
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cohorts to identify significant clinical parameters. Among these 
parameters, features such as sex and presence of T2WI low signal were 
found to be independent predictors. The diagnostic performance AUC 
ranged from 0.790 (corresponding to BMBC vs. BMGiT) to 0.970 
(corresponding to BMLC vs. BMGiT) across the three models 
(Figure 4). Comparative analysis on randomly sampled five-fold cross-
validation sets revealed low variability in results, indicating stable 
predictive performance.

Diagnostic performance of radiomics 
models

The diagnostic performance of radiomics models for BM in the 
three cohorts is summarized in Table 3. In the classification models of 
BMLC versus BMBC, the highest AUC (0.829) and PRAUC (0.818) 
were achieved in the five-fold cross-validation set. At this point, the 
model achieved AUC and PRAUC of 0.754 and 0.616, respectively, on 
the training set, and 0.729 and 0.578, respectively, on the independent 
validation set. This process utilized RFE feature selector and SVM 
classifier, selecting 11 features for the model (Figure 5).

In the classification models of BMLC versus BMGiT, the process 
employing ANOVA feature selector and SVM classifier obtained the 
highest AUC (0.912) and PRAUC (0.896) in the five-fold cross-
validation set. Thirteen features were selected for the model (Figure 5). 
At this point, the model achieved AUC and PRAUC of 0.890 and 
0.641, respectively, on the training set, and 0.915 and 0.583, 
respectively, on the independent validation set.

In the classification models of BMBC versus BMGiT, the process 
utilizing KW feature selector and SVM classifier obtained the highest 
AUC (0.936) and PRAUC (0.939) in the five-fold cross-validation set. 

Twenty features were selected for the model (Figure 5). At this point, 
the model achieved AUC and PRAUC of 0.903 and 0.836, respectively, 
on the training set, and 0.954 and 0.924, respectively, on the 
independent validation set.

In summary, Figure 4 presents the correlation curve between the 
number of model features and AUC values, used to determine the 
optimal number of model features for diagnostic performance. 
One-on-one analysis demonstrates that using a small number of 
features (13 and 20 features, respectively) from the optimal dataset can 
accurately differentiate BMGiT from BMLC (AUC = 0.915 ± 0.071) 
and BMBC (AUC = 0.954 ± 0.064). However, accuracy is not desirable 
when distinguishing BMLC from BMBC (AUC = 0.729 ± 0.114), 
indicating that these features are not suitable for classifying these 
types of BM.

Diagnostic performance of combined 
models

Using bar chart analysis, the contribution differences of radiomics 
features in different BM classification models were determined 
(Table 4; Figure 6). Results indicate that in the BMLC versus BMBC 
classification model, the T2_Kurtosis.8 texture parameter had the 
highest contribution with a coefficient of 0.569. In the BMLC versus 
BMGiT classification model, the T2_ZonePercentage.5 texture 
parameter had the highest contribution with a coefficient of 1.112. In 
the BMBC versus BMGiT classification model, the T1 + C_Kurtosis.5 
texture parameter had the highest contribution with a coefficient 
of 1.651.

Based on the AUC and PRAUC of all radiomics models, a 
Rad-score was calculated using the integrated radiomics model. The 

FIGURE 2

Radiomics pipeline of the study. PCC, Pearson correlation coefficients; ANOVA, analysis of variance; KW, Kruskal–Wallis test; RFE, recursive feature 
elimination; LR, logistic regression; LASSO, least absolute shrinkage and selection operator; SVM, support vector machine; ROC, receiver operating 
characteristic curve.
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comprehensive model combines independent clinical parameters and 
Rad-score using logistic regression. The AUC values of the combined 
model were 0.965 for BMLC versus BMBC, 0.991 for BMLC versus 
BMGiT, and 0.935 for BMBC versus BMGiT (Figure 4).

Discussion

Typical MRI imaging features suggest that BM from LC often 
appear multiple, round or oval-shaped, scattered in the subcortical 
white matter. Even when the lesions are <1 cm, peritumoral vasogenic 
edema is still prominent, presenting as ring enhancement upon 
contrast administration. BM from BC frequently occur as solitary or 
multiple lesions, showing a lobulated or cystic-solid mixed 
composition, with notable necrosis and cystic changes. Post-contrast 
enhancement reveals uneven enhancement, often associated with 
leptomeningeal metastases. BMGiT may manifest as lesions 
containing mucinous or protein-rich components, displaying low 
signal intensity on T2-weighted imaging (18, 19). Our study also 
incorporated the analysis of various clinical indicators and imaging 
features, yielding results consistent with existing literature. However, 
distinguishing BM from different primary sites solely based on these 
MRI imaging features is highly challenging, especially when tumors 
present as single enhanced lesions surrounded by edema or exhibit 
atypical imaging characteristics.

When conducting analysis solely using MRI image features, the 
highest AUC value (0.970) was achieved for BM from LC and GI, 
while BM from BC and GI yielded the lowest AUC value (0.790) 
(Figure 4). This discrepancy reflects the less distinct expression of 
specific features for BC and GI, possibly due to the extensive spectrum 
of clinical features and greater tissue heterogeneity, making the 
interpretation of imaging biomarkers for these BM complex. Some 
research findings (9, 20) support our observations, exploring 
clustering analysis of image features for non-small cell lung cancer 
subtypes. It was noted that when employing classifier models based 
solely on image features, the AUC values were relatively lower, 
suggesting inadequate differentiation of features for these tumor types 
within the underlying image feature set.

“Radiomics” is an emerging medical imaging analysis method that 
transforms images into quantitative data, thereby improving the 
accuracy of diagnosis, prognosis assessment, and treatment response 
evaluation, ultimately aiding in better clinical decision-making. 
We modeled the 3D texture features of MRI images, and the results 
showed that in three models encompassing most of the major tumor 
types causing BM, radiomics analysis of 3D texture features could 
differentiate BMLC from BMBC and BMGiT. The average AUC values 
for BMLC vs. BMBC, BMBC vs. BMGiT, and BMLC vs. BMGiT were 
0.729, 0.954, and 0.915, respectively.

Our study does not represent the first attempt to utilize texture 
features to distinguish the primary cancer sites of BM. In the study by 
Moratal et  al. (21), the discriminatory power of 2D and 3D MRI 
texture features was compared, and various classifiers were tested to 
classify BM from LC and melanoma. Beres et al. (22) investigated the 
statistical significance of 2D and 3D texture features extracted from 
histograms and GLCM to differentiate BM of LC and BC. Our work 
enhances this research by exploring additional texture features 
(including patients with GI) and considering machine learning 
approaches. Based on our findings, we support the conclusion of Beres T
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et al. that texture analysis may aid in distinguishing BM originating 
from different primary tumors.

We attempted to interpret the results of our model by analyzing 
the selection frequency of radiomic features and applying SHAp value 
analysis, which assigns importance values to each feature for specific 
predictions (23). In this study, the best-performing classifier was the 
Support Vector Machine (SVM) classifier, a machine learning-based 
algorithm known for its high robustness and low tendency for 
overfitting, suitable for datasets with numerous heterogeneous 
predictive factors and cluster-related observations. According to the 
SHAP value analysis of the best-performing model, the most 
contributory features for multiclass BM classification were “T2_
Kurtosis.8,” “T2_ZonePercentage.5,” and “T1 + C_Kurtosis.5” 
(Table 4).

The feature “Kurtosis.8” from T2WI was particularly useful in 
distinguishing between BMLC and BMBC, showing that higher values 
led to higher decision scores attributed to BMBC, while lower values 
led to attribution to BMLC. Kurtosis is a statistical measure describing 
the sharpness of the shape of a local intensity distribution, quantifying 
the thickness of the tails of the data distribution and the degree to 
which the data is centered, with larger values associated with increased 
differences in intensity values between adjacent voxels (24). Therefore, 
based on our research findings, it seems that more uneven and higher 
signal intensity on T2WI favors the diagnosis of BMBC.

On the other hand, the feature “ZonePercentage.5” from T2WI 
was useful in differentiating between BMLC and BMGiT, with lower 
and higher values, respectively, associated with BMGiT and 
BMLC. This may reflect the typical T2WI hypointensity of BMGiT 
due to their high cell density (25, 26).

When distinguishing between BMBC and BMGiT, the feature 
“Kurtosis.5” from T1-CE seemed to play an important role, with 
higher values indicating BMBC over BMGiT. Kurtosis, a statistical 
measure describing the sharpness of the shape of a probability 
distribution, with positive kurtosis distributions sharper and thicker-
tailed than the normal distribution; whereas negative kurtosis 
distributions flatter and sparser-tailed than the normal distribution 
(24). The contribution coefficient of “Kurtosis.5” from T1-CE reached 
1.651, the highest among all selected texture features, possibly 
indicating that the enhancement degree of BMBC on T1-CE is more 
significant and uneven compared to BMGiT.

From our results, it is evident that most features originated from 
first-order histogram features (kurtosis, mean, mean absolute 
deviation) of T2WI and T1-CE images, indicating significant 
differences in cell density and distribution among different tumor 
types (27, 28). Radiologically, BMBC often exhibit necrosis, cystic 
changes, significant enhancement post-contrast, and heterogeneous 
enhancement, while BMGiT may present with typical hypointensity 
on T2WI images, which could be the physiological basis for selecting 

FIGURE 3

Brain metastases with atypical MRI findings. (A) A 73-year-old man with NSCLC. Multiple hyperintense nodules are observed in the bilateral occipital 
lobes and lateral ventricular trigones on T2WI and FLAIR sequences, accompanied by significant perilesional brain edema, and there is evident ring 
enhancement on CE- T1WI. (B) A 53-year-old woman with a history of breast cancer surgery 3 years ago presents with cystic-solid, lobulated nodules 
located beneath the cortical layer of the left occipital lobe. The nodules exhibit mixed high signal intensity on both T2WI and FLAIR sequences, along 
with surrounding peritumoral edema. CE- T1WI reveals significant and heterogeneous enhancement. (C) A 42-year-old man, diagnosed with signet 
ring cell carcinoma on gastroscopy, presents with severe headaches. T2WI shows a low signal intensity nodule in the left occipital lobe, with unclear 
borders. The lesion demonstrates central hypointensity and peripheral hyperintensity on FLAIR sequences, accompanied by significant peritumoral 
edema. Additionally, there is heterogeneous ring enhancement surrounding the lesion.
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FIGURE 4

Diagnostic performance of the best performing model. Receiver operator characteristic curves for the clinical, radiomics, and combined model (A–C).

TABLE 3 The diagnostic performance of radiomics models for all patients.

AUC (95% CI) PRAUC Accuracy Sensitivity Specificity PPV NPV Youden 
Index

Lung cancer vs. Breast cancer

  Cross-validation 0.829 (0.809–0.850) 0.818 0.764 0.825 0.704 0.736 0.801 0.528

  Training cohort 0.754 (0.698–0.811) 0.616 0.672 0.787 0.608 0.528 0.837 0.395

  Test cohort 0.729 (0.616–0.843) 0.578 0.618 0.852 0.490 0.479 0.857 0.342

Lung cancer vs. Gastrointestinal cancer

  Cross-validation 0.912 (0.898–0.926) 0.896 0.851 0.830 0.872 0.867 0.837 0.702

  Training cohort 0.890 (0.841–0.940) 0.641 0.802 0.875 0.784 0.500 0.962 0.659

  Test cohort 0.915 (0.844–0.986) 0.583 0.836 0.917 0.816 0.55 0.976 0.733

Breast cancer vs. Gastrointestinal cancer

  Cross-validation 0.936 (0.920–0.953) 0.939 0.895 0.836 0.954 0.948 0.853 0.789

  Training cohort 0.903 (0.848–0.958) 0.836 0.897 0.813 0.935 0.848 0.918 0.748

  Test cohort 0.954 (0.889–1.000) 0.924 0.923 0.833 0.963 0.909 0.929 0.796

AUC, area under the curve; ACC, accuracy; CI, confidence interval; NPV, negative predictive value; PRAUC, area under the precision-recall curve; PPV, positive predictive value; Sen, 
sensitivity; Spe, specificity.
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FIGURE 5

Hyper parameters relationship of the training cohort, cross-validation cohort, and test cohort. The curve illustrates the correlation between the 
number of features and the model’s AUC value, aiding in the determination of the optimal number of features for the model. In LC vs. BC of the test 
cohort, the model attains a peak AUC value of 0.729 with 11 features (A); In LC vs. GI of the test cohort, the model attains a peak AUC value of 0.915 
with 13 features (B); In BC vs. GI of the test cohort, the model attains a peak AUC value of 0.954 with 20 features (C). LC, lung cancer; BC, breast 
cancer; GI, gastrointestinal (cancer).

TABLE 4 Top features of the best dataset (3D features) ranked according to their coefficients in the model of one-versus-one analysis.

Lung cancer vs. Breast cancer Lung cancer vs. Gastrointestinal 
cancer

Breast cancer vs. Gastrointestinal 
cancer

Feature Coef in 
model

Feature Coef in 
model

Feature Coef in 
model

FLAIR_Idn.3 0.545 T1 + C_Idn 0.755 T1 + C_Contrast.1 −0.834

FLAIR_

RunLengthNonUniformityNormalized.7

0.037 T2_Imc1.1 −0.169 T1 + C_

DependenceNonUniformityNormalized

−0.734

T1 + C_InverseVariance.7 −0.456 T2_Imc2.2 −0.153 T1 + C_

DependenceNonUniformityNormalized.8

0.320

T1 + C_LargeDependenceEmphasis.5 0.058 T2_Imc2.5 −0.855 T1 + C_DependenceVariance 0.112

T1 + C_Sphericity 0.405 T2_Imc2.6 −0.245 T1 + C_DependenceVariance.8 −0.173

T1_

GrayLevelNonUniformityNormalized.15

0.060 T2_Imc2.7 −0.954 T1 + C_GrayLevelNonUniformity.24 −0.043

T2_

GrayLevelNonUniformityNormalized.14

0.549 T2_MCC.7 −0.057 T1 + C_GrayLevelNonUniformity.6 −0.169

T2_JointEnergy.7 −0.528 T2_

SizeZoneNonUniformityNormalized.2

−1.024 T1 + C_InverseVariance.7 0.445

T2_Kurtosis.8 0.569 T2_

SizeZoneNonUniformityNormalized.3

−0.757 T1 + C_Kurtosis.2 0.172

T2_MaximumProbability.6 0.521 T2_ZonePercentage.2 0.290 T1 + C_Kurtosis.3 0.259

T2_Mean.4 0.22 T2_ZonePercentage.3 0.706 T1 + C_Kurtosis.4 −0.116

T2_ZonePercentage.4 0.199 T1 + C_Kurtosis.5 1.651

T2_ZonePercentage.5 1.112 T1 + C_LargeDependenceEmphasis −0.377

T1 + C_LargeDependenceEmphasis.8 0.259

T1 + C_RobustMeanAbsoluteDeviation.2 0.038

T1 + C_RunVariance −0.059

T1 + C_Strength.2 0.164

T1 + C_ZonePercentage −0.152

T1 + C_ZonePercentage.2 1.372

T1 + C_ZonePercentage.8 −1.534

FLAIR, fluid-attenuated inversion recovery; T1, T1-weighted; T2, T2-weighted; T1 + C, contrast-enhanced T1-weighted.
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these histogram features. Other texture features like GLCM, GLRLM, 
and GLDM also reflect the heterogeneity within tumors (27).

Radiomics provides information that cannot be revealed through 
visual inspection and can offer indirect reference to potential 
biological differences at the tissue and cellular levels (29). However, 
further research is needed to explain the relationship between 
predictive factors based on radiomics models and outcomes, such as 
the SHAP value analysis used in this study, to address the “black box” 
issue of current radiomics models and enhance the role of this method 
in clinical decision-making.

Our study has several limitations that need to be addressed. 
Firstly, the small sample size due to the lack of standardized 
multicenter data hinders the generalizability and stability of our 
results. Enlarging the sample size is crucial to enhance these 
aspects. Secondly, our study only utilized routine MRI sequences 
(T1WI, T2WI, T2-FLAIR, T1-CE) for radiomic analysis. Including 
additional MRI sequences like DWI and perfusion imaging in 
future studies can help capture the differences among BM from 
different primary sites. Excluding low-resolution images in our 
study was necessary to ensure meaningful texture analysis of small 
lesions. However, including these images might decrease predictive 
performance. Deep learning preprocessing of poor-quality images 
could be a potential solution, but further research is required in this 
area (30). Thirdly, the semi-automatic tumor ROI segmentation in 
our study implies some level of observer dependency in the 
machine learning process. To mitigate this, we employed consensus 
ROIs. Furthermore, previous studies have indicated the 
considerable stability of radiomic features in segmentation 
variations (31).

Addressing these limitations, we are encouraged by initiatives 
such as the Imaging Biomarker Standardization Initiative and the 
Quantitative Imaging Network established by the National Institutes 
of Health (32, 33). Future research endeavors should leverage 
standardized high-resolution images, incorporate imaging sequences 
capturing additional tissue features, and integrate comprehensive 
clinical data to explore the full potential of radiomics-
based diagnostics.

Conclusion

Machine learning-based radiomics models exhibit a high degree 
of accuracy in distinguishing BM originating from various primary 
sites. Leveraging the proposed tumor type prediction model as an 
adjunctive decision support tool has the potential to 
streamline diagnostic workflows and expedite the localization of 
primary lesions.
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