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Introduction: Broca’s aphasia is a crushing syndrome after stroke. Although 
there are multiple therapies, the recovery of a considerable number of patients 
is still not ideal. Repetitive transcranial magnetic stimulation (rTMS) combined 
with speech and language therapy has been a promising combination regimen 
in recent years. However, the efficacy and persistent effects thereof remain 
unclear. We aimed to determine the immediate and long-term effects of rTMS 
combined with speech and language therapy on subacute stroke patients with 
Broca’s aphasia and explore relevant mechanisms in the picture-naming task via 
functional near-infrared spectroscopy (fNIRS).

Materials and methods: This was a prospective clinical study. In accordance 
with the inclusion criteria, 18 patients with post-stroke were recruited and 
randomly divided into either the rTMS group or the sham-rTMS group. Patients 
in both groups received low-frequency rTMS therapy for 20  min a day and 
then speech and language therapy for 30  min a day, 5  days a week, for a total 
of 4  weeks. Two groups of patients underwent the Western Aphasia Battery 
Revised (WAB-R), the Stroke and Aphasia Quality of Life Scale-39 (SAQOL-39), 
and non-language-based cognitive assessment (NLCA) before treatment and at 
2  weeks, 4  weeks, and 3  months after treatment. Meanwhile, we collected fNIRS 
task state data while naming images before and after 4  weeks of treatment. The 
primary outcome was WAB-R changes. The secondary outcomes include the 
SAQOL-39, NLCA, as well as the difference in activation status of brain regions 
in the cortical language function network.

Results: For the index scores of the two groups, the results of repeated-
measures ANOVA indicated an increasing trend at three time points, i.e., after 
2  weeks of treatment, 4  weeks after treatment, and 3  months after the end of 
treatment (p  <  0.001); in terms of intergroup effects, there was a statistically 
significant difference between the two groups in WAB naming scores (F  =  4.865, 
p  =  0.042); and the aphasia quotient (AQ), listening comprehension, and naming 
scores of the two groups had interactive effects (FAQ  =  11.316, PAQ  =  0.000; 
Flistening  =  8.205, Plistening  =  0.002; Fnaming  =  27.46, Pnaming  =  0.000). Independent 
sample t-tests also showed that until 4  weeks after the end of treatment, there 
were significant differences in information volume and naming scores between 
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the two groups (tinformation  =  2.352, Pinformation  =  0.032; tnaming  =  3.164, Pnaming  =  0.006). 
Three months after the end of treatment, there were significant differences 
in information volume, naming, AQ and repetition scores (tinformation  =  2.824, 
Pinformation  =  0.012; tnaming  =  5.090, Pnaming  =  0.000; tAQ  =  2.924, PAQ  =  0.010; 
trepetition  =  2.721, Prepetition  =  0.015). In the picture-naming task, fNIRS analysis 
found that in the rTMS group after treatment, the activation in the left superior 
temporal gyrus (STG), middle temporal gyrus (MTG), premotor cortex (PM), 
supplementary motor area (SMA), pars triangularis Broca’s area, and dorsolateral 
prefrontal lobe (DLPFC) decreased (p  <  0.05).

Conclusion: The language function of patients was improved after 4  weeks of 
treatment, and there was a long-term effect (3  months follow-up), especially 
in naming gains. Moreover, by analyzing cortical activation during a picture-
naming task with fNIRS, we  found that rTMS could downgrade the activation 
level in the left MTG, STG, PM and SMA, DLPFC, and pars triangularis Broca’s 
area, whereas the sham-rTMs group only showed downgraded activation levels 
in the right PM and SMA. This demonstrates the unique mechanism of rTMS.

Clinical trial registration: ChiCTR.org.cn, identifier, ChiCTR2300067703.

KEYWORDS

stroke, Broca’s aphasia, functional near-infrared spectroscopy, repetitive transcranial 
magnetic stimulation, speech and language therapy

1 Introduction

Post-stroke aphasia is one of the most serious complications 
among stroke survivors (1, 2), with clinical manifestations including 
loss or impairment of one or more aspects of listening comprehension, 
oral expression, retelling, naming, reading, and writing, to varying 
degrees (3). The incidence of aphasia after the first stroke is 32% (4), 
up to 40% of speech disorders persist after 1 year (5), and residual 
speech symptoms may affect patients’ lives for many years.

Approximately 20% of post-stroke aphasia patients cannot reach 
the most basic level of daily communication after speech therapy (6). 
Broca’s aphasia, the classical subtype of non-fluent aphasia, is 
characterized by oral expression disorders and caused by lesions 
involving the Broca areas in the left inferior frontal gyrus (dominant 
hemisphere). Speech and language therapy is the most recommended 
rehabilitation approach for aphasia (1), which reduces language 
deficits, but only results in limited curative effects and needs long 
rehabilitation periods (7). To date, effects of pharmacological therapies 
for Broca’s aphasia are also limited (8, 9). The prognosis for post-stroke 
aphasia is, therefore, currently not ideal, and the efficacy of speech and 
cognitive therapy alone is inadequate.

When repetitive transcranial magnetic stimulation (rTMS) is used 
alone, it can produce substantial improvements in language and 
cognitive abilities in post-stroke aphasia patients in the chronic or 
subacute stage (10–12). Furthermore, rTMS combined with speech 
and language therapy may provide added benefits over speech and 
language therapy alone in these stages (13–15). There is also a lack of 
research on rTMS in Broca’s aphasia or other subtypes thereof (16), 
especially in the subacute phase of stroke, which makes it difficult to 
provide conclusive recommendations on whether integrating rTMS 
with speech and language therapy is advisable for stroke patients with 
Broca’s aphasia in the subacute phase.

In recent years, functional near-infrared spectroscopy (fNIRS) has 
been recognized as a promising imaging technology for the study of 
brain function (17, 18). Through real-time detection of the 

oxyhemoglobin and deoxyhemoglobin concentrations in the cerebral 
cortex, neural activity in the brain can be estimated using fNIRS (19, 20). 
Additionally, the effects of naming tasks observed with fNIRS in healthy 
individuals and nonaphasics have been reported (19, 21–23), but the 
research only involved brain regions such as the STG, MTG, premotor 
cortex, and SMA, not including other important language and cognitive 
brain regions (e.g., Wernicke area, pars triangularis Broca’s area, and the 
dorsolateral prefrontal cortex).

We, therefore, aimed to target subacute-stage stroke patients with 
Broca’s aphasia, and apply low-frequency rTMS combined with speech 
and language therapy to determine immediate and long-lasting effects 
of these treatments. We also explored the changes in the activation 
degree of specific language and cognitive brain regions during a 
picture-naming task before and after treatment with fNIRS.

2 Methods

2.1 Design

Our study was a randomized, single-center, double-blinded, sham-
controlled trial. The study protocol followed the Consolidated Standards 
of Reporting Trials (CONSORT) guidelines, as well as the 
Recommendations for Interventional Trials (SPIRIT). The study was 
conducted at the Sichuan Rehabilitation Hospital (Sichuan Bayi 
Rehabilitation Center) in Chengdu, China. All procedures were reviewed 
and approved by the Medical Ethics Committee of Sichuan Bayi 
Rehabilitation Center (CKLL-2022014). This study was registered at the 
Chinese Clinical Trial Registration Center (No. ChiCTR2300067703). 
The research protocol and related documents can be obtained through 
ClinicalTrials.gov and the corresponding authors. The intervention cycle 
was 4 weeks, and the follow-up period was 3 months after the end of 
treatment. The clinical language and cognitive function indices, changes 
in cerebral cortex activation during the task, and therapeutic effects 
during the follow-up period were compared and analyzed. All patients 
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completed corresponding assessments before and after treatment, as well 
as during the 3-month follow-up. Figure 1 shows the specific study details.

2.2 Participants

2.2.1 Inclusion, exclusion, and withdrawal criteria
We included first-onset supratentorial stroke patients who met the 

diagnostic criteria of the Chinese Guidelines for Clinical Management 
of Cerebrovascular Diseases (2nd edition) (24); diagnosed with Broca’s 
aphasia revealed using the Chinese version of the Western Aphasia 
Rating Scale; conscious and stable patients with and had no serious 
cognitive dysfunction, older than 18 years; course of disease 
1–6 months; years of education ≥6 years; right-handed, assessed via 
the Edinburgh Handedness Scale (score > +40); native speakers of 

Chinese; no history of language disorders before onset; complete 
clinical language cognitive function examination, fNIRS examination, 
speech therapy, and rTMS treatment; and patients or family members 
signed informed consent forms.

We excluded patients with speech disorders caused by peripheral 
sensory (e.g., visual, auditory, etc.) abnormalities (25); complicated by 
heart, liver, or kidney dysfunction and other serious diseases; patients 
with complications such as epilepsy or other neurological diseases, such 
as motor neuron disease and Parkinson’s disease; those with a history of 
neurological or organic mental illness; intracranial metal internal fixation 
and other devices; and patients with fNIRS signal acquisition affected by 
skull defects in the brain, hair occlusion, and other factors (22, 26).

Participants could quit the study voluntarily or were withdrawn 
when serious adverse events, such as seizures and stroke recurrence, 
occurred.

FIGURE 1

Consolidated Standards of Reporting Trials (CONSORT) subject flow diagram. T0, before treatment; T1, after 2  weeks of treatment; T2, after 4  weeks of 
treatment; T3, at 3-month follow-up.
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2.2.2 Sample size
This study is an exploratory prospective clinical study. Previous 

studies usually included 5–10 participants (19, 21) with aphasia. 
Referring to the latest study design (19, 21, 23, 25, 27), we  used 
G*Power software to calculate the sample size with a type I error of 
0.05 (α) and a type II error of 0.80 (1-β). Additionally, a 20% dropout 
rate was considered. A total of 22 participants were recruited, and four 
patients were excluded according to the inclusion and 
exclusion criteria.

2.3 Randomization and blinding

The random serial numbers of 18 patients were generated by SPSS 
software and placed into sequentially coded sealed and opaque 
envelopes. After the researchers had determined the eligibility of the 
participants, the envelopes were opened in order, and the participants 
were randomly assigned to one of the two groups (including nine 
patients in the rTMS group and nine patients in the sham group). The 
participants, speech therapists, evaluators, and data statisticians 
involved in this study were blinded.

2.4 Assessments

2.4.1 Language function assessment and 
cognitive function screening

A speech therapist with more than 5 years of work experience, 
who was not aware of the groups, assessed the severity of language 
ability and the quality of life of post-stroke aphasia patients before 
treatment, 2 weeks after treatment, 4 weeks after treatment, and at the 
3-month follow-up. The specific assessment includes the 
following aspects:

 (1) Western Aphasia Battery Revised (WAB-R). The WAB scale 
was used to record the overall language ability of patients with 
post-stroke aphasia before and after treatment, namely, the 
aphasia quotient (AQ), with a total score of 100. Subscores for 
naming, repetition, listening comprehension, fluency, 
information content, and other subitems were collected. The 
total score of each subitem was 10 (21).

 (2) The Stroke and Aphasia Quality of Life Scale-39 (SAQOL-39) 
was used to evaluate the activity and participation ability of 
post-stroke aphasia patients. The content covers three aspects 
of physiology, psycho-society, and communication, with a total 
of 39 subitems, and each item is graded at five levels (28).

 (3) Non-language-based cognitive assessment (NLCA). The NLCA 
is widely used to assess the overall non-verbal cognitive 
function of aphasia patients and has high sensitivity and 
specificity to identify aphasia patients with mild cognitive 
impairment. It mainly involves visuospatial ability, memory, 
attention, logical reasoning ability, and executive ability. The 
maximum possible score is 80 points. A score lower than 70 
points indicates cognitive dysfunction (29, 30).

2.4.2 fNIRS data collection preparation
We applied NIRX fNIRS imaging equipment (NIRx Medical 

Technologies, NY, USA) with a sampling frequency of 2.5 Hz and a 

continuous wave recording of two different wavelengths of near-
infrared light (785, 830 nm) signals (31). According to our design, a 
total of 48 channel signals from the left and right brain hemispheres 
were collected from each patient, the optical pole included 25 light 
source transmitters and 18 detectors, and the average distance between 
the detectors and the light source was 30 mm (31, 32). The main 
detection area of each channel is located in the brain region below the 
midpoint of the channel (21, 33, 34), the coordinate information of the 
middle point of the channel is determined by a Patriot Locator (21), 
and the collection head cap is designed based on the international 
10–20 standard electrode placement system (32, 35) (Figure 2). The 
NIRS-SPM toolkit was used to convert the spatial coordinate system of 
the midpoint of each pair of light sources and detectors into 48-channel 
MNI coordinates of the Montreal Neurological Institute, and the 
corresponding information between the MNI coordinates and 
Brodmann partition location was obtained (31, 32). The 
BrainNetViewer toolbox was subsequently used for visualization (21, 
36, 37) (Figure 3). The 48 channels were divided into six ROIs (21) in 
the cerebral cortex of the participants, and the left and right sides were 
distinguished. The channel information corresponding to each ROI is 
shown in Table 1.

2.5 fNIRS task state data collection

Both groups received language training for 4 weeks, 30 min a day, 
5 days a week, for 4 weeks. Data collection during the fNIRS picture-
naming task was performed within 48 h after the two groups were 
enrolled and within 48 h after the end of 4 weeks of treatment, mainly 
to observe and record the changes in cerebral cortex activation in 
patients in the task state.

E-prime software was used to program and carry out image 
naming experimental tasks, and the patients completed corresponding 
tasks according to the instructions on the screen. According to the 
setting of word frequency and difficulty level, 32 black and white 
pictures from the psychological cognitive experiment picture database 
(21) were selected. The task pattern was designed with periodic blocks, 
including 40 s experimental blocks and 20 s control blocks. Eight 
pictures of the standby names were presented in each periodic block 
task, and each picture was presented for 4 s. Participants then entered 
the rest of the period and stared at the black “cross” on the computer 
screen for 1 s until the next picture appeared (Figure 4).

2.6 Interventions

2.6.1 Speech and language therapy protocol
Based on the Schuell therapy technique, the principles of Schuell 

guided us to utilize the strong auditory stimulus, appropriate, 
multichannel language stimulation, and emphasized the importance 
of reinforcing correct response in time. The speech and language 
therapy protocol sessions were led by speech therapists and were 
tailored to subacute aphasia patient needs and abilities (38), including 
listening comprehension training, auditory memory span training, 
naming training, oral expression training, practical communication 
training, etc. (39). After rTMS treatment, patients rested for 5–10 min 
and received subsequent speech and language therapy. The treatment 
was formulated with reference to the consensus of rehabilitation 
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experts for Chinese aphasia: 30 min a day, 5 days a week, for a total of 
20 times, for 4 weeks (40–42). Moreover, the practicable design of this 
program is in line with current one-to-one treatment in most hospitals 
and rehabilitation institutions in China.

2.6.2 rTMS protocol
A transcranial magnetic stimulation instrument (CCY-type, 

Classic Magnetic Stimulator, YIRUIDE GROUP, China) was used to 
carry out the therapeutic intervention in this study as follows. (1) 
Parameter selection: inhibitory stimulation with a low frequency of 
1 Hz and an intensity of 90% of the resting motor threshold was 
selected (16, 43); stimulation time = 10 s, interstimulus interval = 2 s, 
repetition times = 100 times, 20 min a day, with a total of 1,000 pulses 
(44); (2) coil selection: the figure-of-eight coil; (3) stimulation site: 
right inferior frontal gyrus triangle (43) (i.e., pars triangularis, part of 
the Brodmann area 45), where the center of the figure-of-eight coil is 
placed at the mark, and the center is adjusted to be tangent to the 

patient’s skull, orienting the coil 90° toward the patient’s occiput, with 
the coil position fixed during each treatment session (27, 45). The 
standard electrode placement method 10–20 system (46), recognized 
by the International Electroencephalography Society, was used to 
determine the stimulation site, which is located at the intersection of 
the F8 and Cz lines and the T4 and FZ lines in the right cerebral 
hemisphere; (4) Resting motor threshold measurement: The patient 
was asked to relax, sit quietly, and place the recording electrodes on 
the abductor pollicis brevis muscle on the left upper limb. The 
reference electrode was placed on the first metacarpophalangeal joint. 
The coil is placed on the M1 region of the right cerebral hemisphere. 
After slightly adjusting the coil position and further determining the 
stimulation site that can induce the largest amplitude and the shortest 
latency, the output intensity was gradually reduced, and the minimum 
stimulus intensity that can trigger the contralateral abductor pollicis 
brevis motor evoked potential ≥50 μV for ≥5 consecutive stimuli was 
the motor threshold (47). (5) Treatment prescription: 20 min/day, 

FIGURE 2

Distribution diagram of the light source and detector in the brain area. The red area indicates the light source; the blue area indicates the detector; the 
lines indicate the channels.
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5 days a week, for a total of 20 sessions (16, 44), based on the results of 
previous pilot experiments, determined the 4-week stimulation period.

2.6.3 Sham-rTMS protocol
When the coil is placed at the stimulation site, the stimulation 

surface is placed 90° perpendicular to the target area (48), and the rest 
of the stimulation surface is the same as that used in the rTMS 
treatment regimen described above.

The intervention period was 4 weeks (during hospitalization) for 
both real and sham-rTMS treatments. After discharge from the 
hospital, the patients did not receive any speech therapy and rTMS 
treatments. We assessed the patient’s language function every 2 weeks 
via phone or video conference and then gave guidance or instructions 
to family members.

2.7 Data preprocessing

2.7.1 Language and cognitive function 
assessment data

The WAB AQ score (the main outcome indicator) and WAB 
subitems, including fluency, information content, listening 
comprehension, repetition, and naming, were selected as the 
observation indicators of language function in this study. The NLCA 
and SWQOL-39 were selected as the cognitive function and language-
related functional indicators, respectively. The original scores of all 
data were recorded as per the evaluation checklist, the original paper 
data were registered in the evaluation manual and case report form, 
and the electronic versions were sorted and saved.

2.7.2 fNIRS task state data
The NIRS-SPM toolkit (35, 49), running on the MATLAB 

platform, was used for data preprocessing, model construction, and 
analysis of the fNIRS data in the task state. The detailed steps are as 
follows: (1) the wavelet-MDL method was used for nonlinear trend 
and high-pass filtering; (2) a smoothing method with a hemodynamic 
response function (HRF) was used for low-pass filtering; (3) the 
precoloring method was used to estimate and remove the time domain 
correlation; (4) after preprocessing, the generalized linear model was 
constructed to estimate the HRF. The basis function hrf (time & 
dispersion der.) was selected. The presentation time of the first image 
of the first block of the named task was set to time 0 (onset time); (5) 
we  selected 12 ROIs (six in each hemisphere), i.e., Broca area, 
Wernicke area, MTG, STG, SMA, dorsolateral prefrontal cortex. The 

FIGURE 3

Distribution diagram of 48 channels in the brain.

TABLE 1 Channel distribution of the ROI.

ROI Left cerebral 
channel

Right cerebral 
channel

Broca area 30 32

Wernicke area 5, 8, 9, 34, 35 1, 2, 3, 28, 36, 37

DLPFC 27, 31, 43 33, 44

STG 10, 22 4, 23

MTG 20, 21, 48 24, 25, 47

SMA 6, 7, 11, 14, 15, 16 12, 13, 17, 18, 19, 29

ROI, region of interest; DLPFC, dorsolateral prefrontal cortex; STG, superior temporal 
gyrus; MTG, middle temporal gyrus; SMA, supplementary motor area.
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regression coefficient beta values under each channel and ROI were 
obtained and used in the next statistical analysis beta values mainly 
reflect the analysis of the time domain, including the estimation of the 
amplitude change and the time to reach the peak. By calculating the 
changes in the amount of attenuation, the changes in oxygenated 
hemoglobin concentration in different regions of the brain can 
be  indirectly measured. (6) The channel coverage indicates the 
percentage of cortical anatomical positions overlapped by different 
channels in the Brodmann area with reference to the Talairach 
Daemon Database.

2.8 Statistical analysis

2.8.1 General information and language cognitive 
function indices

SPSS 25.0 statistical software was used to compare age, sex, disease 
course, education level, WAB AQ score, and other general data 
between the two groups. Independent two-sample t tests were used, 
and chi-square tests were used for sex comparisons and stroke site 
distribution comparisons. The WAB (AQ and subitems) scores, NLCA 
scores, and SAQOL-39 scores before treatment, 2 weeks, 4 weeks after 
treatment, and at 3 months were analyzed by repeated-measures 
ANOVA. At each time point, an independent sample t test (two tailed) 
was used to compare the two groups. p < 0.05 indicated a statistically 
significant difference.

2.8.2 fNIRS task state data
The fNIRS data of the two groups were collected by ttest and ttest2 

functions in MATLAB before and 4 weeks after treatment, and the 
beta values of each channel calculated by a model were tested by an 

in-group paired t test and an intergroup independent sample t test, 
respectively. For a two tailed test, p < 0.05 indicated a statistically 
significant difference.

3 Results

3.1 General condition

A total of 18 patients with Broca’s aphasia who met the inclusion 
criteria were recruited from the Neurorehabilitation Department of 
Sichuan Rehabilitation Hospital between January 2023 and December 
2023. The participants were randomly assigned to the rTMS group 
(n = 9) or the sham group (n = 9) at a 1:1 ratio. During the study 
period, all patients completed the assessment, treatment, and 
follow-up, and no adverse events occurred. All clinical data and 
evaluation data of the two groups were complete. The differences in 
general information and language cognitive function indices were not 
statistically significant (p > 0.05) (Tables 2, 3).

3.2 Improvements in language and 
cognitive function

Before the intervention, there were no significant differences in 
the scores of language cognitive function between the two groups 
(p > 0.05). The results of the repeated-measures ANOVA showed that 
the scores of the above indices in the two groups tended to increase at 
three time points (after 2 weeks of treatment, 4 weeks after treatment, 
and 3 months after the end of treatment), and the differences were 
statistically significant (p < 0.001). In terms of intergroup effects, there 

FIGURE 4

Picture-naming task. (A) Picture-naming task paradigm; (B) Periodic experimental design for picture naming.
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TABLE 3 Language and cognitive functioning between the rTMS group and the sham group (scores).

Group Cases AQ SAQOL-39 NLCA Fluency Inform. Listen. Repetition Naming

TG 9 39.23 ± 22.78 94.33 ± 33.93 66.22 ± 13.14 2.67 ± 1.73 4.33 ± 2.78 5.43 ± 1.92 4.48 ± 3.17 2.71 ± 2.77

SG 9 39.22 ± 22.92 94.00 ± 26.17 65.11 ± 13.31 2.00 ± 1.73 3.89 ± 2.93 6.63 ± 2.30 4.44 ± 3.48 2.66 ± 3.12

t/x2 value 0.001 0.023 0.178 0.816 0.330 −1.202 0.025 0.040

p value 0.999b 0.982b 0.861b 0.426b 0.746b 0.247b 0.981b 0.969b

bIndependent two-sample t test.
TG, rTMS group; SG, sham group; inform., information volume; listen., listening comprehension.

was a statistically significant difference in naming scores between the 
two groups (F = 4.865, p = 0.042), but there was no statistically 
significant difference in scores among the other indicators (p > 0.05). 
The AQ, listening comprehension, and naming scores of the two 
groups had interactive effects (FAQ = 11.316, PAQ = 0.000; Flistening = 8.205, 
Plistening = 0.002; Fnaming = 27.46, Pnaming = 0.000).

Independent sample t-tests revealed no significant differences in 
any of the indicators between the two groups after 2 weeks of treatment 
(p >  0.05). After 4 weeks of treatment, there were statistically 
significant differences in information content and naming scores 
between the two groups (tinformation = 2.352, Pinformation = 0.032; 
tnaming = 3.164, Pnaming = 0.006). During the 3-month follow-up, there 
were significant differences in information volume, naming, AQ, and 
repetition scores (tinformation = 2.824, Pinformation = 0.012; tnaming = 5.090, 
Pnaming = 0.000; tAQ = 2.924, PAQ = 0.010; trepeating = 2.721, Prepeating = 0.015) 
(Table 4 and Figure 5). Regardless of whether real rTMS was received 
or not, all eight indicators showed sustained improvement within 
4 weeks. During the period of 4 weeks to 3 months, all six speech 
indicators except NLCA and SAQOL-39 in the sham-rTMS group 
deteriorated; on the contrary, in the rTMS group, except for 
information volume, the other five speech indicators not only showed 
continuous improvement within 4 weeks of treatment but also 
continued to improve during the period of 4 weeks to 3 months after 
stopping treatment. This finding suggests that the rTMS scheme used 
in this study not only has short-term effects but also unique long-
term effects.

3.3 Changes in cortical activation in the 
task state detected with fNIRS

The changes in activation of brain areas in the image naming task 
were reflected by the change in the beta value of each channel and ROI 

before and after the intervention. After 4 weeks of treatment, the beta 
values of channels 22 and 31 in the rTMS group were noticeably lower 
than those before treatment (channel 22: t = 3.541, p = 0.008; Channel 
31: t = 2.507, p = 0.037), the beta value of channel 12 in the sham group 
was also lower than before (t = 2.582, p = 0.036), and the difference was 
statistically significant. In the left dorsolateral prefrontal lobe, the beta 
value of the rTMS group after treatment was significantly lower than 
before (t = 2.710, p = 0.027). No statistically significant difference was 
found between the two groups (Figure 6 and Table 5).

4 Discussion

We aimed to evaluate the effects of low-frequency rTMS combined 
with speech and language therapy on Broca’s aphasia in subacute 
stroke inpatients. We aimed to determine whether the rTMS treatment 
led to a better language and cognitive function than the sham group 
at different time points after 4 weeks of intervention, and explore 
relevant mechanisms by examining the changes in activation degree 
of specific language brain regions during the picture-naming task with 
fNIRS. The overall language and cognitive function of the rTMS group 
presented a better recovery trend at all time points compared to the 
sham group. At 3 months post-treatment, the degree of improvement 
in language and cognitive function was greater than that at 4 weeks 
post-treatment, especially in naming performance.

Additionally, the picture-naming task was applied to investigate 
the activation degree of several brain regions (defined as ROIs) with 
fNIRS. After treatment, we found weakened brain activation in the left 
superior temporal gyrus (STG), middle temporal gyrus (MTG), pars 
triangularis Broca’s area, premotor cortex (PM), supplementary motor 
area (SMA), and dorsolateral prefrontal lobe (DLPFC) during naming. 
A previous study (21) on naming tasks found decreased activation in 
these brain regions (except DLPFC) in stroke patients with global 

TABLE 2 Demographic data between the rTMS group and the sham group.

Group Cases Sex Age 
(years)

Course 
of 

disease 
(days)

Education 
(years)

Apoplexy site (case)

Male Female Temporal 
lobe

Frontal 
lobe

Basal 
ganglia

Multiple

TG 9 9 0 48.11 ± 11.08 91.67 ± 47.91 12.00 ± 3.12 3 1 2 3

SG 9 8 1 48.78 ± 12.67 92.44 ± 56.89 12.56 ± 3.28 2 2 2 3

t/x2 value 0.000 −0.119 −0.031 −0.368 0.912

p value 1.000a 0.907b 0.975b 0.718b 0.533a

aChi-square test.
bIndependent two-sample t test.
TG, rTMS group; SG, sham group.
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aphasia in the chronic phase (instead of the subacute phase as in the 
current study). Another study (19) detected weakened DLPFC 
activation and suggested that the left prefrontal cortex of the aphasics 
utilizes more oxygen than the nonaphasics during a naming task. 
However, neither study (19, 21) compared pre- and post-
treatment results.

Healthy people only need a low level of activation in the left 
middle temporal gyrus, left STG, and left pars triangularis Broca’s area 
during the picture-naming task (33). However, post-stroke aphasia 
patients need a higher level of brain activation during naming tasks 
(50–52). Therefore, our finding, i.e., weakened brain activation after 
rTMS treatment, indicates that for patients with post-stroke Broca’s 

aphasia after rTMS intervention, the magnitude of activation in these 
brain regions tends to approach the level of brain activation in healthy 
individuals. On the contrary, those in the sham group, who did not 
have rTMS and only received speech and language therapy, did not 
show such changes in these brain regions, and the degree of 
improvement in language and cognitive function of these individuals 
was also lower than that of the rTMS group.

In the present study, those strongly activated brain areas 
before treatment possibly highlighted ipsilateral compensation 
(53). This was required to exert certain language functions (54), 
possibly due to slowed information processing speed in the brain, 
which affected the coordination and integration between brain 

TABLE 4 Language and cognitive function indicators between the rTMS group and the sham group (n  =  9, score).

Indicator Group Pre-
treatment

Post-treatment Ftime Finterclass Finteraction

2  weeks 4  weeks 3  months Ptime Pinterclass Pinteraction

AQ TG 39.23 ± 22.78 49.41 ± 18.24 62.79 ± 14.96 72.37 ± 11.78

SG 39.22 ± 22.92 47.07 ± 21.41 56.10 ± 22.23 51.38 ± 18.03 48.011 0.706 11.316

t value 0.001 0.249 0.749 2.924 0.000* 0.413 0.000*

p value 0.999 0.807 0.465 0.010*

NLCA TG 66.22 ± 13.14 68.78 ± 10.17 72.22 ± 6.63 75.00 ± 4.56

SG 65.11 ± 13.31 67.56 ± 10.84 68.33 ± 11.69 72.56 ± 7.94 5.516 0.224 1.350

t value 0.178 0.247 0.868 0.801 0.010* 0.642 0.298

p value 0.861 0.808 0.392 0.435

SWQOL-39 TG 94.33 ± 33.93 104.11 ± 26.57 115.44 ± 24.84 129.00 ± 21.62

SG 94.00 ± 26.17 103.56 ± 23.37 112.00 ± 24.03 124.56 ± 21.13 26.804 0.036 0.231

t value 0.023 0.047 0.299 0.441 0.000* 0.853 0.874

p value 0.982 0.963 0.769 0.665

Fluency TG 2.67 ± 1.73 3.33 ± 1.41 4.67 ± 1.80 4.78 ± 1.79

SG 2.00 ± 1.73 2.89 ± 2.03 4.22 ± 2.59 3.89 ± 2.03 12.747 0.517 0.713

t value 0.816 0.539 0.423 0.987 0.000* 0.483 0.560

p value 0.426 0.597 0.678 0.339

Infor. TG 4.33 ± 2.78 5.44 ± 2.19 6.78 ± 1.64 6.56 ± 1.51

SG 3.89 ± 2.93 4.67 ± 2.12 4.89 ± 1.76 4.67 ± 1.32 8.482 1.868 3.272

t value 0.330 0.766 2.352 2.824 0.002* 0.191 0.053

p value 0.746 0.455 0.032* 0.012*

Listen. TG 5.43 ± 1.92 6.02 ± 1.70 7.09 ± 1.29 5.43 ± 1.92

SG 6.63 ± 2.30 7.00 ± 2.10 7.70 ± 1.83 6.63 ± 2.30 17.791 0.623 8.205

t value −1.202 −1.057 −0.817 0.266 0.000* 0.441 0.002*

p value 0.247 0.306 0.426 0.793

Repetition TG 4.48 ± 3.17 5.92 ± 2.66 7.44 ± 2.15 8.77 ± 1.04

SG 4.44 ± 3.48 5.43 ± 2.90 6.57 ± 3.01 6.39 ± 2.41 19.559 0.611 2.691

t value 0.025 0.376 0.712 2.721 0.000* 0.446 0.086

p value 0.981 0.712 0.487 0.015*

Naming TG 2.71 ± 2.77 4.48 ± 1.98 7.22 ± 1.56 8.24 ± 1.07

SG 2.66 ± 3.12 3.09 ± 2.98 3.58 ± 3.08 3.09 ± 2.84 30.783 4.865 27.46

t value 0.040 1.165 3.164 5.090 0.000* 0.042* 0.000*

p value 0.969 0.261 0.006* 0.000*

*p < 0.05; TG, rTMS group; SG, sham group; Inform., information volume; Listen., listening comprehension.
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FIGURE 5

Changes in language and cognitive function indices at different time points. The y axis represents the score value of each index; blue curve, rTMS 
group; red curve, sham group; AQ, aphasia quotient; NLCA, non-language-based cognitive assessment; SAQOL-39, Stroke and Aphasia Quality of Life 
Scale-39; T0, before treatment; T1, after 2  weeks of treatment; T2, after 4  weeks of treatment; T3, at 3-month post-treatment.

areas before naming. This results in a longer naming latency 
(55, 56).

rTMS can induce action potentials in neuronal axons (47) and 
modulate excitability of the targeted cortical regions as well as remote 
areas, thereby promoting brain function (14, 57). In the last decade, 
rTMS has been widely applied in post-stroke aphasia patients (58, 59). 
At present, the recovery mechanism of post-stroke aphasia may 
be explained by different theoretical models, such as interhemispheric 
inhibition and vicariation. The interhemispheric inhibition model 
suggests that mutual inhibition exists between brain hemispheres, and 
two hemispheres remain in a balanced state normally, whereas 
imbalance after stroke occurs, which leads to overexcitability of the 
right (unaffected) hemisphere (57). Therefore, downregulating the 
excitability of the unaffected hemisphere is necessary. Thus, if the 
interhemispheric inhibition model (57) is used for neuroregulation, 
the unaffected hemisphere should be  inhibited (60). The second 
model, vicariation, suggests that the unaffected hemisphere takes over 
the work of the damaged regions and contributes to the improvement 

of overall language function after stroke (61). These two models of 
reorganization lead to opposite approaches, until the bimodal balance-
recovery model was introduced (62), which combines these two 
models based on the structural reserve to apply optimal 
neuromodulatory strategies.

rTMS is non-invasive, effective, and safe if properly applied (16, 
63, 64). Effects of rTMS on language and cognitive function have been 
confirmed by a growing body of research (65, 66). Low-frequency 
rTMS is used to downregulate/inhibit the neuronal responsiveness of 
cortical activity (7, 14, 66, 67). As suggested by the theory of 
interhemispheric inhibition, low-frequency rTMS of the right inferior 
frontal gyrus is beneficial to the recovery of non-fluent aphasia at the 
chronic or subacute stage, especially if combined with speech and 
language therapy (1, 44). For patients with aphasia, low-frequency 
rTMS produces immediate as well as long-term benefits, whereas 
high-frequency rTMS only presents long-term benefits (1, 26). Thus, 
in this study, we applied low-frequency rTMS (1 Hz) to the right pars 
triangularis Broca’s area. In post-stroke aphasia, low-frequency rTMS 

https://doi.org/10.3389/fneur.2024.1473254
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Gan et al. 10.3389/fneur.2024.1473254

Frontiers in Neurology 11 frontiersin.org

FIGURE 6

Activation of the rTMS group and the sham group before and after treatment. The color bar at the bottom of each subfigure represents the statistical 
size of beta value, p value or T value. The larger the beta value is, the stronger the activation relative to the baseline, and p  <  0.05 is considered 
statistically significant. (A) The pre-treatment beta value of the rTMS group; (B) the post-treatment beta value of the rTMS group, compared with (A), it 
can be seen that brain activation in multiple regions decreased after treatment; (C) the p value diagram of the rTMS group after treatment; (D) the T 
value diagram of the rTMS group after treatment; (E) the pre-treatment beta value of the sham group; (F) the post-treatment beta value of the sham 
group, compared with (E), it can be seen that brain activation in multiple regions decreased after treatment; (G) the p value diagram of the sham group 
after treatment; (H) the T value diagram of the sham group after treatment.
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TABLE 5 Relationships between the Brodmann area and channel 
coverage.

Channel Brodmann area Channel 
coverage

22 (L) MTG 0.349

22 (L) STG 0.651

31 (L) PM and SMA 0.329

31 (L) DLPFC 0.004

31 (L)
Pars triangularis Broca’s 

area
0.668

12 (R) PM and SMA 1

MTG, middle temporal gyrus; STG, superior temporal gyrus; PM, premotor cortex; SMA, 
supplementary motor area; DLPFC, dorsolateral prefrontal cortex; L, left hemisphere; R, 
right hemisphere.

has been used to limit the recruitment of cerebral language networks 
of the unaffected (right) hemisphere to favor intrahemispheric 
compensation, which is related to better recovery of language 
functions (7, 14, 66, 67). The utilization of low-frequency rTMS was 
expected to reduce inhibition exerted by the right (unaffected) 
hemisphere over the left hemisphere, thereby mitigating the imbalance 
of mutual inhibition. Our results also show that the modulated brain 
activity evoked by rTMS accompanies better functional recovery at 
the behavioral level after 4 weeks of treatment.

One interesting finding in our study was the delayed positive 
treatment effect, which was observed at the time point 3 months after 
the intervention. Improvements in language ability were not observed 
(68, 69) until 2 months after the 10-session rTMS treatment in patients 
with chronic non-fluent aphasia. Another study on subacute stroke 
stages also reported improvement detected only 30 days after the 
intervention (15). In our study, the 3-month delayed effect might 
result from the dynamics underlying treatment-related neuroplasticity. 
Low-frequency rTMS may initially trigger a small potential treatment 
effect (15), whereas with subsequently activated pathways for recovery 
(38), abscopal effects, and more generated brain-derived influencing 
factor (BDNF) (65, 70) in subacute stages, the delayed effect 
occurs (71).

On the other hand, although multiple studies (38, 41, 42) have 
shown intensive speech and language therapy alone is effective in the 
chronic and subacute phase of aphasia (72), evidence shows the need 
for high doses and intensity (39). A previous meta-analysis (42) 
reported that the greatest clinical overall language and functional 
communication gains are associated with 2 to 4 and 9+ hours of 
speech and language therapy per week. However, discrepancies 
remain regarding clinical research and current routine rehabilitation 
services for optimal speech and language therapy regimens (73). 
Furthermore, clinical service reports describe an average of 60–90 min 
of speech and language therapy weekly for patients during early 
subacute stages of aphasia and 4–16 h as a total dosage (42). In our 
present study, according to the recommendations of practice 
guidelines and consensus on clinical management of post-stroke 
aphasia (40), combined with the clinical feasibility of patient treatment 
and following the rTMS procedure to ensure speech treatment within 
the period of optimal rTMS after-effect (about 45 min) (15), the 
speech and language therapy protocol was designed for 20 sessions, 
30 min/session, 5 times a week (41). In clinical aphasia strategies, 
low-frequency rTMS is preferred when combined with speech and 

language therapy (41), and our results prove that such speech and 
language therapy protocols can result in functional improvement 
when combined with low-frequency rTMS.

We suggest that the improvement in naming ability after 4 weeks of 
treatment does not depend on local effects of stimulating a brain region, 
but is more likely to reflect the optimization of interregional 
connectivity. The functional connection between brain regions provides 
pathways by which stimulation of the right brain region causes 
decreased activation of multiple brain regions on the left side. A similar 
opinion was suggested in previous studies (9, 74): increased 
interhemispheric connectivity has a positive effect on naming tasks, and 
the brain tends to generate the least amount of activation to perform 
tasks efficiently and accurately. We, therefore, argue that overall recovery 
mainly stems from the intrahemispheric and interhemispheric 
functional recombination (53, 54, 75). Further studies are needed to 
elucidate the neurophysiological mechanisms underlying the degree of 
brain activation, functional connectivity between brain regions, and 
clinical behavioral manifestations during different language 
function tasks.

This study has limitations. The absence of follow-up beyond 
3 months limits the ability to assess long-lasting effects. Additionally, 
the lack of neuro-navigation during transcranial magnetic stimulation 
treatment may prevent accurate localization.

5 Conclusion

We utilized low-frequency rTMS combined with speech and 
language therapy in subacute stroke patients with Broca’s aphasia. The 
clinical language function in the patients was improved after 4 weeks 
of treatment, and there was a long-term effect (3 months post-
treatment), especially in naming gains. For the first time, we found 
that rTMS could improve language ability and cognitive function in 
patients with Broca’s aphasia in the subacute phase.

Moreover, by analyzing cortical activation during a picture-
naming task with fNIRS, we found that rTMS could downgrade the 
activation level in the left MTG, STG, PM and SMA, DLPFC, and pars 
triangularis Broca’s area, whereas the sham-rTMs group only showed 
downgraded activation levels in the right PM and SMA. This 
demonstrates the unique mechanism of rTMS. We suggest that the 
improvement of language and cognitive functions in patients with 
Broca’s aphasia is related to intrahemispheric and interhemispheric 
functional reorganization. Additionally, the rTMS-induced down-
regulated activation levels in the left DLPFC in subacute stroke 
patients with Broca’s aphasia has not been reported in other studies.
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