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Commercial symptom 
monitoring devices in Parkinson’s 
disease: benefits, limitations, and 
trends
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Spain

Parkinson’s disease (PD) is a neurodegenerative disorder that significantly impacts 
patients’ quality of life. Managing PD requires accurate assessment of motor and 
non-motor symptoms, often complicated by the subjectivity in symptom reporting 
and the limited availability of neurologists. To address these challenges, commercial 
wearable devices have emerged to continuously monitor PD symptoms outside 
the clinical setting. The main devices include PKG™, Kinesia 360™, Kinesia U™, 
PDMonitor™, and STAT-ON™. These devices utilize advanced technologies such as 
accelerometers, gyroscopes, and specific algorithms to provide objective data on 
motor symptoms like tremors, dyskinesia, and bradykinesia. Despite their potential, 
the adoption of these devices is limited due to concerns about their accuracy, 
complexity of use, and lack of independent validation. The correlation between 
these devices’ measurements and traditional clinical observations varies, and 
patient usability and adherence remain critical areas for improvement. To optimize 
their utility and improve patient outcomes, it is essential to conduct validation 
and usability studies with a sufficient number of patients, develop standardized 
protocols, and ensure integration with hospital information systems.
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1 Introduction

Parkinson’s disease (PD) currently poses a global health challenge affecting millions of 
people, with its prevalence steadily increasing over the past decades (1–5). This 
neurodegenerative disorder is characterized by a wide range of symptoms, both motor and 
non-motor. Motor symptoms, including tremors, rigidity, and bradykinesia, profoundly 
impact patients’ daily lives (6). Despite significant advances in research, the management of 
Parkinson’s remains complex and highly dependent on the neurologist’s expertise and the 
accuracy of the patient’s symptom reporting. This dependency is exacerbated by the shortage 
of neurologists in many regions worldwide, especially in rural areas where access to movement 
disorder specialists is limited. Consequently, many patients must travel long distances regularly 
to receive specialized care, imposing a significant additional burden. This situation results in 
a considerable number of PD patients being managed by primary care physicians rather than 
neurologists. In developed countries such as Germany and the United States, over 40% of 
Parkinson’s patients are treated by primary care physicians (7).

Setting aside the professional’s experience in treating the patient, all healthcare providers 
rely on the patient’s subjective account and medical history during consultations, introducing 
bias in the information provided. Due to the nature of the disease and its symptoms, patients 
struggle to identify and distinguish specific symptoms, often confusing them (8–10). 
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Furthermore, the patient’s account is heavily influenced by their mood 
at the time of the consultation, tending to report positive periods 
when they feel well and vice versa. This bias is often mitigated with 
comments or opinions from caregivers. However, both the patient and 
the caregiver tend to overlook mild symptoms or those with little 
impact on daily life, especially when recalling extended periods. 
Although these symptoms may seem less relevant in routine clinical 
practice, they are of great importance in clinical trials of new therapies 
or in evaluating new approaches to symptoms. The accurate 
assessment of mild and fluctuating symptoms, as well as their 
evolution over time, is of great scientific interest (7).

In response to these challenges, wearable devices emerge as highly 
promising tools in the management of PD. Specifically designed to 
assess PD, these devices offer a new approach by providing quantitative 
data on motor symptoms outside traditional clinical settings (11–13). 
These systems can continuously measure symptoms over extended 
periods in ambulatory conditions, providing neurologists with 
objective information on disease progression and treatment 
responses, enabling more informed decision-making and 
personalized interventions.

Despite their potential, the adoption of these devices remains 
limited. The main barrier to adoption lies in professionals’ low 
confidence in these solutions, which, according to the authors’ 
experience, is due to two clear factors. Firstly, many of the tools 
published or launched on the market have questionable validation 
studies and seem to have serious issues with false positives for the 
symptoms they attempt to measure. This factor, combined with the 
increasing number of available tools and the ensuing “commercial 
war” that floods professionals with information, leads to rejection and 
distrust towards these types of tools. Secondly, there is a tendency to 
maintain the classical measurement variables to assess the patient’s 
evolution. A clear example is the patient’s OFF time, a measure that 
presents multiple biases due to its definition and the way it is collected. 
Professionals tend to give more credibility to the patient’s account than 
to objective measures, including patient diaries. In a recent study, it 
was shown how low the correlation was between clinician observation 
and PD diaries (14, 15). This means that a neurologist may not adjust 
a patient’s treatment if the patient claims to be doing well, even if 
objective measures or diaries show that the patient experiences motor 
impairments for much of the day.

Another barrier to the adoption of these systems is their usability 
for both patients and professionals. The complexity of using these 
tools poses an obstacle for a portion of the patient population. The 
complexity of the data flow and doubts about consistent compliance 
with data protection standards are probably the main adoption 
barriers for professionals. It is particularly important that these tools 
and the data flow are as simple and clear as possible, aiming to 
be practically transparent for both the patient and the neurologist (16, 
17). To overcome these barriers, it is necessary for the devices to have 
validation and usability studies in clinical practice with a sufficient 
number of patients and for practical recommendations and 
standardized protocols to be generated to optimize usefulness and 
ensure results for patients, caregivers, and physicians alike. 
Additionally, integrating these systems with hospital IT systems would 
be crucial to provide all stakeholders with a secure and transparent 
data flow.

This review focuses on the main commercialized devices for 
monitoring motor symptoms, which have been the most clinically 

validated and are recommended by the National Institute for Health 
and Care Excellence (NICE) (18). Additionally, all promising devices 
that could be useful in clinical practice and have received medical 
device certification, such as FDA or CE certification, have been 
considered and discussed in this manuscript.

2 Wearable systems recommended by 
NICE

In January 2024, NICE published an updated list of wearable 
devices that are conditionally recommended for use in clinical practice 
(18). The main aim of publishing this guideline was to emphasize the 
importance of tracking Parkinson’s disease symptoms to help 
clinicians make informed care decisions. However, this process is 
challenging in current medical practice due to the fluctuating nature 
of symptoms and the difficulty patients may have in accurately 
recalling or describing them. NICE identified a total of five 
technologies based on their validation and characteristics: PKG™, 
Kinesia 360™, Kinesia U™, PDMonitor™, and STAT-ON™. These 
are currently the only devices conditionally endorsed by NICE for this 
purpose. Table  1 shows a brief comparison between the devices 
described in this Section.

2.1 PKG™

The PKG™, from Global Kinetics Pty Ltd., is a wrist-worn device 
designed to continuously monitor the motor symptoms of Parkinson’s 
Disease. The patient uses the device for 6 days, and the data is then 
uploaded to a server where it is processed, and a report is sent to the 
neurologist. The device has been approved under CE (Class IIa), FDA 
(Class 2), and TGA.

The PKG™ algorithm was published in 2012 by Griffiths et al. 
(19). The authors introduced a method based on accelerometer signal 
analysis obtained from the wrist during 2 min windows. From this 
window, it is analyzed the frequency characteristics between 0.2 Hz 
and 4 Hz, the maximum acceleration reached, and the time without 
movement, from which two indices are generated. One is associated 
with bradykinesia (BKS) and the other with dyskinesia (DKS), which 
are then represented on a graph with interquartile ranges to determine 
the severity of one symptom or the other. There is no evidence of a 
training-evaluation data method, so it is not considered a machine-
learning algorithm. Validation was performed through the median of 
all BKS samples over 9 h across 10 days and correlated with the 
UPDRS, obtaining a significant r value = 0.64, p < 0.0005. A third 
score called FDS was designed to measure motor fluctuations (20). 
This score, expressed as an algebraic combination of BKS and DKS, 
determines if a patient is fluctuating. The device has been widely 
tested in clinical conditions and compared with UPDRS (21) or 
diaries (8, 20). For example, the work of Santiago et al. (22) determined 
that in 41% of neurologists, PKG™ provided more information than 
classic routine visits. In a study by Nahab et  al., the authors also 
indicate utility in clinical practice (23). Furthermore, the system has 
shown good results in usability (24), although there were some scores 
to be discussed. For example, only 27% of patients scored positively 
on the report of PKG, and 59% rated the use of PKG as valuable in 
offering useful information to clinicians. Interesting articles can 
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be  found, such as the one from Ossig et al. (8). In this study, the 
agreement was moderate to high in the total number of OFF and ON 
with and without dyskinesia (K = 0.404 in OFF with bradykinesia and 
K = 0.658 with ON with dyskinesia). However, a low to moderate 
agreement was found if the agreement on every single-hour-level (in 
OFF with bradykinesia K = 0.215 and in ON with dyskinesia 
correlation of K = 0.324). A similar situation is observed in Löhle et al. 
(25), where there is a moderate correlation between PKG and 
clinicians when total hours are compared (0.43 in bradykinesia and 
0.51  in dyskinesia). However, a poor correlation is noted when 
outcomes are compared every 30 min (0.13  in bradykinesia and 
0.21 in dyskinesia). According to Monje et al. (11), the PKG™ has 
been widely validated but needs further independent validation. In 
the same line, the NICE highlights in the published guideline that 
PKG is the device with more clinical validations but more evidence 
is needed.

2.2 Kinesia 360™ and Kinesia U™

Great Lakes Neurotechnologies (GLN) is the main manufacturer 
of Kinesia 360, a double-device system (wrist and ankle), and Kinesia 
U™, a wrist-worn device. The device incorporates a triaxial 
accelerometer and gyroscope. Among all the commercialized existing 
devices, GLN was the first company to achieve FDA 510(K) clearance 
as a tremor transducer device. In Europe, Kinesia 360 is considered a 
Class I device. Kinesia 360™ provides information about tremor, 
dyskinesia, slowness, mobility, posture, and steps (26). The 
quantification of bradykinesia conducted on an ankle-mounted device 
is based on the analysis of specific frequency characteristics derived 
from both the accelerometer and gyroscope and is calculated using 
linear regression models which are correlated with UPDRS scores (27, 
28). The dyskinesia algorithm also relies on a linear regression model 
with sensors worn on the more affected side of the body (29). 
However, the number of features evaluated is significant, totaling 18. 
The obtained correlation with the modified Abnormal Involuntary 
Movement Scale (mAIMS) is significant (r = 0.77). Both models to 
determine bradykinesia and dyskinesia are more complex than the 
method presented by Griffiths et al. for the PKG due to the significant 
amount of features extracted from the accelerometer and gyroscope. 
The Kinesia 360 device also measures essential tremor, which was 
tested with 20 PD patients with intraclass correlation coefficients over 
0.7 (30). Kinesia 360 has been evaluated in numerous studies and 
demonstrated its effectiveness in some therapies such as levodopa 
(31), rotigotine (32), deep brain stimulation (33), or subthalamic 
stimulation (34).

GLN also launched a device called Kinesia U™ for continuous 
monitoring but also for specific tasks. The main advantage of this new 
device was to eliminate the ankle-mounted device, improving the 
adherence of the patient to this technology by using only a wrist 
device. However, it is not clear how this affected the algorithm. The 
new app includes the capacity to fill in a diary and rate their symptoms. 
Results are provided in a 0 to 4 score indicating the severity of each 
symptom. In Pulliam et al. (31), it was shown that Kinesia presents a 
good accuracy for tremor, dyskinesia, and bradykinesia, being tremor 
and dyskinesia the best symptoms detected with the Area under curve 
(AUC) of 0.89 and 0.86, respectively. The bradykinesia algorithm has 
an AUC of 0.82 and a false positive rate of 0.34.T

A
B

LE
 1

 C
o

n
d

it
io

n
al

ly
 r

ec
o

m
m

en
d

ed
 d

ev
ic

es
 b

y 
N

IC
E

 f
o

r 
re

m
o

te
 m

o
n

it
o

ri
n

g
 o

f 
P

ar
ki

n
so

n
’s

 d
is

ea
se

 t
o

 in
fo

rm
 t

re
at

m
en

t 
d

ec
is

io
n

s.

M
an

u
fa

ct
u

re
r

D
e

vi
ce

 
n

am
e

D
e

vi
ce

 
lo

ca
ti

o
n

D
e

te
ct

e
d

 s
ym

p
to

m
s

A
lg

o
ri

th
m

N
u

m
b

e
r 

o
f 

p
at

ie
n

ts
 

tr
ai

n
e

d
 f

o
r 

M
L

M
e

d
ic

al
 d

e
vi

ce
 

ce
rt

ifi
ca

ti
o

n
C

o
st

 
ac

co
rd

in
g

 t
o

 
N

IC
E

W
e

ak
e

st
 

p
o

in
ts

St
ro

n
g

e
st

 
p

o
in

ts

PK
G

 H
ea

lth
PK

G
™

1 
w

ris
t s

en
so

r
O

N
/O

FF
, B

ra
dy

ki
ne

sia
 (U

pp
er

 

lim
bs

), 
D

ys
ki

ne
sia

 (U
pp

er
 li

m
bs

), 

Tr
em

or
, I

na
ct

iv
ity

/R
es

t

St
at

ist
ic

al
 m

et
ho

d
–

FD
A

/C
E 

C
la

ss
 II

a/
TG

A
22

5£
 p

er
 re

po
rt

D
et

ec
tio

n 
of

 o
nl

y 

ar
m

 sy
m

pt
om

s/

Re
po

rt

U
sa

bi
lit

y

G
re

at
 L

ak
es

 

N
eu

ro
te

ch

K
IN

ES
IA

36
0™

2 
se

ns
or

s 

(w
ris

t/a
nk

le
)

Tr
em

or
, D

ys
ki

ne
sia

, B
ra

dy
ki

ne
sia

, 

M
ob

ili
ty

, P
os

tu
re

, S
te

ps

Re
gr

es
sio

n 
m

od
el

–
FD

A
/C

E 
C

la
ss

 I/
TG

A
22

4£
 p

er
 re

po
rt

U
sa

bi
lit

y
G

ai
t d

at
a 

ad
de

d 
to

 

w
ris

t i
nf

or
m

at
io

n

G
re

at
 L

ak
es

 

N
eu

ro
te

ch

K
IN

ES
IA

U
™

1 
w

ris
t s

en
so

r
Tr

em
or

, D
ys

ki
ne

sia
, B

ra
dy

ki
ne

sia
Re

gr
es

sio
n 

m
od

el
–

FD
A

/U
KC

A
64

£ 
pe

r p
at

ie
nt

D
et

ec
tio

n 
of

 o
nl

y 

ar
m

 sy
m

pt
om

s

U
sa

bi
lit

y

PD
 n

eu
ro

te
ch

no
lo

gy
PD

M
O

N
IT

O
R™

5 
bo

dy
-w

or
n 

se
ns

or
s

O
N

/O
FF

, B
ra

dy
ki

ne
sia

, 

D
ys

ki
ne

sia
, T

re
m

or
, F

re
ez

in
g 

of
 

G
ai

t, 
G

ai
t P

ar
am

et
er

s, 
In

ac
tiv

ity
/

Re
st

M
L 

in
 cl

in
ic

al
 a

nd
 

ho
m

e 

en
vi

ro
nm

en
ts

20
 in

 cl
in

ic
al

 

se
tti

ng
s, 

24
 in

 

ho
m

e 

en
vi

ro
nm

en
ts

C
E 

C
la

ss
 II

a
35

0£
 p

er
 m

on
th

U
sa

bi
lit

y/
Re

po
rt

C
om

pr
eh

en
siv

e 

ev
al

ua
tio

n 
of

 

sy
m

pt
om

s

Se
ns

e4
C

ar
e

ST
AT

-O
N

™
1 

w
ai

st
 se

ns
or

O
N

/O
FF

, B
ra

dy
ki

ne
sia

, 

D
ys

ki
ne

sia
, F

re
ez

in
g 

of
 G

ai
t, 

G
ai

t 

Pa
ra

m
et

er
s, 

Fa
lls

, I
na

ct
iv

ity
/R

es
t

M
L 

in
 h

om
e 

en
vi

ro
nm

en
ts

92
 in

 h
om

e 

en
vi

ro
nm

en
ts

C
E 

C
la

ss
 II

a
1,

60
0£

 p
er

 y
ea

r
Tr

em
or

 n
ot

 

de
te

ct
ed

A
lg

or
ith

m
 

pe
rf

or
m

an
ce

/s
in

gl
e 

de
vi

ce

https://doi.org/10.3389/fneur.2024.1470928
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Rodríguez-Martín and Pérez-López 10.3389/fneur.2024.1470928

Frontiers in Neurology 04 frontiersin.org

2.3 PDMonitor™

PDMonitor™ is a system composed of five devices designed to 
comprehensively characterize all motor symptoms of a Parkinson’s 
disease (PD) patient from any part of the body. The device, which is 
manufactured by PDNeurotechnology, is a CE Certificate device Class 
IIa. Each device includes an accelerometer, gyroscope, and 
magnetometer (7). This eliminates the need to choose the most 
affected side, allowing for the monitoring of movements from the 
upper limbs, lower limbs, and trunk. The system was designed within 
the PERFORM project (35, 36), and its algorithms are based on 
training a database of experts and utilizing machine learning 
algorithms. The algorithms are briefly described in different 
publications, including tremor (37), dyskinesia (38), bradykinesia 
(39), and Freezing of Gait (FoG) (40). Gait parameters and the ON 
and OFF states are also provided (41). Each algorithm employs a 
distinct classification method. For instance, the tremor detection 
algorithm uses Hidden Markov Models and achieves an accuracy of 
0.87. The dyskinesia detection algorithm is based on a decision tree 
with a classification accuracy of 0.85. The bradykinesia detection 
algorithm utilizes Support Vector Machines and has a classification 
accuracy of 0.745. For this machine learning classifier, 20 patients 
participated in clinical settings and 24 in home environments. The 
algorithm for FoG, on the other hand, employs a Random Forest 
classifier achieving an accuracy of 0.96. The database was formed by 
5 patients with FoG, 6 patients without FoG, and 5 healthy 
patients (40).

In another study in 2023, Antonini et  al. published an article 
where the accuracy, sensitivity, and specificity of the different 
symptoms were evaluated against UPDRS and diaries. All the results 
on sensitivity, specificity, and accuracy for all the algorithms are over 
0.8, except for the sensitivity of Gait (0.67). The accuracy and 
specificity achieve 0.96 or more in all the symptoms. Bradykinesia 
obtains a moderate-high correlation of 0.68 with UPDRS. In 2021, due 
to the appearance of COVID-19, a 2-cases study was presented 
showing the feasibility of PDMonitor™ for monitoring symptoms in 
home environments (42). PDMonitor™ was also evaluated against 
UPDRS, achieving moderate to high correlations in all their claimed 
detected movements/symptoms (41). This article questions the 
subjectivity of questionnaires, given that showing a device works does 
not need to correlate highly with questionnaires, which have doubtful 
outcomes. Although the device offers a comprehensive map of motor 
symptoms, there are doubts about the wearability of the device due to 
using five separate devices (13). However, in Antonini et al. (43), it 
should be  mentioned that the scores obtained in wearability are 
significantly high except for two items: difficulty in putting on the 
device and that patients would wear the device if it was invisible. These 
items are of special importance because a patient in the morning 
usually suffers morning akinesia due to the deep OFF that they could 
suffer. Having to set up five sensors is an important barrier that could 
drastically reduce adherence to the technology and is something 
to consider.

2.4 Stat-ON™

STAT-ON™ is a medical device Class IIa which is worn on the 
waist (44). The device, which was designed under the project 

REMPARK (45, 46), has been commercialized by Sense4Care SL. The 
device aims to minimize the number of sensors while maximizing 
high accuracy by measuring symptoms from a position near the centre 
of the human body and using machine learning techniques trained 
with large databases.

The system detects bradykinesia (47, 48), dyskinesia (49), FoG 
(50, 51), gait parameters (48, 52), and falls (53), providing ON and 
OFF outcomes (54). The device is based on machine learning 
algorithms, more specifically in support vector machine classifiers 
and support vector regression models. The database was obtained in 
home environments, and the gold standard was the video and the 
UPDRS-III. For the validation of the ON and OFF algorithm, diaries 
were used, and a clinician called the patient every 2 h to ensure the 
motor state annotated by the patient, creating a robust database. A 
total of 92 PD patients participated in the database, and 10 extra PD 
patients participated in the dyskinesia algorithm. The algorithm for 
ON and OFF was evaluated with 91 PD patients in 3 studies (54–56) 
obtaining sensitivity and specificity values over 0.92. The 
bradykinesia algorithm was evaluated with 75 patients employing 
UPDRS subscales and achieving a moderate-high correlation of 0.67 
p < 0.01 (57). The dyskinesia algorithm, evaluated with a leave-
one-out method and 102 patients, achieved a sensitivity and 
specificity of 1 and 0.95 in trunk dyskinesia, 0.90 and 0.95 in strong 
dyskinesia in limbs and neck, 0.78 and 0.95 in mild dyskinesia in the 
trunk, and 0.39 and 0.95 in detecting mild dyskinesia in limbs [59]. 
Finally, the FoG algorithm was evaluated with 15 PD patients with 
FoG, achieving 0.92 and 0.87  in sensitivity and specificity, 
respectively.

In an Italian study performed by Zampogna et al. (58), the FoG 
and Dyskinesia were evaluated in 71 PD patients and an AUC was 
obtained of 0.92 and an accuracy of 0.8. The FoG evaluation obtained 
0.83 on AUC and 0.81 on accuracy comparing FoG patients vs. PD 
patients without FoG. The number of FoG episodes AUC obtained a 
score of 0.87.

In Cabo-Lopez et al. (59), the correlation between STAT-ON™ 
and the clinical decision for considering a patient candidate for 
second-line therapy was 0.73 (p < 0.001) and a significant association 
in results between STAT-ON™ and the MANAGE-PD questionnaire 
(p = 0.004). Finally, a clinical trial with 84 PD patients comparing 
STAT-ON™ against diaries, having the UPDRS as the gold standard, 
obtained a correlation of 0.63 (p < 0.001) against the 0.24 obtained by 
the diaries (60).

3 Other promising devices for 
monitoring PD motor symptoms

In January 2023, the NICE recognized 5 technologies based on the 
information obtained from previous years. However, in the last 
2 years, several technologies have emerged and obtained their medical 
device certification. It is fair to consider these technologies as valid as 
the previous ones, but considering that their validation in clinical 
studies is still far from the described technologies in the previous 
section. Table 2 provides a set of suggested guidelines that could help 
clinicians in selecting wearable sensors based on specific clinical needs 
in PD. These recommendations may assist in identifying the most 
suitable devices for different scenarios, considering factors such as 
symptom detection, usability, and patient characteristics.
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3.1 Neptune™

Neptune™ from Orbit Health GmbH is a class IIa device that 
monitors bradykinesia, dyskinesia and ON/OFF states. The algorithm 
employed deep-learning techniques, specifically convolutional neural 
networks, for the detection of ON, OFF, and Dyskinesia states. The 
window size entered into the convolutional neural network is 1 min 
in length and obtained 0.654 accuracy in a three-class outcome 
problem. The sensitivity and specificity obtained for OFF was 
0.64/0.89, for ON 0.67/0.67, and for Dyskinesia 0.64/0.89. However, 
the correlation between the complete data obtained and the 
MDS-UPDRS subscale 3.14 was high, with 0.83 for bradykinesia and 
with AIMS item 5 was 0.84 for dyskinesia detection. Correlations with 
lower windows (1 h, 30 min, 5 min, and 1 min) decrease but maintain 
a moderate/high correlation, going from 0.775 for dyskinesia and 
0.735 for bradykinesia for 60 min to 0.703 for dyskinesia and 0.632 for 
bradykinesia with a window length of 1 min.

The main advantage of deep learning is the high performance of 
the classifier and the ability to compute complete raw inertial data 
without treating, extracting, and selecting the key features, being what 
is called a “black box” (61). However, this has been the focus of 
discussions due to the transparency of these methods in the field of 
computer science. Another characteristic of deep learning is that it is 
used to be a method for training large databases such as video or 

image with thousands or millions of signals (pixels) per sample. 
Unfortunately, a triaxial signal accelerometer in 30 PD patients is not 
considered a large database. This circumstance has the problem of 
overtraining a classification model leading to false positives in new 
evaluation data. Thus, more evidence is needed in this device to 
validate from a computer science point of view their approach.

3.2 PD-Watch™

PD-Watch from Biomedical Lab s.r.l. is a wrist-worn device 
classified as a Class I medical Device based on inertial sensors. The 
device is a 43 mm × 40 mm × 13 mm smartwatch and weighs 16 g. It 
has a battery life of 15 days. The data is recorded and then uploaded 
to a cloud server, from where it is processed and a report is returned. 
The device is capable of detecting ON/OFF, bradykinesia (62), tremor 
(63), dyskinesia (64), and inactivity with the absence of movement. 
One of the differences with other smartwatches devices is that 
PD-Watch can also detect dyskinesia severity. All the algorithms are 
based on extracting frequency features, and a structure of conditions 
that once met, the frequency response of the accelerometer is 
compared to a certain threshold (62). Results show more than 0.8 in 
sensitivity, specificity, and accuracy in all the algorithms. Further and 
external evidence is needed for this threshold-based 
algorithmic system.

3.3 Feetme™ and Nushu

Feetme™ from Feetme, is a wearable device that consists of two 
insoles, a device for connecting the insoles, and an app to manage the 
insoles. This device can continuously monitor movement and foot 
pressure in order to obtain gait parameters. The device includes a 
triaxial accelerometer and gyroscope and 18 capacitive pressure 
sensors (65). Feetme™ has received ClassIm in Europe and Class 
I FDA 510(k) exempt medical device.

The APP connects to the device which uploads the inertial and 
pressure data and processes it to provide different outcomes. Some of 
these outcomes are gait parameters such as stride velocity, cadence, 
stride length, step time, stride time, swing time, stance time, and 
single and double support time (66). All these features have been 
tested to evaluate stroke (67, 68), multiple sclerosis (69), or Parkinson’s 
Disease (66, 70). The device was evaluated against a recognized gold 
standard such as Gait-rite also in healthy adults (69, 71). Feetme™ has 
demonstrated to provide good results in tests such as the 6 min walk 
test (65). However, in the field of Parkinson’s Disease, Feetme™ has 
not shown any clinical utility for assessing motor symptoms such as 
bradykinesia, freezing, dyskinesia, or tremor.

Another similar intended-use device is Nushu, from Magnes, 
which has been registered in the FDA under a Class 2 device. The 
main difference is that Nushu are shoes instead of insoles and that the 
system uses a magnetometer but not pressure sensors (72). Values 
such as stride velocity, stride time, stride length, swing time, cadence, 
symmetry and variability of steps are provided. Nushu is based on 
inertial sensors (triaxial accelerometer and triaxial gyroscope) and a 
triaxial magnetometer. An orientation algorithm is set if it detects 
motion or not. The algorithm employed to estimate the orientation is 
based on Madgwick’s filter, which reduces computational burden 

TABLE 2 Guidelines for selecting wearable sensors in Parkinson’s disease.

Wrist 
devices

Waist 
devices

Multiple 
sensor 
systems

Shoe 
sensors

Tremor Yes No Yes No

Bradykinesia Indicative Yes Yes
Not 

validated

Dyskinesia Indicative Yes Yes No

Freezing of gait No Yes Yes
Not 

validated

ON and OFF Indicative Yes Yes
Not 

validated

Gait No Yes Yes Yes

Sleep disorders Yes
Not 

comfortable

Not 

comfortable
No

Detection of early 

symptoms
No Yes Yes No

Detection of 

candidates for 

second-line 

therapies

No Yes Yes No

Psychiatric patient Yes No No Yes

Patient with 

advanced 

cognitive state

Yes No No Yes

Rehabilitation No Yes Yes Yes

Patient with no 

capacity to walk
Yes No No No

Usability Very high High Very low Low
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compared to classical Kalman filters (73). A segmentation of the signal 
and event detection based on thresholds are executed to finally extract 
spatial and temporal gait parameters (74). Nushu’s algorithms also 
used SVM and reduced-SVM for detecting gait phases, which shows 
a high algorithmic level, which is used to detect Freezing of Gait and 
provide a vibrotactile biofeedback to avoid FoG on PD patients (75). 
The device has been only tested with healthy users, although authors 
claim that the device is under some clinical trials in the field of 
Parkinson’s Disease (72).

The device works with an app that allows configuring the type of 
activity to record. After the test or the recording, which is stored in an 
internal memory, the data is transferred via Bluetooth to the app and 
then uploaded to a cloud from where, through a dashboard, the results 
can be seen (76). Similarly to Feetme™, it is claimed the relation of 
gait parameters to motor symptoms of Parkinson’s Disease, however, 
further studies are needed to validate this idea rigorously.

3.4 Apple Watch based devices

In 2021, Powers et al. (77) published an article where a smartwatch 
named MM4PD could monitor tremor and dyskinesia in Parkinson’s 
Disease. The study was divided into three phases. The first one in 
clinics was video recorded with three movement disorders specialists 
rating. A subset of subjects participated in a 1-week out-of-clinic 
measurement period for obtaining data from daily living conditions. 
In the second phase, 225 PD patients participated, from which 143 
were used to design the algorithm and 82 for validation. Finally, a 
third part was performed with 171 control users. For the gold 
standard, video was used, but also MDS-UPDRS-III was employed.

The device collected signals from a triaxial accelerometer and 
triaxial gyroscope at 100 Hz. The resting tremor algorithm was based 
on an analysis of the signal between 3 and 7 Hz in a 2.56 s window, but 
it’s not clear the classification method, which significantly detracts 
from the credibility of the method in the scientific field, as Bloem et al. 
reports (78). The algorithm classifies essential tremors into slight, 
mild, moderate, and severe tremors.

The dyskinesia algorithm uses a 10.24 s window overlapped every 
2.56 s to not lose information between windows. The algorithm of 
dyskinesia is not explained although it is reported a low false positive 
rate despite a possible confusion with walking. Also, in 69 PD patients, 
the clinicians disagreed with the dyskinesia label.

A total of two solutions resulted from this method: StrivePD 
from Rune Labs and Parky from H2O Therapeutics. The two 
devices were FDA 510(K) cleared and claim tremor and dyskinesia 
in their intended use. Although the algorithms are the same and 
run on the Apple Watch, the layout of their solutions and their 
services are different.

On the other hand, NeuroRPM from NeuroRPM Inc. is 
another software that runs on an Apple Watch and besides 
detecting dyskinesia and tremor, it also detects Bradykinesia 
according to its intended use (FDA 510(k) Clearance number 
K221772). There is no scientific evidence apart from the summary 
report provided in the FDA clearance which shows a study with 36 
PD patients and a sensitivity and specificity of 0.718 and 0.951 for 
tremor, 0.714 and 0.774 for bradykinesia, and 0.712 and 0.947 for 
dyskinesia. The outcomes are provided every 15 min and are binary 
for each of the three outcomes: tremor (yes/no), dyskinesia (yes/

no), and bradykinesia (low to normal/severe). NeuroRPM has 
registered a clinical trial (NCT05680961) executed at the 
Parkinson’s & Movement Disorders Centre of Maryland. The lack 
of information on the algorithm is a major drawback, taking into 
account the significant amount of smartwatches that obtain 
these measurements.

3.5 Surface electromyography devices

Surface electromyography (sEMG) is a non-invasive technique 
used to measure the electrical activity produced by skeletal 
muscles, making it a valuable tool in the research and management 
of Parkinson’s disease (79–82). sEMG involves placing electrodes 
on the skin above specific muscles to detect the electrical signals 
generated during muscle contraction and relaxation. In the context 
of Parkinson’s disease, sEMG can be used to analyze the muscle 
activity patterns that are often disrupted by the condition (rigidity 
or dystonic dyskinesia).

sEMG can also help in monitoring tremors by providing detailed 
data on their frequency and intensity, or in assessing muscle rigidity and 
coordination (83). With the help of an accelerometer, the system could 
provide a comprehensive state of the patient (84). In the market, we can 
find Adamant Health (85), a company that commercializes a solution 
for capturing sEMG signals from different parts of the body with small 
wearable sEMG sensors and provide outcomes about the motor states 
of PD patients. Adamant Health has a wide scientific background in the 
recognition of motor symptoms in Parkinson’s Disease (81, 83, 84, 86–
88). On the other hand, Paragit Neurotech provides a specific device 
with EMG that can be mounted on a patch at any part of the body (89). 
The device contains an accelerometer, a gyroscope, and an internal 
memory for data logging. The sensor fusion enables identifying the 
appearance of tremor, stiffness and according to the information on the 
webpage, bradykinesia and dyskinesia.

Other devices such as Ultium from Noraxon (90), Trigno from 
Delsys (91), Freeemg from BTS Bioengineering (92, 93), and Mini 
Wave from Cometa (94) have been used to characterize some motor 
symptoms or gait parameters in PD. These device systems are 
composed of several sensors and can be set at any part of the body. 
Given that there is no standardization on the point where the sensors 
must be  located, these devices are mainly intended to be  used in 
research and clinical studies. As far as authors know, only Adamant 
Health and Paragit Neurotech have incorporated algorithms that allow 
quantifying symptoms.

4 Other devices in the market for 
Parkinson’s disease

Wearable sensors have revolutionized the assessment and 
monitoring of gait, especially in the context of Parkinson’s Disease 
(PD). These devices offer a non-invasive, continuous, and objective 
means to capture detailed gait parameters in real-world settings, 
crucial for both clinical management and research. Companies like 
APDM Wearable Technologies, McRoberts, Gait Up, Moticon, 
Ephion Health, and MHealth Technologies have developed 
sophisticated wearable systems that are particularly useful in the 
management of PD.
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APDM Wearable Technologies, now a part of Clario, offers a suite 
of wearable sensors named Opal V2C. The company’s flagship product, 
the Opal sensor, is a small, lightweight device that can be attached to 
different parts of the body to capture detailed movement data. A total 
of 24 sensors can be attached to different parts of the body. The battery 
life of each sensor is 4 days (8 h per day), and every sensor contains a 
triaxial accelerometer and gyroscope. The Opal V2C has been designed 
for specific tasks such as the Timed-up and Go test (95), 2 and 6 Minutes 
walking test, including open-ended walk and turns (96). Balance 
activities, sit-to-stand, 360-degree turns, and activity and sleep data in 
daily living activities are also included in the set of activities that can 
be recorded and analyzed. In the field of Parkinson’s Disease, Opal has 
been mainly used for the analysis of gait, being correlated with UPDRS 
subscales of gait or even correlating gait and balance problems with 
cognitive symptoms (96–98). However, although the device provides a 
lot of information from specific activities, balance, and gait parameters, 
there is no association with PD symptoms such as bradykinesia, freezing 
of gait, or tremor.

An interesting device to understand both the severity and 
distribution of dyskinesia in several parts of the body is LID-Monitor 
from ClearSky. This device is based on 6 sensors that are set on the 
head, upper and lower limbs, and chest (99, 100). The monitoring 
period is up to 24 h. The algorithm is based on an evolutionary 
algorithm and achieves results of AUC > 0.9 (99).

One of the most interesting companies that manufactures 
medical devices for gait is McRoberts B.V. This company has 
developed three types of sensors: Dynaport7, the MoveMonitor, 
and the MoveTest (101). The Dynaport7 is the latest device 
offering extensive communication options, including USB, Wi-Fi, 
and Bluetooth. It collects data and generates results in under 
15 min. Measuring 106.6 × 58 × 11.5 mm and weighing 55 g, it 
features a triaxial accelerometer and gyroscope with a battery life 
of 5 days. Another device, the MoveMonitor, has a battery life of 
14 days and is designed primarily for long-term monitoring of 
activity in home environments. Lastly, the MoveTest is intended 
for specific evaluations. It includes a package of six tests: the 
6-Minute Walk Test, Sit-to-Stand Test, Gait Test (to assess gait 
quality and extract spatiotemporal gait parameters), Sway Test (to 
measure patient balance), the Timed Up & Go Test, and the Short 
Physical Performance Battery (a brief test assessing general 
movement including gait speed, chair stand, and balance tests).

As remarked, McRoberts’ devices are focused on the analysis of 
gait, postures, balance, and specific tests, but there is no association 
with motor symptoms of Parkinson’s Disease (102). However, the 
device is useful for understanding the progression of PD based on gait, 
balance, activity of the patient or sleep patterns.

Other interesting devices that have been used in the field of 
Parkinson’s are Physilog 6 from Gait Up and mTest3 from mHealth, 
which are inertial systems focused on assessment and 
rehabilitation. These devices are designed to provide detailed 
insights into the patient’s gait, posture, and overall mobility, but 
not motor symptoms.

In addition, OpenGo insoles from Moticon are notable for their 
emphasis on research. These smart insoles are embedded with sensors 
that measure pressure distribution and gait patterns in real-time. They 
are particularly useful in research settings where detailed 
biomechanical data is essential for understanding the progression of 
Parkinson’s disease and the impact of various interventions.

5 Discussion

In this paper, several sensors have been presented. Thus, when 
healthcare professionals have the chance or want to monitor a patient 
with Parkinson’s, many questions arise: which is the best one? Which 
sensor suits my necessities? Is it going to be reliable? How much time 
does it take to understand this new technology? Is the patient going 
to have good adherence to the monitoring tool? All these questions 
are difficult to answer because every study is completely different and 
there are different necessities. For example, if a healthcare 
professional wants to monitor ON and OFF fluctuations, the best 
sensors are those that offer a comprehensive view of different 
symptoms from different parts of the body. If the neurologist wants 
to measure tremors, then a wrist-worn device is the best option. 
Measuring, for example, dyskinesia, which happens in all parts of the 
body with only a shoe sensor or a wrist sensor, will lead to several 
false negatives. From the waist, it is feasible to detect many parts of 
the body due to the location close to the centre of mass, but some of 
the upper limb dyskinesia cannot be measured (103). Multiple sensor 
systems might provide a complete approach to choreic dyskinesia. 
On the other hand, wrist-worn devices can be an optimal solution for 
measuring tremor and getting an indicative estimation of the state of 
the patient. Wrist-worn devices have slightly better scores than waist 
devices in usability (104, 105), and this is an advantage for psychiatric 
patients or patients who do not want to use multiple or waist-
worn sensors.

However, literature has demonstrated that waist devices 
outperform wrist-mounted devices in analyzing human movement in 
general. In Kluge et al. (106), sensitivity was 20% higher in waist-
mounted devices, and in patients with diseases such as PD, this 
distance increased. The number of false positives due to random 
movements and that from the wrist it is not possible to measure 
specific movements from the body, increasing the false negatives, has 
been reported in several studies (107–111).

Another point is the number of sensors. The usability of a device 
is essential to keep good adherence of the patient and reduce the 
rejection rate in clinical studies. In Parkinson’s Disease and other 
neurodegenerative diseases, the use of numerous devices might 
be stigmatizing to the patient, and minimizing the number of sensors 
is crucial for social matters. However, although it is common to think 
that more devices are better for characterizing motor symptoms, 
which in some cases is true (112), the complexity of algorithms is also 
crucial. A good example is presented in Rodríguez-Martín et al. (113), 
where several classifiers and features of inertial signals are tested, and 
the performance of the algorithms increases based on the complexity 
of the algorithm.

Some studies compare some of the mentioned devices (51, 104, 
105), but it is not clear against which gold standard they should 
be  compared. As mentioned in this paper, questionnaires are 
subjective, and for example, UPDRS has demonstrated high inter-
intrarater variability (11, 114), and diaries do not correlate enough 
with medical opinion (14, 15). Cabo et al. compared a wearable device 
against different scales concluding that current clinical scales are time-
consuming and subjective compared to some objective wearable 
devices (59). Some studies with STAT-ON™, and that could 
be generalised to other devices, show that the amount of information 
obtained with wearables is higher with diaries given that patients do 
not recall to fill them in.
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Another aspect is to remind that devices with an FDA or CE 
Certification only provide a guarantee of safety for the patient with 
very few clinical validation data presented to the authorities. In other 
words, a certificate does not guarantee that a sensor works accurately. 
A good example happens in the FDA medical devices classification, 
which only has a classification product for devices for monitoring 
Parkinson’s symptoms, which is the “tremor transducer” (GYD 
classification). However, although there is not a bradykinesia or 
dyskinesia classification, some devices such as PKG, Kinesia, or 
NeuroRPM have been accepted as devices to measure 
these symptoms.

There are three key challenges that wearable devices need to 
address. The first is accurately monitoring sleep patterns. Although 
accelerometers are commonly used to estimate sleep by detecting 
periods of minimal movement, they have significant limitations. These 
sensors cannot adequately distinguish between actual sleep and quiet 
wakefulness (e.g., watching a movie or being in an OFF state), as they 
only measure physical activity and do not capture the physiological 
changes that occur during different sleep phases. Zampogna et  al. 
suggest using more advanced techniques, such as EEG, EMG, or 
electrooculography, to analyze REM and NREM phases; however, 
implementing these techniques in commercial devices remains a 
challenge (115). The PKG system, which also relies on accelerometers, 
has shown preliminary results that could be useful for sleep monitoring, 
although more evidence is needed to confirm its effectiveness (21, 116).

The second challenge, which still lacks sufficient evidence, 
involves the assessment of non-motor symptoms. While some reviews 
have highlighted the usefulness of certain wearable devices in different 
aspects, many current approaches rely on inertial systems to evaluate 
drowsiness or the amount of movement (117, 118). Additionally, some 
devices have started incorporating patient feedback to complement 
the data collected by sensors, which can provide extra information 
about symptoms such as stress or anxiety. Other methods, such as 
photoplethysmography, EEG, ECG, and electrodermal activity, have 
also been used to assess these conditions; however, further studies are 
needed to validate their effectiveness in this area (107).

The third challenge focuses on early detection and prediction of 
motor symptoms, which could greatly improve patient outcomes by 
enabling timely intervention. However, current advancements are 
limited to exploratory studies, and no commercial medical device with 
proven predictive capabilities exists yet (119, 120). Continued research 
and development are essential to make symptom prediction a 
clinical reality.

Wearable devices hold great potential for improving the 
monitoring of treatment in Parkinson’s Disease by providing 
continuous, objective data on patient response. Unlike traditional 
clinical assessments, which are limited to brief, periodic evaluations, 
wearables can track changes in real time, offering valuable insights 
into medication effectiveness and highlighting fluctuations that might 
be missed otherwise. This capability allows clinicians to make timely 
adjustments to treatment regimens, optimizing dosage and reducing 
the risk of adverse effects. Continuous monitoring can help identify 
specific periods of poor symptom control or medication wearing-off 
episodes, enabling more precise management. By integrating wearable 
data into clinical practice, we can move towards a more personalized 
and adaptive approach to treatment, ultimately improving patient 
outcomes and enhancing quality of life.

6 Conclusion

The aim of this paper is to provide comprehensive information 
and organize the numerous sensors available on the market. Devices 
for monitoring Parkinson’s Disease (PD) symptoms represent a 
significant advancement in managing the condition. These devices 
offer continuous, objective data on motor symptoms, which can help 
clinicians make better decisions and potentially improve patient 
outcomes. They provide detailed information on symptoms such as 
bradykinesia, freezing of gait, ON/OFF fluctuations, and dyskinesia 
over extended periods in real-world settings, enhancing diagnosis and 
monitoring. While classical methods have proven useful, they have 
certain limitations. The devices discussed in this paper can 
complement the information obtained from traditional clinical trials 
and studies.

However, several challenges need to be addressed for these devices 
to be widely adopted. More validation studies are necessary, and in 
many cases, external validation or validation by official authorities 
such as NICE, FDA, or EMA is required. Additionally, integrating 
these devices into hospital systems to ensure secure and transparent 
data flow remains a significant challenge.

Overcoming these barriers will optimize the usefulness of these 
tools and ensure better outcomes for patients, caregivers, and 
healthcare providers. This paper has presented several sensors, many 
of which have substantial scientific endorsement and are 
recommended by unbiased authorities such as NICE.

Author contributions

DR-M: Conceptualization, Methodology, Writing – original draft, 
Writing – review & editing. CP-L: Conceptualization, Methodology, 
Writing – original draft, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for 
the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that are shareholders of Sense4Care SL, a 
company that manufactures STAT-ON, a device included in 
this review.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

https://doi.org/10.3389/fneur.2024.1470928
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Rodríguez-Martín and Pérez-López 10.3389/fneur.2024.1470928

Frontiers in Neurology 09 frontiersin.org

References
 1. Kalia LV, Lang AE. Parkinson’s disease. Lancet. (2015) 386:896–912. doi: 10.1016/

S0140-6736(14)61393-3

 2. Nussbaum RL, Ellis CE. Alzheimer’s disease and Parkinson’s disease. N Engl J Med. 
(2003) 348:1356–64. doi: 10.1056/NEJM2003ra020003

 3. Maserejian N, Vinikoor-Imler L, Dilley A. Estimation of the 2020 global population 
of Parkinson’s disease (PD) International Congress of Parkinson’s Disease and Movement 
Disorders (2020) Available at: https://www.mdsabstracts.org/abstract/estimation-of-
the-2020-global-population-of-parkinsons-disease-pd (Accessed December 15, 2024).

 4. Dorsey ER, Elbaz A, Nichols E, Abbasi N, Abd-Allah F, Abdelalim A, et al. Global, 
regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis 
for the global burden of disease study 2016. Lancet Neurol. (2018) 17:939–53. doi: 
10.1016/S1474-4422(18)30295-3

 5. Rossi A, Berger K, Chen H, Leslie D, Mailman RB, Huang X. Projection of the 
prevalence of Parkinson’s disease in the coming decades: revisited. Mov Disord. (2018) 
33:156–9. doi: 10.1002/mds.27063

 6. Stoker TB, Greenland JC. Parkinson’s disease: Pathogenesis and clinical aspects. 
Brisbane, Australia: Codon Publications. (2018).

 7. Reichmann H, Klingelhoefer L, Bendig J. The use of wearables for the diagnosis and 
treatment of Parkinson’s disease. J Neural Transm. (2023) 130:783–91. doi: 10.1007/
s00702-022-02575-5

 8. Ossig C, Gandor F, Fauser M, Bosredon C, Churilov L, Reichmann H, et al. 
Correlation of quantitative motor state assessment using a Kinetograph and patient 
diaries in advanced PD: data from an observational study. PLoS One. (2016) 
11:e0161559. doi: 10.1371/journal.pone.0161559

 9. Papapetropoulos SS. Patient diaries as a clinical endpoint in Parkinson’s disease 
clinical trials. CNS Neurosci Ther. (2012) 18:380–7. doi: 10.1111/j.1755-5949.2011.00253.x

 10. Goetz CG, Stebbins GT, Blasucci LM, Grobman MS. Efficacy of a patient-training 
videotape on motor fluctuations for on-off diaries in parkinson’s disease. Mov Disord. 
(1997) 12:1039–41. doi: 10.1002/mds.870120631

 11. Monje MHG, Foffani G, Obeso J, Sánchez-Ferro Á. New sensor and wearable 
technologies to aid in the diagnosis and treatment monitoring of Parkinson’s disease. 
Annu Rev Biomed Eng. (2019) 21:111–43. doi: 10.1146/annurev-bioeng-062117-121036

 12. Luis-Martínez R, Monje MHG, Antonini A, Sánchez-Ferro Á, Mestre TA. 
Technology-enabled care: integrating multidisciplinary Care in Parkinson’s disease 
through digital technology. Front Neurol. (2020) 11:1–10. doi: 10.3389/fneur.2020.575975

 13. Moreau C, Rouaud T, Grabli D, Benatru I, Remy P, Marques AR, et al. Overview 
on wearable sensors for the management of Parkinson’s disease. NPJ Parkinsons Dis. 
(2023) 9:153. doi: 10.1038/s41531-023-00585-y

 14. Timpka J, Löhle M, Bremer A, Christiansson S, Gandor F, Ebersbach G, et al. 
Objective observer vs. patient motor state assessments using the PD home diary in 
advanced Parkinson’s disease. Front Neurol. (2022) 13:935664. doi: 10.3389/
fneur.2022.935664

 15. Janz C, Timpka J, Löhle M, Bremer A, Gandor F, Ebersbach G, et al. Agreement 
between Parkinson disease home diary and observer assessments before and after 
structured patient training. Acta Neurol Scand. (2023) 2023:1–10. doi: 
10.1155/2023/8667591

 16. Brognara L, Palumbo P, Grimm B, Palmerini L. Assessing gait in Parkinson’s 
disease using wearable motion sensors: a systematic review. Diseases. (2019) 7:18. doi: 
10.3390/diseases7010018

 17. Li F, Shirahama K, Nisar M, Köping L, Grzegorzek M. Comparison of feature 
learning methods for human activity recognition using wearable sensors. Sensors. (2018) 
18:679. doi: 10.3390/s18020679

 18. Devices for remote monitoring of Parkinson’s disease. Diagnostics guidance 
[DG51]. National Institute for Health and Care Excellence (NICE). Devices for remote 
monitoring of Parkinson’s disease. Diagnostics guidance [DG51]. (2024) Available at: 
https://www.nice.org.uk”nice.org.uk.

 19. Griffiths RI, Kotschet K, Arfon S, Xu ZM, Johnson W, Drago J, et al. Automated 
assessment of bradykinesia and dyskinesia in Parkinson’s disease. J Parkinsons Dis. 
(2012) 2:47–55. doi: 10.3233/JPD-2012-11071

 20. Horne MK, McGregor S, Bergquist F. An objective fluctuation score for Parkinson’s 
disease. PLoS One. (2015) 10:e0124522. doi: 10.1371/journal.pone.0124522

 21. Chen L, Cai G, Weng H, Yu J, Yang Y, Huang X, et al. More sensitive identification 
for bradykinesia compared to tremors in Parkinson’s disease based on Parkinson’s 
KinetiGraph (PKG). Front Aging Neurosci. (2020) 12:594701. doi: 10.3389/
fnagi.2020.594701

 22. Santiago A, Langston JW, Gandhy R, Dhall R, Brillman S, Rees L, et al. Qualitative 
evaluation of the personal KinetiGraphTM movement recording system in a Parkinson’s 
clinic. J Parkinsons Dis. (2019) 9:207–19. doi: 10.3233/JPD-181373

 23. Nahab FB, Abu-Hussain H, Moreno L. Evaluation of clinical utility of the personal 
KinetiGraph in the Management of Parkinson Disease. Adv Parkinsons Dis. (2019) 
8:42–61. doi: 10.4236/apd.2019.83005

 24. Dominey T, Kehagia AA, Gorst T, Pearson E, Murphy F, King E, et al. Introducing 
the Parkinson’s KinetiGraph into routine Parkinson’s disease care: a 3-year single Centre 
experience. J Parkinsons Dis. (2020) 10:1827–32. doi: 10.3233/JPD-202101

 25. Löhle M, Timpka J, Bremer A, Khodakarami H, Gandor F, Horne M, et al. 
Application of single wrist-wearable accelerometry for objective motor diary assessment 
in fluctuating Parkinson’s disease. NPJ Digit Med. (2023) 6:194. doi: 10.1038/
s41746-023-00937-1

 26. Kinesia objective assessment. (2021). Available at: http://glneurotech.com/kinesia/
products/kinesia-360/ (Accessed September 2, 2021).

 27. Mera TOFilipkowski DE, Riley DE, Whitney CM, Walter BL, Gunzler SA, et al. 
Quantitative analysis of gait and balance response to deep brain stimulation in 
Parkinson’s disease. Gait Posture. (2013) 38:109–14. doi: 10.1016/j.gaitpost.2012.10.025

 28. Heldman DA, Filipkowski DE, Riley DE, Whitney CM, Walter BL, Gunzler SA, 
et al. Automated motion sensor quantification of gait and lower extremity bradykinesia. 
Annu Int Conf IEEE Eng Med Biol Soc. (2012) 2012:1956–9. doi: 10.1109/
EMBC.2012.6346338

 29. Pulliam CL, Burack MA, Heldman DA, Giuffrida JPMera TO. Motion sensor 
dyskinesia assessment during activities of daily living. J Parkinsons Dis. (2014) 4:609–15. 
doi: 10.3233/JPD-140348

 30. Pulliam CL, Eichenseer SR, Goetz CG, Waln O, Hunter CB, Jankovic J, et al. 
Continuous in-home monitoring of essential tremor. Parkinsonism Relat Disord. (2014) 
20:37–40. doi: 10.1016/j.parkreldis.2013.09.009

 31. Pulliam CL, Heldman DA, Brokaw EB, Mera TOMari ZK, Burack MA. Continuous 
assessment of levodopa response in Parkinson’s disease using wearable motion sensors. 
IEEE Trans Biomed Eng. (2018) 65:159–64. doi: 10.1109/TBME.2017.2697764

 32. Pahwa R, Isaacson SH, Torres-Russotto D, Nahab FB, Lynch PM, Kotschet KE. 
Role of the personal KinetiGraph in the routine clinical assessment of Parkinson’s 
disease: recommendations from an expert panel. Expert Rev Neurother. (2018) 
18:669–80. doi: 10.1080/14737175.2018.1503948

 33. Sasaki F, Oyama G, Sekimoto S, Nuermaimaiti M, Iwamuro H, Shimo Y, et al. 
Closed-loop programming using external responses for deep brain stimulation in 
Parkinson’s disease. Parkinsonism Relat Disord. (2021) 84:47–51. doi: 10.1016/j.
parkreldis.2021.01.023

 34. Tamás G, Kelemen A, Radics P, Valálik I, Heldman D, Klivényi P, et al. Effect of 
subthalamic stimulation on distal and proximal upper limb movements in Parkinson’s 
disease. Brain Res. (2016) 1648:438–44. doi: 10.1016/j.brainres.2016.08.019

 35. Tzallas AT, Tsipouras MG, Rigas G, Tsalikakis DG, Karvounis EC, Chondrogiorgi 
M, et al. Perform: a system for monitoring, assessment and management of patients 
with Parkinson’s disease. Sensors (Switzerland). (2014) 14:21329–57. doi: 10.3390/
s141121329

 36. Cancela J, Pastorino M, Arredondo MT, Hurtado O. A telehealth system for 
Parkinson’s disease remote monitoring. The PERFORM approach. Annu Int Conf IEEE 
Eng Med Biol Soc. (2013) 2013:7492–5. doi: 10.1109/EMBC.2013.6611291

 37. Rigas G, Tzallas AT, Tsipouras MG, Bougia P, Tripoliti EE, Baga D, et al. 
Assessment of tremor activity in the Parkinson’s disease using a set of wearable 
sensors. IEEE Trans Inf Technol Biomed. (2012) 16:478–87. doi: 10.1109/
TITB.2011.2182616

 38. Tsipouras MG, Tzallas AT, Rigas G, Tsouli S, Fotiadis DI, Konitsiotis S. An 
automated methodology for levodopa-induced dyskinesia: assessment based on 
gyroscope and accelerometer signals. Artif Intell Med. (2012) 55:127–35. doi: 10.1016/j.
artmed.2012.03.003

 39. Pastorino M, Cancela J, Arredondo MT, Pansera M, Pastor-Sanz L, Villagra F, et al. 
Assessment of bradykinesia in Parkinson’s disease patients through a multi-parametric 
system. Annu Int Conf IEEE Eng Med Biol Soc. 2011, 2011:1810–3. doi: 10.1109/
IEMBS.2011.6090516

 40. Tripoliti EE, Tzallas AT, Tsipouras MG, Rigas G, Bougia P, Leontiou M, et al. 
Automatic detection of freezing of gait events in patients with Parkinson’s disease. 
Comput Methods Prog Biomed. (2013) 110:12–26. doi: 10.1016/j.cmpb.2012.10.016

 41. Kanellos FS, Tsamis KI, Rigas G, Simos YV, Katsenos AP, Kartsakalis G, et al. 
Clinical evaluation in Parkinson’s disease: is the Golden standard shiny enough? Sensors. 
(2023) 23:3807. doi: 10.3390/s23083807

 42. Tsamis K, Rigas G, Nikolaos K. Fotiadis Dimitrios, Konitsiotis S. Accurate 
monitoring of Parkinson’s disease symptoms with a wearable device during COVID-19 
pandemic. In Vivo. (2021) 35:2327–30. doi: 10.21873/invivo.12507

 43. Antonini A, Reichmann H, Gentile G, Garon M, Tedesco C, Frank A, et al. Toward 
objective monitoring of Parkinson’s disease motor symptoms using a wearable device: 
wearability and performance evaluation of PDMonitor®. Front Neurol. (2023) 
14:1080752. doi: 10.3389/fneur.2023.1080752

 44. Rodríguez-Martín D, Cabestany J, Pérez-López C, Pie M, Calvet J, Samà A, et al. 
A new paradigm in Parkinson’s disease evaluation with wearable medical devices: a 
review of STAT-ONTM. Front Neurol. (2022) 13:912343. doi: 10.3389/fneur.2022.912343

 45. The REMPARK project (Personal Health Device for the Remote and Autonomous 
Management of Parkinson’s Disease), funded under the European Union’s Seventh 
Framework Programme (FP7), was coordinated by Joan Cabestany from the Universitat 
Politècnica de Catalunya (UPC)e. (2011–2014) Barcelona, Spain. Available at: 
https://www.upc.edu”www.upc.edu.

 46. Cabestany J, Bayés À. Parkinson’s disease management through ICT: the 
REMPARK approach. Delft, The Netherlands: River Publishers (2017).

https://doi.org/10.3389/fneur.2024.1470928
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://doi.org/10.1016/S0140-6736(14)61393-3
https://doi.org/10.1016/S0140-6736(14)61393-3
https://doi.org/10.1056/NEJM2003ra020003
https://www.mdsabstracts.org/abstract/estimation-of-the-2020-global-population-of-parkinsons-disease-pd
https://www.mdsabstracts.org/abstract/estimation-of-the-2020-global-population-of-parkinsons-disease-pd
https://doi.org/10.1016/S1474-4422(18)30295-3
https://doi.org/10.1002/mds.27063
https://doi.org/10.1007/s00702-022-02575-5
https://doi.org/10.1007/s00702-022-02575-5
https://doi.org/10.1371/journal.pone.0161559
https://doi.org/10.1111/j.1755-5949.2011.00253.x
https://doi.org/10.1002/mds.870120631
https://doi.org/10.1146/annurev-bioeng-062117-121036
https://doi.org/10.3389/fneur.2020.575975
https://doi.org/10.1038/s41531-023-00585-y
https://doi.org/10.3389/fneur.2022.935664
https://doi.org/10.3389/fneur.2022.935664
https://doi.org/10.1155/2023/8667591
https://doi.org/10.3390/diseases7010018
https://doi.org/10.3390/s18020679
https://www.nice.org.uk”nice.org.uk
https://doi.org/10.3233/JPD-2012-11071
https://doi.org/10.1371/journal.pone.0124522
https://doi.org/10.3389/fnagi.2020.594701
https://doi.org/10.3389/fnagi.2020.594701
https://doi.org/10.3233/JPD-181373
https://doi.org/10.4236/apd.2019.83005
https://doi.org/10.3233/JPD-202101
https://doi.org/10.1038/s41746-023-00937-1
https://doi.org/10.1038/s41746-023-00937-1
http://glneurotech.com/kinesia/products/kinesia-360/
http://glneurotech.com/kinesia/products/kinesia-360/
https://doi.org/10.1016/j.gaitpost.2012.10.025
https://doi.org/10.1109/EMBC.2012.6346338
https://doi.org/10.1109/EMBC.2012.6346338
https://doi.org/10.3233/JPD-140348
https://doi.org/10.1016/j.parkreldis.2013.09.009
https://doi.org/10.1109/TBME.2017.2697764
https://doi.org/10.1080/14737175.2018.1503948
https://doi.org/10.1016/j.parkreldis.2021.01.023
https://doi.org/10.1016/j.parkreldis.2021.01.023
https://doi.org/10.1016/j.brainres.2016.08.019
https://doi.org/10.3390/s141121329
https://doi.org/10.3390/s141121329
https://doi.org/10.1109/EMBC.2013.6611291
https://doi.org/10.1109/TITB.2011.2182616
https://doi.org/10.1109/TITB.2011.2182616
https://doi.org/10.1016/j.artmed.2012.03.003
https://doi.org/10.1016/j.artmed.2012.03.003
https://doi.org/10.1109/IEMBS.2011.6090516
https://doi.org/10.1109/IEMBS.2011.6090516
https://doi.org/10.1016/j.cmpb.2012.10.016
https://doi.org/10.3390/s23083807
https://doi.org/10.21873/invivo.12507
https://doi.org/10.3389/fneur.2023.1080752
https://doi.org/10.3389/fneur.2022.912343
https://www.upc.edu”www.upc.edu


Rodríguez-Martín and Pérez-López 10.3389/fneur.2024.1470928

Frontiers in Neurology 10 frontiersin.org

 47. Samà A, Pérez-López C, Rodríguez-Martín D, Català A, Moreno-Aróstegui JM, 
Cabestany J, et al. Estimating bradykinesia severity in Parkinson’s disease by analysing 
gait through a waist-worn sensor. Comput Biol Med. (2017) 84:114–23. doi: 10.1016/j.
compbiomed.2017.03.020

 48. Samà A, Perez-Lopez C, Romagosa J, Rodriguez-Martin D, Català A, Cabestany J, 
et al. Dyskinesia and motor state detection in Parkinson’ s disease patients with a single 
movement sensor. Annu Int Conf IEEE Eng Med Biol Soc. (2012) 2012:1194–7. doi: 
10.1109/EMBC.2012.6346150

 49. Pérez-López C, Samà A, Rodríguez-Martín D, Moreno-Aróstegui JM, Cabestany 
J, Bayes A, et al. Dopaminergic-induced dyskinesia assessment based on a single belt-
worn accelerometer. Artif Intell Med. (2016) 67:47–56. doi: 10.1016/j.artmed.2016.01.001

 50. Rodríguez-Martín D, Samà A, Pérez-López C, Català A, Arostegui JMM, 
Cabestany J, et al. Home detection of freezing of gait using support vector machines 
through a single waist-worn triaxial accelerometer. PLoS One. (2017) 12:e0171764. doi: 
10.1371/journal.pone.0171764

 51. Samà A, Rodríguez-Martín D, Pérez-López C, Català A, Alcaine S, Mestre B, et al. 
Determining the optimal features in freezing of gait detection through a single waist 
accelerometer in home environments. Pattern Recogn Lett. (2018) 105:135–43. doi: 
10.1016/j.patrec.2017.05.009

 52. Sayeed T, Samà A, Català A, Rodríguez-Molinero A, Cabestany J. Adapted step 
length estimators for patients with Parkinson’s disease using a lateral belt worn 
accelerometer. Technol Health Care. (2015) 23:179–94. doi: 10.3233/THC-140882

 53. Cabestany J, Moreno JM, Perez C, Sama A, Catala A. FATE: one step towards an 
automatic aging people fall detection service. 20th International Conference on Mixed 
Design of Integrated Circuits and Systems. (2013). Available at: https://ieeexplore.ieee.
org/document/6613414

 54. Pérez-López C, Samà A, Rodríguez-Martín D, Català A, Cabestany J, Moreno-
Arostegui J, et al. Assessing motor fluctuations in Parkinson’s disease patients based on 
a single inertial sensor. Sensors. (2016) 16:2132. doi: 10.3390/s16122132

 55. Rodríguez-Molinero A, Samà A, Pérez-Martínez DA, Pérez López C, Romagosa J, 
Bayés À, et al. Validation of a portable device for mapping motor and gait disturbances 
in Parkinson’s disease. JMIR Mhealth Uhealth. (2015) 3:e9. doi: 10.2196/mhealth.3321

 56. Bayés À, Samá A, Prats A, Pérez-López C, Crespo-Maraver M, Moreno JM, et al. 
A “HOLTER” for Parkinson’s disease: validation of the ability to detect on-off states using 
the REMPARK system. Gait Posture. (2018) 59:1–6. doi: 10.1016/j.gaitpost.2017.09.031

 57. Rodríguez-Molinero A, Samà A, Pérez-López C, Rodríguez-Martín D, Alcaine S, 
Mestre B, et al. Analysis of correlation between an accelerometer-based algorithm for 
detecting parkinsonian gait and UPDRS subscales. Front Neurol. (2017) 8:3–8. doi: 
10.3389/fneur.2017.00431

 58. Zampogna A, Borzì L, Rinaldi D, Artusi CA, Imbalzano G, Patera M, et al. 
Unveiling the unpredictable in Parkinson’s disease: sensor-based monitoring of 
Dyskinesias and freezing of gait in daily life. Bioengineering. (2024) 11:440. doi: 10.3390/
bioengineering11050440

 59. Cabo-Lopez I, Puy-Nuñez A, Redondo-Rafales N, Teixeira Baltazar S, Calderón-
Cruz B. Holter STAT-ON™ against other tools for detecting MF in advanced Parkinson’s 
disease: an observational study. Front Neurol. (2023) 14:1249385. doi: 10.3389/
fneur.2023.1249385

 60. Pérez-López C, Hernández-Vara J, Caballol N, Bayes À, Buongiorno M, Lopez-
Ariztegui N, et al. Comparison of the results of a Parkinson’s Holter monitor with patient 
diaries, in real conditions of use: a sub-analysis of the MoMoPa-EC clinical trial. Front 
Neurol. (2022) 13:835249. doi: 10.3389/fneur.2022.835249

 61. Buhrmester V, Münch D, Arens M. Analysis of explainers of black box deep neural 
networks for computer vision: a survey. Mach Learn Knowl Extr. (2021) 3:966–89. doi: 
10.3390/make3040048

 62. Battista L, Casali M, Brusa L, Radicati FG, Stocchi F. Clinical assessment of a new 
wearable tool for continuous and objective recording of motor fluctuations and ON/OFF 
states in patients with Parkinson’s disease. PLoS One. (2023) 18:e0287139. doi: 10.1371/
journal.pone.0287139

 63. Battista L, Romaniello A. A wearable tool for continuous monitoring of movement 
disorders: clinical assessment and comparison with tremor scores. Neurol Sci. (2021) 
42:4241–8. doi: 10.1007/s10072-021-05120-6

 64. Battista L, Romaniello A. A wearable tool for selective and continuous monitoring 
of tremor and dyskinesia in parkinsonian patients. Parkinsonism Relat Disord. (2020) 
77:43–7. doi: 10.1016/j.parkreldis.2020.06.020

 65. Mostovov A, Jacobs D, Farid L, Dhellin P, Baille G. Validation of the six-minute 
walking distance measured by FeetMe® insoles. BMC Digit Health. (2023) 1:48. doi: 
10.1186/s44247-023-00038-9

 66. Parati M, Gallotta M, Muletti M, Pirola A, Bellafà A, De Maria B, et al. Validation 
of pressure-sensing insoles in patients with Parkinson’s disease during Overground 
walking in single and cognitive dual-task conditions. Sensors. (2022) 22:6392. doi: 
10.3390/s22176392

 67. Farid L, Jacobs D, Do Santos J, Simon O, Gracies J-M, Hutin E. FeetMe® monitor-
connected insoles are a valid and reliable alternative for the evaluation of gait speed after 
stroke. Top Stroke Rehabil. (2021) 28:127–34. doi: 10.1080/10749357.2020.1792717

 68. David R, Billot M, Delaire L, Roulaud M, Lorgeoux B, Foucault P, et al. Use of 
FeetMe monitor® connected soles for real-time measurement of spatial and temporal 

walking parameters: an illustrative case from the REWALK pilot study highlighting the 
objectivity of a spastic hemiparetic patient assessment. Comput Methods Biomech 
Biomed Eng. (2019) 22:S257–9. doi: 10.1080/10255842.2020.1714264

 69. Granja Domínguez A, Romero Sevilla R, Alemán A, Durán C, Hochsprung A, 
Navarro G, et al. Study for the validation of the FeetMe® integrated sensor insole system 
compared to GAITRite® system to assess gait characteristics in patients with multiple 
sclerosis. PLoS One. (2023) 18:e0272596. doi: 10.1371/journal.pone.0272596

 70. Farid L, Jacobs D, Moreau C, Baille G, Jacobs S. Évaluation à domicile de la marche 
chez les patients parkinsoniens à l’aide de semelles connectées. Rev Epidemiol Sante 
Publique. (2020) 68:S79. doi: 10.1016/j.respe.2020.04.032

 71. Jacobs D, Farid L, Ferré S, Herraez K, Gracies J-M, Hutin E. Evaluation of the 
validity and reliability of connected insoles to measure gait parameters in healthy adults. 
Sensors. (2021) 21:6543. doi: 10.3390/s21196543

 72. Wu J, Kuruvithadam K, Schaer A, Stoneham R, Chatzipirpiridis G, Easthope CA, et al. 
An intelligent in-shoe system for gait monitoring and analysis with optimized sampling and 
real-time visualization capabilities. Sensors. (2021) 21:2869. doi: 10.3390/s21082869

 73. Madgwick S. O. H. An efficient orientation filter for inertial and inertial/magnetic 
sensor arrays. Bristol: University of Bristol. (2010).

 74. Wu J, Maurenbrecher H, Schaer A, Becsek B, Awai Easthope C, Chatzipirpiridis 
G, et al. Human gait-labeling uncertainty and a hybrid model for gait segmentation. 
Front Neurosci. (2022) 16:976594. doi: 10.3389/fnins.2022.976594

 75. Wu J, Becsek B, Schaer A, Maurenbrecher H, Chatzipirpiridis G, Ergeneman O, 
et al. Real-time gait phase detection on wearable devices for real-world free-living gait. 
IEEE J Biomed Health Inform. (2023) 27:1295–306. doi: 10.1109/JBHI.2022.3228329

 76. Magnes AG. Nushu shoes webpage. Available at: https://www.magnes.ch/
solutions/nushu/ (2024) (Accessed December 15, 2024).

 77. Powers R, Etezadi-Amoli M, Arnold EM, Kianian S, Mance I, Gibiansky M, et al. 
Smartwatch inertial sensors continuously monitor real-world motor fluctuations in 
Parkinson’s disease. Sci Transl Med. (2021) 13:eabd7865. doi: 10.1126/scitranslmed.abd7865

 78. Bloem BR, Post E, Hall D. An apple a day to keep the Parkinson’s disease doctor 
away? Ann Neurol. (2023) 93:681–5. doi: 10.1002/ana.26612

 79. Nieuwboer A, Dom R, De Weerdt W, Desloovere K, Janssens L, Stijn V. 
Electromyographic profiles of gait prior to onset of freezing episodes in patients with 
Parkinson’s disease. Brain. (2004) 127:1650–60. doi: 10.1093/brain/awh189

 80. Rissanen S. Analysis of surface EMG signal morphology in Parkinson’s disease. 
Physiol Meas. (2007) 28:1507–21. doi: 10.1088/0967-3334/28/12/005

 81. Meigal AY, Rissanen SM, Zaripova YR, Miroshnichenko GG, Karjalainen P. 
Nonlinear parameters of surface electromyogram for diagnostics of neuromuscular 
disorders and normal conditions of the human motor system. Hum Physiol. (2015) 
41:672–9. doi: 10.1134/S0362119715050102

 82. Meigal AY, Rissanen SM, Tarvainen MP, Airaksinen O, Kankaanpää M, Karjalainen 
PA. Non-linear EMG parameters for differential and early diagnostics of Parkinson’s 
disease. Front Neurol. (2013) 4:135. doi: 10.3389/fneur.2013.00135

 83. Ruonala V, Meigal A, Rissanen SM, Airaksinen O, Kankaanpää M, Karjalainen PA. 
EMG signal morphology and kinematic parameters in essential tremor and Parkinson’s 
disease patients. J Electromyogr Kinesiol. (2014) 24:300–6. doi: 10.1016/j.
jelekin.2013.12.007

 84. Rissanen SM, Koivu M, Hartikainen P, Pekkonen E. Ambulatory surface 
electromyography with accelerometry for evaluating daily motor fluctuations in Parkinson’s 
disease. Clin Neurophysiol. (2021) 132:469–79. doi: 10.1016/j.clinph.2020.11.039

 85. Adamant Health. Adamant health. Available at: https://adamanthealth.com/ 
(2024) (Accessed December 15, 2024).

 86. Meigal AY, Rissanen SM, Tarvainen MP, Ruonala V, Airaksinen O, Kankaanpää M, 
et al. Novel sEMG parameters for early diagnostics of neurological diseases and aging. 
J Biomed Technol. (2014) 1:2–9. doi: 10.15393/j6.art.2014.3041

 87. Rissanen SM, Ruonala V, Pekkonen E, Kankaanpää M, Airaksinen O, Karjalainen 
PA. Signal features of surface electromyography in advanced Parkinson’s disease during 
different settings of deep brain stimulation. Clin Neurophysiol. (2015) 126:2290–8. doi: 
10.1016/j.clinph.2015.01.021

 88. Miroshnichenko GG, Meigal AY, Saenko IV, Gerasimova-Meigal LI, Chernikova 
LA, Subbotina NS, et al. Parameters of surface electromyogram suggest that dry 
immersion relieves motor symptoms in patients with parkinsonism. Front Neurosci. 
(2018) 12:667. doi: 10.3389/fnins.2018.00667

 89. Paragit Solutions. Paragit solutions. Available at: https://www.paragit.com/ (2024) 
(Accessed December 15, 2024).

 90. Cantú H, Nantel J, Millán M, Paquette C, Côté JN. Abnormal muscle activity and 
variability before, during, and after the occurrence of freezing in Parkinson’s disease. 
Front Neurol. (2019) 10:951. doi: 10.3389/fneur.2019.00951

 91. Kugler P, Jaremenko C, Schlachetzki J, Winkler J, Klucken J, Eskofier B. Automatic 
recognition of Parkinson’s disease using surface electromyography during standardized 
gait tests. Annu Int Conf IEEE Eng Med Biol Soc. (2013) 2013:5781–4. doi: 10.1109/
EMBC.2013.6610865

 92. Bailey CA, Corona F, Murgia M, Pili R, Pau M, Côté JN. Electromyographical gait 
characteristics in Parkinson’s disease: effects of combined physical therapy and rhythmic 
auditory stimulation. Front Neurol. (2018) 9:211. doi: 10.3389/fneur.2018.00211

https://doi.org/10.3389/fneur.2024.1470928
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://doi.org/10.1016/j.compbiomed.2017.03.020
https://doi.org/10.1016/j.compbiomed.2017.03.020
https://doi.org/10.1109/EMBC.2012.6346150
https://doi.org/10.1016/j.artmed.2016.01.001
https://doi.org/10.1371/journal.pone.0171764
https://doi.org/10.1016/j.patrec.2017.05.009
https://doi.org/10.3233/THC-140882
https://ieeexplore.ieee.org/document/6613414
https://ieeexplore.ieee.org/document/6613414
https://doi.org/10.3390/s16122132
https://doi.org/10.2196/mhealth.3321
https://doi.org/10.1016/j.gaitpost.2017.09.031
https://doi.org/10.3389/fneur.2017.00431
https://doi.org/10.3390/bioengineering11050440
https://doi.org/10.3390/bioengineering11050440
https://doi.org/10.3389/fneur.2023.1249385
https://doi.org/10.3389/fneur.2023.1249385
https://doi.org/10.3389/fneur.2022.835249
https://doi.org/10.3390/make3040048
https://doi.org/10.1371/journal.pone.0287139
https://doi.org/10.1371/journal.pone.0287139
https://doi.org/10.1007/s10072-021-05120-6
https://doi.org/10.1016/j.parkreldis.2020.06.020
https://doi.org/10.1186/s44247-023-00038-9
https://doi.org/10.3390/s22176392
https://doi.org/10.1080/10749357.2020.1792717
https://doi.org/10.1080/10255842.2020.1714264
https://doi.org/10.1371/journal.pone.0272596
https://doi.org/10.1016/j.respe.2020.04.032
https://doi.org/10.3390/s21196543
https://doi.org/10.3390/s21082869
https://doi.org/10.3389/fnins.2022.976594
https://doi.org/10.1109/JBHI.2022.3228329
https://www.magnes.ch/solutions/nushu/
https://www.magnes.ch/solutions/nushu/
https://doi.org/10.1126/scitranslmed.abd7865
https://doi.org/10.1002/ana.26612
https://doi.org/10.1093/brain/awh189
https://doi.org/10.1088/0967-3334/28/12/005
https://doi.org/10.1134/S0362119715050102
https://doi.org/10.3389/fneur.2013.00135
https://doi.org/10.1016/j.jelekin.2013.12.007
https://doi.org/10.1016/j.jelekin.2013.12.007
https://doi.org/10.1016/j.clinph.2020.11.039
https://adamanthealth.com/
https://doi.org/10.15393/j6.art.2014.3041
https://doi.org/10.1016/j.clinph.2015.01.021
https://doi.org/10.3389/fnins.2018.00667
https://www.paragit.com/
https://doi.org/10.3389/fneur.2019.00951
https://doi.org/10.1109/EMBC.2013.6610865
https://doi.org/10.1109/EMBC.2013.6610865
https://doi.org/10.3389/fneur.2018.00211


Rodríguez-Martín and Pérez-López 10.3389/fneur.2024.1470928

Frontiers in Neurology 11 frontiersin.org

 93. Haufe S, Isaias IU, Pellegrini F, Palmisano C. Gait event prediction using surface 
electromyography in parkinsonian patients. Bioengineering. (2023) 10:212. doi: 10.3390/
bioengineering10020212

 94. Pacini Panebianco G, Ferrazzoli D, Frazzitta G, Fonsato M, Bisi MC, Fantozzi S, 
et al. A statistical approach for the assessment of muscle activation patterns during gait 
in Parkinson’s disease. Electronics (Basel). (2020) 9:1641. doi: 10.3390/electronics9101641

 95. Podsiadlo D, Richardson S. The timed “up & go”: a test of basic functional mobility 
for frail elderly persons. J Am Geriatr Soc. (1991) 39:142–8. doi: 10.1111/j.1532-5415.1991.
tb01616.x

 96. Mancini M, Horak FB. Potential of APDM mobility lab for the monitoring of the 
progression of Parkinson’s disease. Expert Rev Med Devices. (2016) 13:455–62. doi: 
10.1586/17434440.2016.1153421

 97. Dewey DC, Chitnis S, McCreary MC, Gerald A, Dewey CH, Pantelyat A, et al. 
APDM gait and balance measures fail to predict symptom progression rate in Parkinson’s 
disease. Front Neurol. (2022) 13:1041014. doi: 10.3389/fneur.2022.1041014

 98. Pal G, O’Keefe J, Robertson-Dick E, Bernard B, Anderson S, Hall D. Global 
cognitive function and processing speed are associated with gait and balance dysfunction 
in Parkinson’s disease. J Neuroeng Rehabil. (2016) 13:94. doi: 10.1186/s12984-016-0205-y

 99. Lones MA, Alty JE, Cosgrove J, Duggan-Carter P, Jamieson S, Naylor RF, et al. A 
new evolutionary algorithm-based home monitoring device for Parkinson’s dyskinesia. 
J Med Syst. (2017) 41:176. doi: 10.1007/s10916-017-0811-7

 100. Lones MA, Alty JE, Duggan-Carter P, Turner AJ, DRS Jamieson, Smith SL. 
Classification and characterisation of movement patterns during levodopa therapy for 
parkinson’s disease. Proceedings of the Companion Publication of the 2014 Annual 
Conference on Genetic and Evolutionary Computation. New York, NY, USA: ACM 
(2014). p. 1321–1328.

 101. McRoberts products. (2024). Available at: http://www.mcroberts.nl/products 
(accessed October 17, 2016).

 102. Hill EJ, Mangleburg CG, Alfradique-Dunham I, Ripperger B, Stillwell A, Saade 
H, et al. Quantitative mobility measures complement the MDS-UPDRS for 
characterization of Parkinson’s disease heterogeneity. Parkinsonism Relat Disord. (2021) 
84:105–11. doi: 10.1016/j.parkreldis.2021.02.006

 103. Rodríguez-Molinero A, Pérez-López C, Samà A, Rodríguez-Martín D, Alcaine S, 
Mestre B, et al. Estimating dyskinesia severity in Parkinson’s disease by using a waist-worn 
sensor: concurrent validity study. Sci Rep. (2019) 9:13434. doi: 10.1038/s41598-019-49798-3

 104. Grahn F. Evaluation of two commercial sensor systems for monitoring 
parkinsonism and their possible influence on management of Parkinson’s disease. 
[Degree Project in Medicine]. Gothenburg: Institute of Neuroscience and Physiology 
Sahlgrenska Academy University of Gothenburg. (2022). 1–51. Available at: http://hdl.
handle.net/2077/70780 (Accessed December 15, 2024).

 105. Kilincalp G, Grahn F, Sabir H, von Below D, Jeppsson A, Sjöström A, et al. 
Comparision of objective Parkinson’s disease monitoring systems and the interpretations 
of results, vol. 38 Copenhagen, Denmark: International Congress of Parkinson’s Disease 
and Movement Disorders (2023).

 106. Kluge F, Brand YE, Micó-Amigo ME, Bertuletti S, D’Ascanio I, Gazit E, et al. 
Real-world gait detection using a wrist-worn inertial sensor: validation study. JMIR 
Form Res. (2024) 8:e50035. doi: 10.2196/50035

 107. Gjoreski M, Gjoreski H, Luštrek M, Gams M. How accurately can your wrist 
device recognize daily activities and detect falls? Sensors. (2016) 16:800. doi: 10.3390/
s16060800

 108. Shcherbina A, Mattsson C, Waggott D, Salisbury H, Christle J, Hastie T, 
et al. Accuracy in wrist-worn, sensor-based measurements of heart rate and 
energy expenditure in a diverse cohort. J Pers Med. (2017) 7:3. doi: 10.3390/
jpm7020003

 109. Kondama Reddy R, Pooni R, Zaharieva DP, Senf B, El Youssef J, Dassau E, et al. 
Accuracy of wrist-worn activity monitors during common daily physical activities and 
types of structured exercise: evaluation study. JMIR Mhealth Uhealth. (2018) 6:e10338. 
doi: 10.2196/10338

 110. Kim DW, Hassett LM, Nguy V, Allen NE. A comparison of activity monitor data 
from devices worn on the wrist and the waist in people with Parkinson’s disease. Mov 
Disord Clin Pract. (2019) 6:693–9. doi: 10.1002/mdc3.12850

 111. Gall N, Sun R, Smuck M. A comparison of wrist- versus hip-worn ActiGraph 
sensors for assessing physical activity in adults: a systematic review. J Meas Phys Behav. 
(2022) 5:252–62. doi: 10.1123/jmpb.2021-0045

 112. Gjoreski H, Lustrek M, Gams M. Accelerometer placement for posture 
recognition and fall detection. 2011 Seventh International Conference on Intelligent 
Environments. Nottingham, United Kingdom: IEEE (2011). p. 47–54.

 113. Rodríguez-Martín D, Samà A, Pérez-López C, Català A, Cabestany J. Posture 
transition analysis with barometers: contribution to accelerometer-based algorithms. 
Neural Comput Appl. (2019) 32, 335–349. doi: 10.1007/s00521-018-3759-8

 114. Channa A, Popescu N, Ciobanu V. Wearable solutions for patients with 
Parkinson’s disease and neurocognitive disorder: a systematic review. Sensors. (2020) 
20:2713. doi: 10.3390/s20092713

 115. Zampogna A, Manoni A, Asci F, Liguori C, Irrera F, Suppa A. Shedding light on 
nocturnal movements in parkinson’s disease: evidence from wearable technologies. 
Sensors (Switzerland). (2020) 20:5171. doi: 10.3390/s20185171

 116. Klingelhoefer L, Rizos A, Sauerbier A, McGregor S, Martinez-Martin P, 
Reichmann H, et al. Night-time sleep in Parkinson’s disease  – the potential use of 
Parkinson’s KinetiGraph: a prospective comparative study. Eur J Neurol. (2016) 
23:1275–88. doi: 10.1111/ene.13015

 117. Espay AJ, Bonato P, Nahab FB, Maetzler W, Dean JM, Klucken J, et al. Technology 
in Parkinson’s disease: challenges and opportunities. Mov Disord. (2016) 31:1272–82. 
doi: 10.1002/mds.26642

 118. Janssen Daalen JM, van den Bergh R, Prins EM, Moghadam MSC, van den Heuvel 
R, Veen J, et al. Digital biomarkers for non-motor symptoms in Parkinson’s disease: the state 
of the art. NPJ Digit Med. (2024) 7:186. doi: 10.1038/s41746-024-01144-2

 119. Mazilu S, Calatroni A, Gazit E, Mirelman A, Hausdorff JM, Troster G. 
Prediction of freezing of gait in Parkinson’s from physiological wearables: an 
exploratory study. IEEE J Biomed Health Inform. (2015) 19:1843–54. doi: 10.1109/
JBHI.2015.2465134

 120. Herman T, Barer Y, Bitan M, Sobol S, Giladi N, Hausdorff JM. A meta-analysis 
identifies factors predicting the future development of freezing of gait in Parkinson’s 
disease. NPJ Parkinsons Dis. (2023) 9:158. doi: 10.1038/s41531-023-00600-2

https://doi.org/10.3389/fneur.2024.1470928
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://doi.org/10.3390/bioengineering10020212
https://doi.org/10.3390/bioengineering10020212
https://doi.org/10.3390/electronics9101641
https://doi.org/10.1111/j.1532-5415.1991.tb01616.x
https://doi.org/10.1111/j.1532-5415.1991.tb01616.x
https://doi.org/10.1586/17434440.2016.1153421
https://doi.org/10.3389/fneur.2022.1041014
https://doi.org/10.1186/s12984-016-0205-y
https://doi.org/10.1007/s10916-017-0811-7
http://www.mcroberts.nl/products
https://doi.org/10.1016/j.parkreldis.2021.02.006
https://doi.org/10.1038/s41598-019-49798-3
http://hdl.handle.net/2077/70780
http://hdl.handle.net/2077/70780
https://doi.org/10.2196/50035
https://doi.org/10.3390/s16060800
https://doi.org/10.3390/s16060800
https://doi.org/10.3390/jpm7020003
https://doi.org/10.3390/jpm7020003
https://doi.org/10.2196/10338
https://doi.org/10.1002/mdc3.12850
https://doi.org/10.1123/jmpb.2021-0045
https://doi.org/10.1007/s00521-018-3759-8
https://doi.org/10.3390/s20092713
https://doi.org/10.3390/s20185171
https://doi.org/10.1111/ene.13015
https://doi.org/10.1002/mds.26642
https://doi.org/10.1038/s41746-024-01144-2
https://doi.org/10.1109/JBHI.2015.2465134
https://doi.org/10.1109/JBHI.2015.2465134
https://doi.org/10.1038/s41531-023-00600-2

	Commercial symptom monitoring devices in Parkinson’s disease: benefits, limitations, and trends
	1 Introduction
	2 Wearable systems recommended by NICE
	2.1 PKG™
	2.2 Kinesia 360™ and Kinesia U™
	2.3 PDMonitor™
	2.4 Stat-ON™

	3 Other promising devices for monitoring PD motor symptoms
	3.1 Neptune™
	3.2 PD-Watch™
	3.3 Feetme™ and Nushu
	3.4 Apple Watch based devices
	3.5 Surface electromyography devices

	4 Other devices in the market for Parkinson’s disease
	5 Discussion
	6 Conclusion

	References

