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Purpose:This study aims to develop a assessment system for evaluating shoulder

joint muscle strength in patients with varying degrees of upper limb injuries post-

stroke, using surface electromyographic (sEMG) signals and joint motion data.

Methods: The assessment system includes modules for acquiring muscle

electromyography (EMG) signals and joint motion data. The EMG signals from

the anterior, middle, and posterior deltoid muscles were collected, filtered,

and denoised to extract time-domain features. Concurrently, shoulder joint

motion data were captured using the MPU6050 sensor and processed for feature

extraction. The extracted features from the sEMG and joint motion data were

analyzed using three algorithms: Random Forest (RF), Backpropagation Neural

Network (BPNN), and Support Vector Machines (SVM), to predict muscle strength

through regression models. Model performance was evaluated using Root Mean

Squared Error (RMSE), R-Square (R2), Mean Absolute Error (MAE), and Mean Bias

Error (MBE), to identify the most accurate regression prediction algorithm.

Results:The systeme�ectively collected and analyzed the sEMG from the deltoid

muscles and shoulder joint motion data. Among the models tested, the Support

Vector Regression (SVR) model achieved the highest accuracy with an R2 of

0.8059, RMSE of 0.2873,MAE of 0.2155, andMBE of 0.0071. The Random Forest

model achieved an R2 of 0.7997, RMSE of 0.3039, MAE of 0.2405, and MBE of

0.0090. The BPNN model achieved an R2 of 0.7542, RMSE of 0.3173, MAE of

0.2306, and MBE of 0.0783.

Conclusion: The SVR model demonstrated superior accuracy in predicting

muscle strength. The RF model, with its feature importance capabilities, provides

valuable insights that can assist therapists in the muscle strength assessment

process.
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1 Introduction

Stroke is a prevalent neurological disorder that significantly
diminishes the quality of life for affected individuals.
Approximately 40% of stroke survivors experience motor
impairments (1), with upper limb dysfunction being particularly
common. Such impairments lead to challenges in daily
activities and work, significantly reducing the quality of life and
independence of these individuals. Early rehabilitation is crucial
in recovering upper limb function post-stroke (2–4), aiming to
maximize functional restoration and enhance overall quality of life.
Prior to initiating rehabilitation, a comprehensive assessment of
the upper limb is essential to determine the extent of impairment
and to monitor rehabilitation progress (5). These assessments
provide a scientific foundation for developing rehabilitation plans,
evaluating treatment outcomes, and predicting prognosis, making
effective stroke rehabilitation assessment a critical component of
stroke care.

Currently, the most commonly used clinical methods for
evaluating post-stroke upper limb function are traditional scale-
based assessments (6), which primarily rely on the subjective
evaluations of rehabilitation therapists. For instance, Katia
demonstrated that the Fugl-Meyer Assessment can infer motor
performance and movement quality in individuals with varying
severities of chronic stroke. Li utilized employed the Brunnstrom
Assessment to grade stroke patients, while Shamay used scales
such as the Wolf Motor Function Test (WMFT) and the Upper-
Body Dressing Scale (UBDS) for the psychological measurement
of upper limb function in stroke patients (7–9). Although
these scale-based assessments offer standardization, repeatability,
and multidimensional evaluation, they are also limited by
subjectivity, restricted sensitivity, and significant time and resource
consumption.

With advancements in medical technology, modern devices for
upper limb function assessment now include wearable sensors and
upper limb rehabilitation robots (10). Wearable sensors comprise
surface electromyographic (sEMG) sensors, inertial measurement
units (IMUs), and more.

Muscles control the movement of the body’s limbs, and
muscle strength is defined as the maximum force muscles that
can exert under specific conditions (11). Muscle strength is
typically measured indirectly through methods like sEMG and
inverse kinematics (12). sEMG is used to detect the electrical
currents generated by muscle contractions during neuromuscular
activity, which helps analyze muscle function and assess a patient’s
muscle condition. sEMG sensors measure the voltage changes
between two points on the muscle, capturing muscle activity using
electrodes (13, 14). These sensors are non-invasive, significantly
reducing infection risk, and are widely used in rehabilitation
medicine, movement analysis, and muscle fatigue studies (15).
For example, Hsu used EMG sensors to study the sequence of
muscle contractions in stroke patients transitioning from sitting
to standing and Bandini highlighted the importance of the co-
contraction index of sEMG in evaluating the clinical motor
performance of stroke patients (16, 17).

Inertial Measurement Units (IMUs) are wearable sensors
composed of gyroscopes, accelerometers, and magnetometers.
They offer advantages such as portability, low cost, and space
efficiency, making them widely used in upper limb movement

assessment models (18). For example, researchers have employed
9-axis motion sensors to measure 23 components of the Fugl-
Meyer Upper Extremity Assessment. Other studies have used
wearable inertial sensors and end-effector robots for precise motion
tracking in rehabilitation therapy to evaluate feedback support and
rehabilitation outcomes. Sensors with IMUs have been used to
collect elbow inertia data, employing machine learning algorithms
like random forests for spasticity assessment. Additionally, the
MPU6050 inertial sensor has been used to measure upper limb
movement direction, with results compared to hand movement
trajectories recorded by Kinect sensors (19–22).

In clinical research experiments, sEMG sensors and IMU
sensors are often used together for rehabilitation assessment. For
instance, Mahmoud et al. combined inertial measurement units,
Kinect sensors, and sEMG sensors with occupational therapy to
evaluate upper limb function in post-stroke patients. Similarly,
Pan et al. assessed upper limb motor function in stroke patients
using inertial and sEMG sensors (23, 24). Objective assessment
of data collected by sensors requires advanced data processing
techniques, often involving machine learning (25). Machine
learning technologies have continuously advanced the integration
of engineering and medicine over the past few years, particularly
in areas such as medical diagnostics and neural system regulation
and classification (26–30). Modern algorithms like Random Forest
and Support Vector Machines often outperform earlier methods
(31, 32). When applied to muscle signals, these algorithms
have been used for classifying movements and detecting muscle
activity anomalies (30, 33, 34). Additionally, hybrid deep networks
combining Long Short-Term Memory (LSTM) and Convolutional
Neural Networks (CNN) have achieved an average accuracy of 80%
in automatically recognizing Brunnstrom stages III, IV, and V (35).

This study utilizes a surface electromyographic signal
acquisition system and the MPU6050 six-axis motion sensor to
collect sEMG and motion data during upper limb movements.
Regression prediction models are then established using Random
Forest (RF), Backpropagation Neural Network (BPNN), and
Support Vector Machine (SVM) machine learning methods.The
model’s performance is evaluated using metrics such as the
R-Square (R2), Root Mean Squared Error (RMSE), Mean Absolute
Error (MAE), and Mean Bias Error (MBE). R2 assesses the model’s
explanatory power, indicating how well it captures data variability.
RMSE and MAE provide measures of error, helping to understand
the model’s accuracy. MBE reveals systematic bias, identifying
areas for improvement. These four evaluation metrics allow for a
multidimensional assessment of model performance, enhancing
our understanding and guiding future improvements. They also
help identify the most optimal algorithm for upper limb muscle
strength assessment.

2 Materials and methods

In this study, a left shoulder flexion test was carried out on
healthy volunteers to capture sEMG signals from the anterior,
middle, and posterior deltoid muscles, along with motion capture
data of the left upper limb. The arrangement of the muscle
sensors andMPU6050 sensor is detailed in Figure 1. Following data
collection, feature extraction was executed, and the participants’
muscle strength was documented utilizing a manual muscle testing
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scale. Subsequently, machine learning regression models were
established to comprehensively assess the level of shoulder flexion
strength. The models’ performance was evaluated using four
key metrics: RMSE, R2, MAE, and MBE. The outlined research
methodology is depicted in Figure 2.

2.1 sEMG acquisition and analysis

In the process of upper limb movement, capturing muscle
changes is essential. Besides feeling muscle contractions through
touch, sEMG sensors can be used to collect signals generated during
movement.

2.1.1 sEMG signal acquistion system
The electromyography data was collected using a six-channel

EMG sensor device, with a sampling frequency ranging from
1,000 Hz to 5,0000 Hz. After testing, it was found that a
sampling frequency of 10,000 Hz minimized environmental noise
interference. Thus, this study set the final sampling frequency at
10,000 Hz. The setup of the acquisition device is shown in Figure 3.

In this experiment, shoulder flexion is specified as the motion.
The deltoid muscle is one of the main muscles of the shoulder joint,
responsible for various movements such as flexion, abduction, and
adduction of the shoulder joint. During shoulder flexion, activation
of the anterior bundle of the deltoid muscle is most significant.
Additionally, the middle and posterior bundles of the deltoid
muscle play a supportive role in the stability and support of the
shoulder joint. Selecting the anterior, middle, and posterior bundles
of the deltoid muscle as the source of sEMG signals allows for a
more comprehensive capture of themuscle activity during shoulder
flexion, leading to a better understanding of the interaction and
coordination among muscles during shoulder joint movements.
Therefore, in this experiment, the anterior deltoid, middle deltoid,
and posterior deltoid were chosen as the primary data sources for
sEMG by analyzing upper limb joint movements. The placement of
the EMG electrodes for testing is illustrated in Figure 1A, where the
red electrode line indicates the calibration reference point typically
positioned at the muscle edge. The yellow and green electrode
lines, utilized for sEMG collection, are conventionally placed at the
muscle belly. The study focused on shoulder flexion movement of
the upper limb and captured the neuromuscular activity of the three
deltoid muscle groups during motion.

2.1.2 sEMG preprocessing and feature extraction
sEMG signals are generated from the combination of electrical

potentials produced by multiple motor units beneath the skin’s
surface. Consequently, they are susceptible to noise interference
and signal contamination during the data acquisition phase.
Utilizing appropriate filtering algorithms is crucial to eliminate
noise from various frequency bands (36). In this experiment, a
Savitzky-Golay filter was utilized for noise reduction processing.
The Savitzky-Golay filter is a type of digital filter that can enhance
data accuracy without altering the signal trend or width. Its
advantage lies in preserving the characteristic information of
the signal while exhibiting good noise resistance. Therefore, in

this experiment, the collected raw electromyography signals were
denoised using a Savitzky-Golay filter. The key parameters set for
the filter during application include window length and polyorder.
Here, window length signifies the number of data points considered
by the filter in each smoothing computation. In this study, the
window length is set to 51, indicating that the filter will consider
51 data points or 51 milliseconds of time for smoothing operations.
Polyorder denotes the order of the polynomial used to fit the data
in each window. In this experiment, the polyorder is set to 3,
signifying that a third-degree polynomial will be utilized for fitting
the data in each window. The results post-completion are depicted
in Figure 4.

The present study delves into the analysis of sEMG signals
by incorporating four time-domain features: Root Mean Square
Value (RMS), integral EMG (iEMG), Mean Absolute Value (MAV),
and Variance (VAR). Additionally, the feature extracted from the
frequency domain includes the median frequency (MF).

The RMS of the sEMG signifies the average of the amplitudes
over a specific time interval. It characterizes the average change
in sEMG behavior over time, indicating the energy output during
muscle activity and aiding in the assessment of muscle involvement
in diverse movements.

RMS =

√

1

N

∑N
i=1x

2(i) (1)

On the other hand, the iEMG refers to the total area enclosed by
the rectified and smoothed sEMG curve within a given time unit.
It quantifies the cumulative muscle activity during a designated
period, illustrating the temporal intensity fluctuations in the sEMG
signal over time.

iEMG =
1

N

∑t+T
t=1

∣

∣EMG(t)
∣

∣ dt (2)

In the equation, EMG(t) represents the collected EMG signal, t
denotes the time variable, and T is the period of the EMG signal.

The MAV corresponds to the average of the absolute signal
amplitudes within a specific time frame, commonly employed to
evaluate muscle contraction intensity and fatigue levels.

MAV =
1

N

∑N
i=1

∣

∣x(i)
∣

∣ (3)

In the equation: N signifies the number of data points in the
collected sEMG, and x(i) denotes the i − th data point in the
sequence of the signal.

The VAR is instrumental in revealing the pattern of sEMG
dispersion, illustrating the amplitude changes and extent of
variations during movement. It is a standard metric for evaluating
the motion signal intensity.

VAR =
1

N

∑N
i=1 X

2
i (4)

In the equation, N represents the number of samples, and Xi

denotes the amplitude of the sEMG at the i− th sample.
The MF signifies the midpoint frequency of muscle activation

during contraction, serving as a reliable indicator of muscle
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FIGURE 1

Placement of upper limb testing devices. (A) sEMG sensors are placed on the anterior, middle, and posterior deltoid muscles. (B) MPU6050 sensor is

placed at the distal end of the limb.

FIGURE 2

A method for upper limb muscle strength regression prediction based on sEMG and motion capture. RF, Random forest; BPNN, backpropagation

neural network; SVR, support vector regression; RMSE, root mean squared error; R2, R-square; MAE, mean absolute error; MBE, mean bias error.

contractile strength and fatigue levels. Typically, the MF decreases
with prolonged movement durations.

MF =
1

2

∫ ∞

0
PSD(f )df (5)

In the equation, PSD (Power Spectral Density) denotes the
power spectrum of the sEMG, and df refers to the sampling
frequency.

For sEMG feature extraction, encompassing sample points
derived from various movements executed by distinct subjects.
Taking the anterior deltoid muscle as an example, the feature values
for each sample point are illustrated in Figure 5. Notably, Figure 5
demonstrates significant variances in feature values across different

movements, reflecting individual differences in physical conditions
and ensuring the data’s authenticity.

2.2 Inertial sensor acquisition and analysis

During the upper limb rehabilitation process after a stroke,
shoulder joint movements often require compensations as patients
maymove their scapula or trunk. Preventing compensations during
the rehabilitation exercises can enhance treatment effectiveness, as
compensations can lead to uncertainty in joint movement angle
measurements. This issue of accurately measuring joint movement
angles can be addressed by using biofeedback methods such as
inertial sensor units.
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FIGURE 3

sEMG acquisition device.

FIGURE 4

Noise reduction processing results. (A) Comparison graph of original sEMG (blue) and sEMG after noise reduction with the Savitzky-Golay filter (red).

(B) Blue waveform represents the variation of the original sEMG. (C) Red waveform represents the sEMG after noise reduction with the

Savitzky-Golay filter.

2.2.1 MPU6050 acquisition device
The MPU6050 is a six-degree-of-freedom inertial sensor that

integrates a three-axis gyroscope and a three-axis accelerometer
(37). The sensor module utilized in this setup comprises
the MPU6050 and Arduino UNO. An orientation calculation

algorithm devised with the Arduino IDE software is utilized to
assess motion angles and acceleration during movement. During
shoulder flexion movements, it is common to maintain the elbow
joint in an extended position. The MPU6050 is primarily used to
capture angular changes during joint movements and is typically
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FIGURE 5

Feature extraction results of di�erent sample points (anterior deltoid muscle).

placed at the distal end of the limb, such as the biceps tendon
or wrist joint. In this study, the MPU6050 was positioned at the
wrist joint as shown in Figure 1B. It was secured using an elastic
band to prevent displacement in other directions. Additionally,
the connection between the MPU6050 and the UNO board was
checked to ensure the stability of signal acquisition.

2.2.2 MPU6050 data acquisition and feature
processing

During shoulder jointmovement analysis, theMPU6050 sensor
is positioned at the distal end of the limb to measure the angular
movement of the shoulder joint while maintaining a fixed shoulder
position. In this study, the data analyzed consisted primarily of
three-axis acceleration, three-axis angular velocity, and three-axis
azimuth (yaw, pitch, and roll) obtained from the MPU6050 sensor.
The yaw angle refers to rotation around the Z-axis, pitch represents
rotation around the Y-axis, and roll signifies rotation around the
X-axis. Equipped with three gyroscopes and three accelerometers,
the MPU6050 sensor outputs crucial data, including three-axis
acceleration (Acc) and three-axis angular velocity (Gyro).

The MPU6050 includes an accelerometer and a gyroscope.
The accelerometer calculates roll and pitch angles based on the
perceived gravitational acceleration when stationary, with angle
calculation dependent on the current position. The gyroscope
integrates angular velocity over time intervals to derive incremental

angle changes, accumulating these changes onto the previous
orientation to obtain a new orientation angle. Therefore, a
complementary fusion of the attitude calculated from the
accelerometer and gyroscope is performed. The accelerometer
estimates object orientation by sensing gravitational acceleration,
while the yaw angle, typically used to describe directional changes,
represents a rotational angle relative to the horizontal plane. Hence,
the gyroscope is essential for capturing yaw angle variations. The
overall formula for this integration is as follows:











roll = roll+ (rollacc − rollgyro) ∗ K
pitch = pitch+ (pitchacc − pitchgyro) ∗ K

yaw = yawgyro

(6)

In the equation, K is a proportional coefficient that allows
the readings from the accelerometer and gyroscope to be fused
according to a certain weighted proportion, thereby reducing
the impact of noise and drift to achieve a more precise attitude
estimation. Typically, the K value ranges from 0 to 1 and can be
adjusted based on practical considerations. For this experiment, a
value of 0.2 was chosen.
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2.3 Prediction model establishment and
analysis methods

In this study, we utilized sEMG and motion signals to
predict muscle strength recovery using RF, BPNN, and SVM
methodologies.

2.3.1 RF regression prediction model
RF is a supervised machine learning algorithm utilized for both

classification and regression tasks. This algorithm adopts ensemble
learning by combining multiple decision trees to forecast outputs
in regression analysis (38). Within the RF algorithm, each decision
tree comprises root nodes, intermediate nodes, and leaf nodes, with
the path from the root to leaf nodes governed by specific rules. The
model’s accuracy hinges on the number of decision trees employed,
with a bootstrap dataset generated for each tree from the main
dataset (39–41). In regression analysis, the RF regression prediction
model yields the average of the predicted outputs generated across
all decision trees (42).

2.3.2 BPNN regression prediction model
BPNN is a deep neural network trained using the

backpropagation algorithm, widely recognized as a mature
and extensively employed model in the medical domain (43–45).
Comprising an input layer, hidden layers, and an output layer,
BPNN derives the inter-layer weights through the iterative process
of forward signal propagation and backward error propagation.

2.3.3 SVM regression prediction model
SVM is a supervised learning approach utilized for regression

and classification tasks. SVM trains the model using a subset of
the training data. In regression contexts, this model is termed
Support Vector Regressor (SVR) and excels in handling non-linear,
high-dimensional challenges, finding extensive use across clinical,
physical, engineering sectors, and other fields (39, 46–48). For
regression applications, SVR delineates a “margin band” flanking
the linear function to allow deviations until a threshold parameter,
ε, is exceeded. Loss computations focus solely on samples outside
this band, with themodel optimization aimed atminimizing overall
loss while maximizing the margin. Introducing slack variables ξ

and ξ∗ quantifies the deviations from the predicted output, with
the loss function defined as:























min
w,b,ξi ,ξ∗i

1
2 ‖w‖

2 + C
∑m

i=1(ξi, ξ
∗
i )

s.t. f (xi)− yi ≤ ε + ξi

yi − f (xi) ≤ ε + ξi

ξi ≥ 0, ξ∗i ≥ 0, i = 1, 2, ...,m

(7)

2.3.4 Evaluation metrics
In assessing the effectiveness of various machine learning

models, it is customary to employ evaluation metrics that elucidate
the predictive accuracy of the models. This study utilizes four

TABLE 1 MMT muscle grading standards.

Level Performance

0 No muscle contraction

1 Muscle contraction palpable, but no joint movement

2 Movement throughout the full range of motion with gravity
eliminated

3 Movement throughout the full range of motion against gravity,
but not against resistance

4 Movement against gravity and some resistance

5 Movement against gravity and full resistance

key evaluation metrics to ascertain the most effective regression
method among the three algorithms. The first metric considered is
the coefficient of determination (R2), a measure that evaluates the
precision of machine learning predictions by providing the squared
value of the correlation coefficient R (49). Typically, a satisfactory
R2 criterion is set at 0.75, with values exceeding 0.75 indicative of a
well-fitted model to the data (46).

R2 = 1−

∑n
i=1(Actual valuei − Predicted valuei)2

∑n
i=1(Actual valuei − Average of outputs)2

(8)

The second evaluation metric is the RMSE, which quantifies
the square root of the average squared variance between target
and predicted values. A lower RMSE signifies enhanced predictive
accuracy of the model.

RMSE =

√

∑n
i=1(Actual valuei − Predicted valuei)2

n
(9)

The third evaluation metric is the MAE, which works by
averaging the absolute differences between the true target values
and the predicted values. A smallerMAE indicates higher predictive
accuracy of the model.

MAE =
1

n

∑n
i=1

∣

∣Actual valuei − Predicted valuei
∣

∣ (10)

The fourth evaluation metric is the MBE, which measures the
direction of model errors by calculating the average error between
predicted values and actual values. A positive MBE indicates that
the predicted values are higher than the actual values, while a
negative value suggests an underestimation of the actual values.
The closer theMBE is to zero, the smaller the bias of the predictive
model.

MBE =
1

n

∑n
i=1 Actual valuei − Predicted valuei (11)

In this study, the R2, RMSE, MAE, and MBE metrics are
employed to evaluate and contrast the performance of the machine
learning regression models, which are executed utilizing Python.

Frontiers inNeurology 07 frontiersin.org

https://doi.org/10.3389/fneur.2024.1470759
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Wang et al. 10.3389/fneur.2024.1470759

FIGURE 6

Decision tree error curve for training and testing sets.

2.4 Experimental data acquisition

2.4.1 Data collection
This experiment recruited 15 healthy volunteers to

participate in the study. The participants were physically healthy
individuals without limb injuries, cognitive impairments,
or adverse habits. The data collection took place at the
Key Laboratory of Medical Information Engineering,
School of Medical Informatics, Guangzhou University of
Chinese Medicine. Prior to the experiment, all participants
were familiarized with the experimental protocol and
procedures, and they provided informed consent by signing
a consent form. The entire experiment was reviewed and
approved by the Ethics Committee for Human Biomedical
Experiments at Guangdong Provincial Hospital of Traditional
Chinese Medicine.

The sEMG was collected using a six-channel EMG muscle
electrode sensor, while the motion data was captured using
an MPU6050 inertial sensor. According to the physiological
structure of the human body, synchronized sEMG were collected
from the anterior deltoid, middle deltoid, and posterior deltoid
muscles of the left upper limb of each participant, along with
the velocity and angular data during the movement of the left
upper limb.

Before testing, the participants cleaned the skin around
the muscles with 75% alcohol to reduce low-frequency noise
caused by electrode movement due to sweat. During the
experiment, the participants remained seated with their elbow
joints in a fully extended position. They performed shoulder
flexion movements of the left upper limb, and each complete
shoulder flexion movement was defined as lifting the left
upper limb from the midline of the trunk and returning
it to the original position. Each participant performed 10
shoulder flexion movements at different angles. During the
movements, the participants also underwent manual muscle
testing (MMT) with the assistance of a professional rehabilitation

therapist, following the MMT muscle grading standards (as shown
in Table 1).

2.4.2 Database setup
In this experiment, a total of 15 healthy participants each

performed 10 repetitions of shoulder flexion movements, resulting
in 150 data points collected. A dataset was constructed based
on the gathered sEMG and motion information, extracting
features such as iEMG, RMS, MAV , VAR, MF, and 24 features
collected by the MPU6050 including Gyrox, Gyroy, Gyroz, Accx,
Accy, Accz, Pitch, Roll, and Yaw. Each of the 150 data points
was characterized by these 24 features. Muscle strength in the
participants was assessed using the Manual Muscle Testing
(MMT) scale, which categorizes muscle strength from 0 to 5.
Rehabilitation therapists evaluated muscle strength based on the
movement process combined with the MMT scale, resulting
in a muscle strength assessment for each movement of each
participant, totaling 150 assessments. Due to factors such as muscle
fatigue, a subset of 125 data points was selected for analysis
after screening.

The dataset was formed by taking the features as independent
variables and the muscle strength as the target variable (dependent
variable). The dataset was divided into a 70% training set and a 30%
testing set. The regression models were trained using the training
set, and the trainedmodels were used to predict themuscle strength
on the testing set. Finally, the performance of the models was
evaluated using four evaluationmetrics:R2,RMSE,MAE, andMBE.
To mitigate the influence of unit differences between variables,
a linear transformation function was applied to normalize the
variables (50).

y =
x−Minx

Maxx −Minx
(12)
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FIGURE 7

RF model prediction results. (A) Training set—predicted values vs. actual values. (B) Testing set–predicted values vs. actual values.

3 Results

3.1 Experimental results analysis

3.1.1 Results of the RF regression model
The 125 selected data points from this experiment were

integrated into a RF model, and the model was fine-tuned by

adjusting parameters, focusing on key training parameters such as

the number of decision trees and the minimum samples required
at each leaf node. The number of decision trees is crucial for

enhancing the model’s stability and accuracy, albeit at the cost of
increased training time. On the other hand, setting a minimum

sample requirement at each leaf node helps in reducing model
complexity and guarding against overfitting. In this experiment,
100 decision trees and a minimum leaf size of 5 were selected. The
RFmodel was trained and predicted on the training and testing sets,

respectively. The results encompassed the decision tree error curve
(Figure 6), training set outcomes (Figure 7A), test set predictions
(Figure 7B), and feature importance analysis (Figure 8).

The analysis of the error values depicted in Figure 6 reveals
a stabilization tendency below 0.02 when the decision tree count
ranges between 20 and 100. Notably, exceeding 100 decision trees
escalates the computational time significantly. Consequently, to
balance between computational efficiency and model performance,
a decision tree count of 100 was deemed optimal. At this juncture,
the average error on the test set falls below 0.02, signaling robust
stability and efficacy. The training set plays a foundational role in
nurturing the RF regression model. As evidenced in Figure 7A, the
comparison of predicted versus actual values in the training set
yielded an RMSE of 0.2635. Subsequently, the testing set utilizes
the trained model for prediction, as shown in Figure 7B, where the
RMSE value stands at 0.3039.
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FIGURE 8

Distribution of feature importance.

The main advantage of RF lies in its capability to conduct
feature importance selection. This determination is based on the
entire dataset rather than individual training or testing sets, as
displayed in the rankings and scores of feature importance in
Figure 8. Extracted from sEMG and motion data, 24 features were
derived and assessed using the RF model for ensemble learning.
Notably, all features exhibit positive correlations with muscle
strength, with prominent roles played by features like RMS, iEMG,
MAV , and pitch of the anterior deltoid in evaluating shoulder
flexion strength. The dominance of anterior deltoid-related features
over those linked to the middle and posterior deltoids aligns
well with the mechanics of shoulder flexion. Among the offset
angles captured by MPU6050, pitch emerges as the pivotal variable.
Given that the study predominantly measures shoulder flexion
in the left-handed coordinate system, where the humerus rotates
around the coronal axis in the sagittal plane (corresponding to
the Y-axis rotation of MPU6050) during flexion, pitch assumes
vital importance as the primary offset angle. These observations
advocate for the relative accuracy of the feature importance
outcomes derived from the RF model.

3.1.2 Results of the BPNN regression model
The 125 selected data points from this experiment were

integrated into a BPNN regression model, which was further
optimized by adjusting key model parameters. The primary
training parameters included the number of neurons in the
hidden_layer_sizes, themax_iter, the activation function, tolerance,
and initial learning rate. The number of neurons in the
hidden_layer_sizes determines themodel’s complexity and learning
capacity, with an excessive number potentially leading to
overfitting. The number of max_iter sets the maximum training

iterations to prevent overfitting or prolonged training. The choice
of activation function defines the output format of neurons.
Tolerance helps enhance efficiency by halting training when the
loss function change falls below the specified tolerance, preventing
unnecessary iterations. The initial learning rate determines the
magnitude of weight updates in each iteration, aiding in faster
convergence. For this experiment, the model had 5 neurons in
the hidden_layer_sizes, 1000 max_iter, “rule” activation function,
tolerance set to 1e-6, and an initial learning rate of 0.01. The
BPNN regression model was trained and predicted on the training
and testing sets, respectively. The results include the training set
training results (Figure 9A) and the testing set prediction results
(Figure 9B).

The training set was primarily utilized for BP neural network
model training. Figure 9A showcases the comparison between
predicted and actual values in the training set, resulting in an RMSE

value of 0.2200. In the testing phase, the trained model was applied
for prediction on the test set, depicted in Figure 9B, with an RMSE

value of 0.3173, showcasing the comparison between predicted and
actual values.

3.1.3 Results of the SVR model
The 125 selected data points from this experiment were

integrated into the SVR model, and parameter tuning was
performed on the model. The important parameters include the
kernel function (kernel) and its parameters, the regularization
parameter (C), and the epsilon parameter (epsilon). The kernel
function is used to map input features to a high-dimensional
space to enable linear separation in non-linear problems. The
coefficient gamma of the kernel function controls the influence
range of individual training samples. A large gamma value can
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FIGURE 9

BPNN model prediction results. (A) Training set—predicted values vs. actual values. (B) Testing set—predicted values vs. actual values.

lead to overfitting, while a small value may result in underfitting.
The parameter C governs the model’s complexity and tolerance.
A higher C value causes the model to focus more on the training
data, potentially leading to overfitting. The tolerance parameter
is used to define the margin of error allowed by the SVR model
during the fitting process. In this experiment, the RBF (Radial Basis
Function) kernel function was used with a gamma parameter of
0.1, a regularization parameter (C) of 10, and an epsilon parameter
of 0.1. The SVR model was trained and predicted on the training
and testing sets, respectively. The results include the training set
training results (Figure 10A) and the testing set prediction results
(Figure 10B).

The training set served as the primary platform for training
the SVR model. Figure 10A provides a visual comparison between
the predicted and actual values from the training set, resulting in

an RMSE value of 0.2669. In contrast, the testing set utilized the
trained model for predictions, showcasing the comparative analysis
of predicted versus actual values in Figure 10B, with an RMSE value
of 0.2873.

3.2 Regression model comparison

To delve into the performance of machine learning models
in detail, we conducted multiple experiments. The average
performance metrics (R2, RMSE, MAE, and MBE) for the test and
training sets, along with their standard deviations, are graphically
presented in Figures 11A–11D. Additionally, the average values and
standard deviations of all evaluationmetrics across differentmodels
for the test sets, along with the p-values, are displayed in Table 2.
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FIGURE 10

SVR model prediction results. (A) Training set—predicted values vs. actual values. (B) Testing set—predicted values vs. actual values.

From the results in Table 2, it is observed that the R2 average values
for the RF, BPNN, and SVR models on the test sets all exceed
0.75, indicating good fitting performance for all three models.
Among them, the SVR model demonstrates relatively superior
fitting performance with an R2 average value of 0.8030. The RF
model shows relatively good fitting performance with an R2 average
value of 0.7983, while the BPNN model’s fitting performance is
comparatively moderate with an R2 average value of 0.7540.

The evaluation metrics for the test sets of the RF, BPNN, and
SVR models include RMSE, MAE, and MBE. The SVR model
exhibits higher prediction accuracy with an RMSE average value of
0.2951 and standard deviation of 0.0277, an MAE average value of
0.2167 with a standard deviation of 0.0176, and an MBE average
value of 0.0323 with a standard deviation of 0.0353. The RF model
shows relatively high prediction accuracy with an RMSE average

value of 0.3120 and standard deviation of 0.0169, an MAE average
value of 0.2501 with a standard deviation of 0.0125, and an MBE

average value of 0.0068 with a standard deviation of 0.0331. The
BPNN model exhibits prediction accuracy with an RMSE average
value of 0.3542 and standard deviation of 0.0347, an MAE average
value of 0.2686 with a standard deviation of 0.0265, and an MBE

average value of 0.0482 with a standard deviation of 0.0521.
Based on the results of the standard deviations, it can be

observed that the standard deviations among the four performance
metrics are relatively small, indicating a low level of dispersion. The
P-values demonstrate the significance levels of each metric, aiding
in evaluating the performance differences among models across
different evaluationmetrics. According to the results in Table 2, it is
believed that there are significant performance differences among
the three models, suggesting that a comprehensive assessment
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FIGURE 11

Comparison of regression models. (A) Comparison of R2 results for three models. (B) Comparison of RMSE results for three models. (C) Comparison

of MAE results for three models. (D) Comparison of MBE results for three models.

should consider all four evaluation metrics in a multi-dimensional
approach.

Integrating the four evaluation metrics along with the average
values and standard deviations of each evaluation metric across
different models, it can be concluded that the SVR and RF
regression models outperform the BPNN regression model.
Specifically, the SVR model exhibits slight superiority over the
RF model in terms of prediction accuracy, indicating that SVR
demonstrates better performance and predictive capability for this
regression task.

4 Discussion

In designing this system, three widely-used machine learning
regression models were employed: RF, BPNN, and SVR. Among
these, the RF and SVR models demonstrated notable advantages
over the BPNN model, each exhibiting distinct strengths. The
primary advantage of the RF model is its ability to mitigate the
risk of overfitting by integrating multiple decision trees, making it
relatively robust to small amounts of noisy data (51). Conversely,
the SVR model excels by constructing support vectors and
hyperplanes, which enables it to handle non-linear relationships
effectively and demonstrate strong generalization capabilities (38).
In contrast, the BPNN model requires extensive training and
parameter tuning, especially when dealing with complex non-linear
relationships, large datasets, and the need to avoid overfitting.

The RF model implemented in the upper limb rehabilitation
assessment detailed in this research empowers rehabilitation
therapists to target vital muscles in the rehabilitation process by
exploiting feature importance. Furthermore, the discernment of
compensatory behaviors involving alternate muscles in patients is
facilitated through this emphasis on feature importance.

Conversely, the SVR model employed in the upper limb
rehabilitation assessment system outlined in this study
leverages support vectors and hyperplanes to analyze surface
electromyographic signals and joint movements, providing
insights for predicting upper limb rehabilitation assessment
outcomes.

The experimental findings in this study indicate that the RF
model outperformed BPNN in terms of achieving lower RMSE

and MBE on the testing set, showcasing superior prediction
accuracy for RF. Conversely, the RFmodel exhibited slightly higher
MAE compared to BPNN on the testing set. This discrepancy
highlights the distinct strengths of RF and BPNN in handling
diverse dataset characteristics; RF excels in managing complex
non-linear relationships, whereas BPNN demonstrates advantages
in addressing intricate patterns and correlations. Given the
dataset’s abundance of non-linear relationships, RF showcased
enhanced data fitting capabilities, resulting in reduced RMSE and
MBE. However, the MAE metric, because it does not consider
error direction, might lead to higher deviations between RF’s
predictions and actual values. This underscores the significance
of incorporating multiple evaluation metrics when selecting and
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TABLE 2 Results for four models on the testing set.

Model Evaluation metrics

R2 (mean ± SD) RMSE (mean ± SD) MAE (mean ± SD) MBE (mean ± SD)

BPNN 0.7540±0.0182 0.3542±0.0347 0.2686±0.0365 0.0482±0.0521

RF 0.7983±0.0038 0.3120±0.0169 0.2501±0.0277 0.0068±0.0331

SVR 0.8030±0.0048 0.2951±0.0277 0.2167±0.0176 0.0323±0.0353

P-Value <0.001 0.009 0.009 <0.001

assessing models to ensure a comprehensive evaluation of their
performance and adaptability.

The implications of this research are particularly pertinent
for individuals with upper limb impairments post-clinical stroke.
By utilizing the device to gather pertinent data on upper
limb movements and utilizing appropriate models to predict
muscle strength outcomes, rehabilitation therapists can craft
personalized and precise rehabilitation strategies, providing
a valuable framework for tailored and precise rehabilitation
strategies.

However, this study is subject to several limitations.
Firstly, the study cohort comprised healthy adults aged 20–
28, warranting future investigations considering demographic
variations such as age, history of skeletal joint diseases, and
geriatric conditions. If conditions permit, further data collection
on stroke patients’ rehabilitation training and assessment
will be conducted to enhance the database. Secondly, the
research solely concentrated on electromyographic and joint
activity data collection during shoulder flexion movements,
neglecting multi-joint and multi-directional movements. Thus,
further enhancements are imperative to refine the predictive
accuracy of the proposed method for assessing upper limb
muscle strength.

5 Conclusion

In conclusion, this study introduces an upper limb
rehabilitation muscle strength assessment system based on
parameters like motion speed, angular displacement, and data
acquired through sEMG andMPU6050. Addressing the limitations
of exclusive reliance on sEMG for motion recognition, the system
emphasizes the analysis of muscle strength levels during shoulder
flexion. By utilizing sEMG and motion capture methodologies,
machine learning regression models are developed to forecast
muscle strength levels. Conducting experiments on 15 participants
involving upper limb shoulder flexion movements validated
the fitting performance and accuracy of the RF, BPNN, and
SVR regression models. Among these models, the SVR model
demonstrates relatively superior overall performance, followed
by the RF regression prediction model. Both SVR and RF
exhibit significantly higher accuracy compared to BPNN. The
study outcomes underscore the utility of the proposed model,
utilizing sEMG and joint motion data, in guiding shoulder flexion
movements and rehabilitation interventions. This framework
offers valuable guidance to therapists in devising individualized

rehabilitation strategies, thus furnishing both theoretical and
technical underpinnings for personalized care plans in the
future.
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