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Background: Ublituximab is a novel anti-CD20 monoclonal antibody
glycoengineered for enhanced antibody-dependent cellular cytotoxicity.
The phase 3 ULTIMATE I and II studies showed significant improvements in
annualized relapse rate, total number of gadolinium-enhancing (Gd+) T1
lesions, and total number of new or enlarging T2 at Week 96, as well as
improvement in the proportion of participants with no evidence of disease
activity (NEDA) from Weeks 24–96 with ublituximab vs. teriflunomide.

Methods: In ULTIMATE I (NCT03277261; www.clinicaltrials.gov) (N = 549) and
II (NCT03277248; www.clinicaltrials.gov) (N = 545), participants with relapsing
multiple sclerosis received ublituximab 450mg intravenous infusion every 24
weeks (following Day 1 infusion of 150mg and Day 15 infusion of 450mg) or
teriflunomide 14mg oral once daily for 96 weeks. Pooled post hoc analyses
evaluated NEDA by treatment epoch and participant subtype: age (≤38 or >38
years), early or later disease (<3 or ≥3 years following diagnosis), treatment
history (treatment naïve or previously treated), 0 or≥1Gd+ T1 lesions at baseline,
and Expanded Disability Status Scale score ≤3.5 or >3.5 at baseline. NEDA was
defined as no confirmed relapses, no Gd+ T1 lesions, no new or enlarging T2
lesions, and no disability progression confirmed for ≥12 weeks.

Results: NEDA rates in the ublituximab vs. teriflunomide cohorts by treatment
epoch were: Weeks 0–96, 44.6% vs. 12.4% (3.6× improvement); Weeks 24–
96 (re-baselined), 82.1% vs. 22.5% (3.6× improvement); and Weeks 48–96 (re-
baselined), 88.2% vs. 30.4% (2.9× improvement) (all p < 0.0001). The primary
driver of disease activity in ublituximab-treated participants was new or enlarging
T2 lesions during Weeks 0–24. 41.8% of ublituximab-treated participants who
had evidence of disease activity in the first year (Weeks 0–48) experienced
NEDA in the second year of treatment (Weeks 48–96) compared with 17.3%
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of teriflunomide-treated participants. At Weeks 24–96 (re-baselined), rates
of NEDA were significantly higher with ublituximab than teriflunomide in all
participant subtypes (all p < 0.0001).

Conclusions: ULTIMATE I and II pooled post hoc analyses demonstrated
a consistent NEDA benefit among ublituximab-treated participants across
treatment epochs and key participant subpopulations.

KEYWORDS

anti-CD20, disability, disease activity, disease-modifying therapy, multiple sclerosis, no

evidence of disease activity, relapse, BRIUMVI

1 Introduction

With recent approvals of new highly effective therapies and
the shifting paradigm of using such agents earlier in the course
of relapsing multiple sclerosis (RMS) treatment, suppression of
measurable disease activity is becoming an important goal both
in clinical trials and in clinical practice (1–4). Accumulating
evidence suggests that initial treatment with a more efficacious
disease-modifying therapy (DMT), including anti-CD20 agents
that mediate B-cell depletion, may reduce the risk of relapse and
disability worsening and improve long-term outcomes (5–11).

A commonly used metric of disease control is the 3-parameter
no evidence of disease activity (NEDA-3), defined as an absence of
disease activity due to relapses and magnetic resonance imaging
(MRI) lesions (gadolinium-enhancing [Gd+] lesions per T1-
weighted MRI scan [Gd+ T1 lesions] and new or enlarging
hyperintense lesions per T2-weighted MRI scan [T2 lesions])
as well as no sustained disease progression as measured by
the Expanded Disability Status Scale (EDSS) (3, 12–15). This
measure captures both focal MRI inflammatory activity and
functional disability worsening. NEDA-3 was incorporated as an
outcome in clinical trials and proposed as a therapeutic goal
in clinical practice, although some clinicians and researchers
questioned the practicality of NEDA as a therapeutic goal using
currently available DMTs (2, 12, 14, 16, 17). In support of
NEDA as a potential treatment goal, a meta-analysis of 27 clinical
studies, including 11 studies of high efficacy therapies, reported
that NEDA-3 was significantly associated with no long-term
disability progression in RMS (18), highlighting the importance
of head-to-head comparison of NEDA rates between high- vs.
moderate-efficacy therapies like ublituximab and teriflunomide in
a controlled trial.

Ublituximab is a novel monoclonal antibody (mAb) that targets
a unique epitope of CD20 on B cells and is glycoengineered to
enhance antibody-dependent cellular cytotoxicity (ADCC) (19–
21). Nonglycoengineered anti-CD20 antibodies have a reduced
affinity for fragment crystallizable (Fc) gamma receptor IIIa
(FcγRIIIa), as the core fucose of Fc-linked oligosaccharides
sterically hinders interaction with FcγRIIIa (22, 23). The low
fucose content in the Fc region of ublituximab enables closer
interaction and greater affinity for all variants of FcγRIIIa
(Figure 1) (19–21, 23, 24). In preclinical studies, ublituximab
demonstrated 25- to 30-fold greater ADCC potential relative
to ocrelizumab and ofatumumab and > 2,000-fold greater

than that of rituximab (25, 26). Compared with other infused
anti-CD20 therapies, ublituximab is administered in lower
doses and with shorter infusion times after the first infusion
(24, 27–30).

The phase 3 ULTIMATE I and ULTIMATE II studies evaluated
the efficacy and safety of ublituximab, an anti-CD20 mAb
known to deplete B cells, vs. teriflunomide, a dihydroorotate
dehydrogenase–inhibitor known to limit proliferation of activated
lymphocytes, in participants with RMS (31). These studies met
their primary endpoint, demonstrating a statistically significant
reduction in annualized relapse rate with ublituximab compared
with teriflunomide (59% [p ≤ 0.001] and 49% [p = 0.002] relative
reduction) as well as significant improvements in the mean number
of Gd+ T1 lesions (97% and 96% relative reduction; p < 0.001
for both studies) and number of new or enlarging T2 lesions
(92% and 90%; p < 0.001 for both studies). In a prespecified
analysis of both studies, a higher proportion of participants treated
with ublituximab than with teriflunomide experienced NEDA
from Weeks 24 to 96 (inclusive of MRI disease activity at Week
24; 44.6% vs. 15.0% in ULTIMATE I and 43.0% vs. 11.4% in
ULTIMATE II).

The current analyses were performed to further characterize
the effects of ublituximab on NEDA-3 using data pooled across the
phase 3 ULTIMATE studies.

2 Materials and methods

2.1 Study design and participants

Post hoc analyses characterized NEDA-3 in the pooled
population of two identical, phase 3, randomized, multicenter,
double-blind, double-dummy, active-controlled studies,
ULTIMATE I (ClinicalTrials.gov identifier: NCT03277261)
and ULTIMATE II (NCT03277248), which were conducted
at 104 sites across 10 countries. The study protocols were
approved by the institutional review board or ethics committee
at each study site and conformed to Good Clinical Practice
guidelines and the principles of the Declaration of Helsinki.
All participants provided written informed consent. Details
of the study methods were previously reported (31). Briefly,
the studies enrolled participants aged 18–55 years with RMS
(relapsing-remitting or secondary-progressive multiple sclerosis
[MS]) who had ≥ 2 relapses in the previous 2 years or 1 relapse
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FIGURE 1

Ublituximab is glycoengineered to enhance ADCC. (A) In nonglycoengineered anti-CD20 antibodies, the core fucose of Fc-linked oligosaccharides
sterically blocks interaction with FcγRIIIa, reducing a�nity (22, 23). (B) Ublituximab is glycoengineered to have a low fucose content in the Fc region,
which allows for closer interaction and enhanced a�nity for all variants of FcγRIIIa (20, 23, 24). ADCC, antibody-dependent cellular cytotoxicity; Fab,
fragment antigen-binding; Fc, fragment crystallizable; FcγRIIIa, Fc gamma receptor IIIa; NK, natural killer.

and/or ≥ 1 Gd+ T1 lesions in the year prior to screening, brain
abnormalities on MRI consistent with MS, an EDSS score of
0.0–5.5 at screening, and neurologic stability for ≥ 30 days
before screening and baseline. Key exclusion criteria were a
diagnosis of primary-progressive MS, previous anti-CD20 or other
B-cell–directed treatment, and disease duration ≥ 10 years from
onset with an EDSS score ≤ 2.0 at screening. Participants were
randomized 1:1 to receive intravenous infusions of ublituximab
(150mg infused over 4 h on Day 1; 450mg infused over 1 h
on Day 15 and at Weeks 24, 48, and 72) with oral placebo
or oral teriflunomide 14mg once daily for 96 weeks with
intravenous placebo.

2.2 Clinical and MRI endpoints

Clinical evaluations, including EDSS, were performed at
baseline and every 12 weeks. Protocol-defined relapses included
new or worsening neurological symptoms that were attributable
to MS only in the absence of fever or infection, persisted for
> 24 h, were immediately preceded by a stable or improving
neurological state for≥30 days, and were accompanied by objective
neurological worsening consistent with at least a half-point increase
on the EDSS, 2.0-point increase in 1 EDSS functional system
score, or 1.0-point increase in each of ≥2 EDSS functional system
scores. All relapses were centrally confirmed via an independent
relapse adjudication panel. Confirmed disability progression (CDP)
was defined as a ≥1.0-point increase from baseline in EDSS
score not attributable to another etiology (e.g., fever, concurrent
illness, or concomitant medication) when the baseline score was
≤5.5 and an increase of ≥0.5 point when the baseline score
was >5.5 that was sustained and confirmed for ≥12 weeks after
the initial documentation of neurological worsening. Brain MRI
assessments were performed at Weeks 12 (Gd+ T1 lesions) and
Weeks 24, 48, and 96 (Gd+ T1 lesions, T2 lesions, and brain
volume). NEDA-3 was defined as no confirmed relapses, no
Gd+ T1 lesions, no new or enlarging T2 lesions, and no 12-
week CDP.

2.3 Statistical analyses

Post hoc analyses evaluated NEDA-3 by treatment epoch and
participant subtype, including age (≤38 or >38 years), early and
later disease (<3 and ≥3 years following diagnosis, respectively),
treatment naïve or previously treated, 0 or ≥1 Gd+ T1 lesions at
baseline, and EDSS score ≤3.5 or >3.5 in a prespecified modified
intention-to-treat population that included all participants who
received ≥1 dose of trial drug and had 1 baseline and ≥1
postbaseline efficacy and MRI assessment. The NEDA rate was the
proportion of participants with NEDA-3, excluding participants
who discontinued treatment early due to reasons other than death
and lack of efficacy (Supplementary Table 1) during the analysis
time frame, similar to prior methodology used for NEDA analysis
(32). For re-baselined epochs, all components of NEDA-3 were re-
baselined to Week 24 or Week 48 as indicated. EDSS progression
events that occurred at the last scheduled visit (Week 96) during the
timeframe were not included as 12-week CDP due to their inability
to be confirmed 12 weeks later. P values and odds ratio (OR)
were derived from a logistic regression model with adjustments for
treatment, study, region, baseline EDSS strata, and log-transformed
baseline MRI lesion counts (T1 nonenhancing, T2, and Gd+ T1
lesions). Assessment of Gd+ T1 and T2 lesions and relapses in the
past 1 or 2 years between participants with and without NEDA-
3 was based on t test for continuous variables and chi-square test
or Fisher’s exact test for categorical variables. Assessments of Gd+
T1 and T2 lesions and relapses in the past 1 or 2 years between
participants with and without NEDA-3 were based on t test for
continuous variables and chi-squared test or Fisher’s exact test for
categorical variables.

3 Results

3.1 Participant demographics and disease
characteristics

ULTIMATE I and ULTIMATE II enrolled a total of 1,094
participants (ublituximab, n = 546; teriflunomide, n = 548)
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TABLE 1 Participant demographics and baseline characteristics.a

Characteristic Evaluated population

Mean ± standard deviation or % Teriflunomide (n = 524) Ublituximab (n = 520)

Age, years 36.5± 9.4 35.3± 8.7

Sex, female, % 64.3 63.3

Region, %

US &Western Europe 9.0 8.7

Eastern Europe 91.0 91.3

Duration of MS since first symptoms, years 7.0± 6.0 7.4± 6.4

Time since diagnosis, years 4.7± 5.0 4.9± 5.3

Number of relapses in last 12 months 1.3± 0.7 1.3± 0.6

Number of relapses in last 24 months 1.9± 1.0 1.8± 1.0

Time since most recent relapse, months 6.3± 4.9 7.1± 8.6

EDSS score at screening 2.9± 1.2 2.9± 1.3

T2 lesion volume, mL 15.2± 16.7 15.2± 14.8

Number of T2 lesions 62.5± 39.6 64.8± 39.8

Participants free of Gd+ T1 lesions, % 53.4 51.7

aParticipants included in NEDA-3 analyses.

EDSS, Expanded Disability Status Scale; Gd+, gadolinium-enhancing; MS, multiple sclerosis; NEDA-3, 3-parameter no evidence of disease activity.

TABLE 2 Demographics and baseline characteristics in ublituximab-treated participants with or without NEDA-3 at Weeks 0–96.a

Characteristic Evaluated ublituximab-treated population

Mean ± standard deviation or % With NEDA-3 (n = 232) Without NEDA-3 (n = 288)

Age, years 36.5± 8.9 34.4± 8.5

Sex, female, % 62.1 64.2

Region, %

US &Western Europe 6.0 10.8

Eastern Europe 94.0 89.2

Duration of MS since first symptoms, years 7.8± 6.7 7.1± 6.1

Time since diagnosis, years 5.1± 5.5 4.7± 5.1

Number of relapses in last 12 months∗ 1.2± 0.5 1.4± 0.7

Number of relapses in last 24 months† 1.7± 0.8 1.9± 1.1

Time since most recent relapse, months 7.0± 4.9 7.3± 10.7

EDSS score at screening 2.8± 1.2 2.9± 1.3

T2 lesion volume, mL‡ 12.8± 14.3 17.2± 14.9

Number of T2 lesions§ 55.3± 35.5 72.4± 41.5

Participants free of Gd+ T1 lesions§, % 70.3 36.8

∗p= 0.0018, †p= 0.0022, ‡p= 0.0007, and §p < 0.0001.
aParticipants included in NEDA-3 analyses.

EDSS, Expanded Disability Status Scale; Gd+, gadolinium-enhancing; MS, multiple sclerosis; NEDA-3, 3-parameter no evidence of disease activity.

(31). Demographic and disease characteristics of participants
included in the pooled NEDA-3 analyses (teriflunomide, n = 524;
ublituximab, n = 520) were well balanced across treatment arms
(Table 1). Table 2 shows demographic and disease characteristics
of ublituximab-treated participants who did or did not experience
NEDA-3 during the 2-year study period (Weeks 0–96). When

compared with participants who did not experience NEDA-3,
participants who experienced NEDA-3 were more likely to be
free of Gd+ T1 lesions (70.3% vs. 36.8%; p < 0.0001) and other
indications of less active disease at baseline, e.g., on average, fewer
relapses in the past 1 (mean 1.2 ± 0.5 vs. 1.4 ± 0.7; p = 0.0018)
or 2 years (mean 1.7 ± 0.8 vs. 1.9 ± 1.1; p = 0.0022), fewer T2
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FIGURE 2

NEDA-3 rates by treatment epoch. NEDA-3 was defined as no
confirmed relapses, no Gd+ T1 lesions, no new or enlarging T2
lesions, and no 12-week confirmed disability progression. Pooled
post hoc analysis. Modified intention-to-treat population. Gd+,
gadolinium-enhancing; NEDA-3, 3-parameter no evidence of
disease activity.

lesions (mean 55.3± 35.5 vs. 72.4± 41.5; p< 0.0001), and a smaller
T2 lesion volume (mean 12.8 ± 14.3mL vs. 17.2 ± 14.9mL; p =

0.0007) than those who did not experience NEDA-3.

3.2 NEDA outcomes

NEDA-3 rates were significantly higher with ublituximab
compared with teriflunomide during the overall treatment period
(Weeks 0–96; OR [95% confidence interval (CI)] = 7.36 [5.30–
10.23]; p < 0.0001) (Figure 2). Following re-baselining at Week
24 and Week 48, rates of NEDA-3 were 3.6-fold (Weeks 24–
96; OR [95% CI] = 17.94 [12.93–24.89]; p < 0.0001) and 2.9-
fold (Weeks 48–96; OR [95% CI] = 19.66 [13.74–28.11]; p <

0.0001) greater, respectively, with ublituximab than teriflunomide
(Figure 2). Covariate analysis indicated that lower Gd+ T1 lesion
count at baseline and geographic location tended to impact
NEDA outcomes. Among ublituximab-treated participants who
did not experience NEDA-3 during the first year, 210/267 (78.7%)
experienced NEDA-3 during the second year, whereas only
86/422 (20.4%) of teriflunomide-treated participants who did
not experience NEDA-3 during the first year did so during the
second year.

During the study (Weeks 0–96), 87.6% of teriflunomide-
treated and 55.4% of ublituximab-treated participants had evidence
of disease activity. Re-baselined data for Weeks 24–96 showed
evidence of disease activity in 77.5% and 17.9% of teriflunomide
and ublituximab treatment groups, respectively. The proportions
of participants free of disease activity components during the
Weeks 0–96 and Weeks 24–96 (re-baselined) epochs are shown in
Figure 3. For Weeks 0–96, new or enlarging T2 lesions were the
primary driver of disease activity in the teriflunomide (occurring

in 81.1% of participants) and ublituximab (occurring in 44.8%
of participants) groups. In contrast, the leading cause of disease
activity during Weeks 24–96 (re-baselined) and Weeks 48–96 (re-
baselined) was new or enlarging T2 lesions with teriflunomide
(occurring in 71.6% and 63.4% of participants, respectively)
and relapse with ublituximab (occurring in 11.4% and 7.6% of
participants, respectively).

Sensitivity analyses that excluded MRI activity at Week 12
showed a minimal effect of Gd+ T1 lesions on NEDA-3 rates at
Weeks 0–96 (ublituximab: 45.0%; teriflunomide: 12.8%). NEDA-
3 rates at Weeks 0–48, excluding the Week 12 MRI, were 49.7%
for ublituximab-treated participants and 21.2% for teriflunomide-
treated participants (Supplementary Table 2).

As shown in Figure 4, NEDA-3 at Weeks 24–96 (re-baselined)
was improved with ublituximab vs. teriflunomide among all
evaluated subgroups (p < 0.0001 for all).

4 Discussion

NEDA-3 has emerged as a practical tool for characterizing
therapeutic efficacy using commonly used endpoints for disease
activity and worsening disability. This post hoc analysis showed
that ublituximab consistently outperformed teriflunomide on the
NEDA-3 composite outcome regardless of treatment epoch or
participant subgroup, supporting the established efficacy profile of
ublituximab. Rates of achieving NEDA-3 were significantly higher
with ublituximab than teriflunomide at Week 96 when compared
with the original baseline (Week 0) and when the baseline was
redefined asWeek 24 orWeek 48 (all p< 0.0001). The re-baselined
Weeks 24–96 epoch data may be more clinically meaningful than
the Weeks 0–96 epoch data considering that most DMTs require
several weeks or months to produce an appreciable effect on MRI
parameters (2). A re-baselining approach after the anticipated onset
of action of the DMT was proposed to better characterize the full
efficacy of a DMT unconfounded by disease activity that is destined
to occur before the DMT has had sufficient time to become fully
effective (2). Previous studies implemented this approach, arguing
that the corresponding results provide a more reliable indication of
overall differences in efficacy between treatment arms (33, 34).

Among participants who did not experience NEDA-3 during
the first year of treatment, 78.7% of those in the ublituximab group
vs. only 20.4% of teriflunomide-treated participants experienced
NEDA-3 during the second year. This benefit, which was observed
despite higher rates of achieving NEDA-3 during Weeks 0–48
with ublituximab (49.3%) vs. teriflunomide (20.1%), supports the
high rates of full efficacy associated with longer-term ublituximab
treatment and the value of persisting with ublituximab for people
with MS who do not attain NEDA-3 during their initial year
of therapy.

New or enlarging T2 lesions and Gd+ T1 lesions were the key
drivers of disease activity in teriflunomide-treated participants who
did not experience NEDA during Weeks 0–96, Weeks 24–96 (re-
baselined), and Weeks 48–96 (re-baselined). In contrast, among
participants who received ublituximab, new or enlarging T2 lesions
was the primary driver of disease activity during Weeks 0–96, but
MRI activity was no longer a key driver of disease activity during
Weeks 24–96 or Weeks 48–96. These observations are consistent
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FIGURE 3

Components driving NEDA-3.a *p < 0.0001. aParticipants may have > 1 component of evidence of disease activity. bIndependent Relapse
Adjudication Committee confirmed. Pooled post hoc analysis. Modified intention-to-treat population. CDP, confirmed disease progression; Gd+,
gadolinium-enhancing; NEDA-3, 3-parameter no evidence of disease activity. (A) Free of relapse. (B) Free of Gd+ T1 lesions. (C) Free of
new/enlarging T2 lesions. (D) Free of 12-week CDP.

with the strong anti-inflammatory effects as noted in MRI scans of
anti-CD20 therapies (9, 35–37), which, as noted above, may require
weeks to months to become fully apparent.

In the subpopulation analyses, the greatest NEDA benefit with
ublituximab vs. teriflunomide was seen in who were younger,
with a shorter time since MS diagnosis, with at least 1 Gd+ T1
lesion at baseline and an EDSS score ≤3.5 at baseline. These
subpopulations are associated with higher inflammatory disease
activity and these larger reductions reflect a disproportionately
greater anti-inflammatory effect.

Similar analyses evaluated the effects of other anti-CD20
agents on NEDA-3. In a post hoc analysis of pooled data from
two identical, phase 3, multicenter, randomized, double-blind,
double-dummy studies (OPERA I [NCT01247324] and OPERA
II [NCT01412333]), the proportion of ocrelizumab-treated
participants with NEDA-3 from Week 0 to Week 96 was 47.7%,
and 72.2% from Week 24 (re-baselined) to Week 96 (34).
An analysis of pooled data from the phase 3 ASCLEPIOS
I (NCT02792218) and ASCLEPIOS II (NCT02792231)
trials found that 47.0% of ofatumumab-treated participants
experienced NEDA-3 from Month 0 to Month 12, and 87.8%
experienced NEDA-3 from Month 12 (re-baselined) to Month

24 (38). While the NEDA analyses from the OPERA and
ASCLEPIOS trials did not include MRI assessments at Week 12,
sensitivity analyses of the ULTIMATE data showed a minimal
contribution of Week 12 MRI activity to NEDA-3 rates at
Weeks 0–96.

Limitations of the pooled NEDA-3 data include the post

hoc nature of the analyses based on controlled studies, which
might vary from real-world clinical population. In addition,
the components measured in NEDA-3 (i.e., relapses, EDSS
worsening, and MRI inflammatory activity) are associated with
the inflammatory phase of MS and do not characterize other
important aspects of disease progression, such as cognitive
and upper extremity dysfunction (3, 39, 40). Further, NEDA-3
constituents are thought to reflect the classic view of MS as a
disease of white matter, whereas growing evidence suggests that
MS pathology involves both demyelination and neurodegeneration
(3). Expanded definitions of NEDA incorporate brain atrophy
(NEDA-4) (16) and/or other components, such as fluid biomarkers
(e.g., neurofilament light chain levels), cognitive function, and
psychological or quality-of-life measures (2, 41–43). A brain
volume loss of ≥ 0.4% per year was suggested as a cutoff
value to define pathological brain atrophy in participants with
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FIGURE 4

NEDA-3 at Weeks 24–96 (re-baselined) in participant subgroups. NEDA-3 was defined as no confirmed relapses, no Gd+ T1 lesions, no new or
enlarging T2 lesions, and no 12-week confirmed disability progression. Early disease population vs. later disease population, defined as < or ≥
median time, was approximately 3 years from MS diagnosis to study randomization. Pooled post hoc analysis. Modified intention-to-treat population.
DMT, disease-modifying therapy; EDSS, Expanded Disability Status Scale; Gd+, gadolinium-enhancing; NEDA-3, 3-parameter no evidence of
disease activity.

MS (44). NEDA-4 may be an important measure, because brain
atrophy is associated with both cognitive dysfunction (45) and
long-term disability progression (44, 46–48). Finally, the safety
profiles of the two study drugs could contribute to overall
NEDA outcomes for patients, and future studies must account for
such effects.

The concept of minimal evidence of disease activity (MEDA)
may be of broader clinical use because it permits a small amount
of disease activity and may be more tolerable for practitioners.
As an example, an increase of 3 voxels in T2 lesions would be
considered disease activity in clinical trials (37), but in clinical
practice, this small change would not likely prompt treatment
changes. Further, long-term observational studies failed to identify
a robust contribution of minimal T2 lesion formation to long-
term disability (49). However, a potential barrier to widespread
adoption is that definitions of MEDA vary across studies and
include (1) no relapse, ≤ 2 new T2 lesions, and no Gd+
lesions (50, 51), (2) no relapse or 1 relapse without residual
disability, no MRI activity or ≤ 2 new/enlarged T2 lesions or
1 Gd+ lesion, and no EDSS disability progression confirmed
at 3 months (52), and (3) ≤ 2 new T2 lesions or ≤ 1
Gd+ lesions (53). However, all were associated with reduced
disability progression.

In conclusion, these data showing improved NEDA-3 rates
with ublituximab compared with teriflunomide both in the overall
population and in key subgroups add to the evidence of clinical
benefit with ublituximab seen in the phase 3 ULTIMATE trials.
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