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Introduction: Posttraumatic stress disorder (PTSD) is a mental health disorder

caused by experiencing or witnessing traumatic events. Recent studies show

that patients with PTSD have an increased risk of developing dementia, including

Alzheimer’s disease (AD), but there is currently no way to predict which patients

will go on to develop AD. The objective of this study was to identify structural

and functional neural changes in patients with PTSD that may contribute to the

future development of AD.

Methods: Neuroimaging (pseudo-continuous arterial spin labeling [pCASL] and

structural magnetic resonance imaging [MRI]) and behavioral data for the current

study (n = 67) were taken from our non-randomized open label clinical trial

(ClinicalTrials.gov Identifier: NCT03229915) for treatment-seeking individuals

with PTSD (n = 40) and age-matched healthy controls (HC; n = 27). Only the

baseline measures were utilized for this study. Mean cerebral blood flow (CBF)

and gray matter (GM) volume were compared between groups. Additionally,

we utilized two previously established machine learning-based algorithms, one

representing AD-like brain activity (Machine learning-based AD Designation

[MAD]) and the other focused on AD-like brain structural changes (AD-like

Brain Structure [ABS]). MAD scores were calculated from pCASL data and ABS

scores were calculated from structural T1-MRI images. Correlations between

neuroimaging data (regional CBF, GM volume, MAD scores, ABS scores) and

PTSD symptom severity scores measured by the clinician-administered PTSD

scale for DSM-5 (CAPS-5) were assessed.

Results: DecreasedCBFwas observed in two brain regions (left caudate/striatum

and left inferior parietal lobule/middle temporal lobe) in the PTSD group,

compared to the HC group. Decreased GM volume was also observed in

the PTSD group in the right temporal lobe (parahippocampal gyrus, middle

temporal lobe), compared to the HC group. GM volumewithin the right temporal

lobe cluster negatively correlated with CAPS-5 scores and MAD scores in the

PTSD group.
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Conclusion: Results suggest that patients with PTSD with reduced GM volume

in the right temporal regions (parahippocampal gyrus) experienced greater

symptom severity and showed more AD-like brain activity. These results show

potential for early identification of those who may be at an increased risk for

future development of dementia.

KEYWORDS

Alzheimer’s disease, posttraumatic stress disorder (PTSD), MRI, arterial spin labeling

(ASL), machine learning

Background

Posttraumatic stress disorder (PTSD) is a mental health

disorder caused by experiencing or witnessing traumatic events

that include exposure to actual or threatened death, serious

injury, or sexual violence (1, 2). Symptoms consist of intrusive

memories, avoidant behaviors, increased anxiety, and flashbacks

(1, 3). A recent study has shown that 63% of Canadians above

the age of 18 will likely experience at least one traumatic event

and that approximately 7% of Canadians will screen positive for

PTSD during their lifetime (4). Prevalence rates appear similar

across the United States (5, 6). This risk of PTSD increases in

vulnerable populations including: women (7), military personnel

(8), first responders (9) and health care workers (10). As the

population grows, the impact of PTSD will continue to increase—

understanding this disorder and its neurobiological impact will be

increasingly important for treatment.

PTSD is categorized as a Trauma- and Stressor-Related

Disorder and does not have a clear neurobiological cause; yet,

emerging evidence suggests that PTSD predisposes individuals to

developing dementia later in life (1, 11–13). In fact, it has been

suggested that the increased risk of developing dementia following

a PTSD diagnosis is 1.5 to 2-fold compared to people without PTSD

(14, 15). The increased risk of dementia in PTSD spans a variety of

diagnoses including: frontotemporal dementia, vascular dementia,

and Alzheimer’s disease (AD) (16). The present study focuses on

the most prominent cause of dementia (AD), which accounts for

approximately 70% of all dementia cases (17).

In contrast to PTSD, which can occur at any age but on average

begins in young adulthood to middle-age, AD symptoms typically

present around age 65 (18). The biggest risk factor for developing

AD is age −47% of people tested above the age of 85 had probable

diagnoses of AD (19). PTSD and AD share common symptoms

including negative changes in mood and cognition, personality

changes, memory difficulties and alterations in arousal or reactivity

symptoms (20, 21). A recent study suggests that PTSD symptom

severity is associated with accelerated cognitive decline, a leading

symptom of AD (22).

Although the neurobiological underpinnings of PTSD have

been difficult to isolate, a recent meta-analysis identified several

brain regions that have been shown to have reduced gray matter

(GM) volume, including the medial frontal gyrus, posterior

cingulate gyrus, hippocampus, amygdala, prefrontal cortex (PFC),

and insula (23). Furthermore, significant correlations have been

observed between increased PTSD symptom severity and decreased

GM volume within the temporal lobe, and most commonly in

the hippocampus (24–26). Interestingly, AD also typically shows

neurodegeneration in the medial temporal lobe, hippocampus

and amygdala (27–31). In addition to these memory-related

brain regions, AD can also be characterized by decreased activity

(cerebral blood flow [CBF] or metabolism) in the frontal cortex

and posterior cingulate cortex (32–36) which are also commonly

found in PTSD (37–40). These overlapping neuroimaging findings

may point to a mechanism for the increased risk of AD following a

PTSD diagnosis.

Currently, no biomarkers are available to identify which

patients with PTSD will progress to AD. This study explores

different neuroimaging modalities to investigate possible neural

biomarkers of dementia in a high-risk population. In this study,

we characterize GM volume and CBF differences between PTSD

andHC groups, then apply twomachine learning algorithms across

two neuroimaging modalities to estimate AD-like Brain Structure

(ABS) scores (41) and AD-like activity pattern (Machine learning-

based AD Designation [MAD]) scores (42) in PTSD. MAD scores

indicate how similar a patient’s brain activity is to AD patterns of

brain activity—the higher the score, the greater the similarity. The

MAD algorithm was originally trained using fluorodeoxyglucose

(FDG) positron emission tomography (PET) data of 94 patients

with AD and 111 age-matched HC from the AD Neuroimaging

Initiative (ADNI; http://adni.loni.usc.edu/) database. MAD has

been shown to be compatible with CBF images derived from

perfusion SPECT (42) and pCASL data (43). Furthermore, MAD

scores have been shown to increase over time only in patients with

mild cognitive impairment (MCI) who later progress to dementia—

MAD scores of patients with stable MCI remained stationary

(44). Finally, MAD scores were also elevated in patients with

epilepsy experiencing cognitive decline, compared to cognitively

intact patients with epilepsy (45), suggesting its utility in identifying

at-risk individuals with comorbidity.

Materials and methods

Participants

A total of 67 participants aged 18–65 were recruited

for the open-label, non-randomized parallel clinical trial

(ClinicalTrials.gov Identifier: NCT03229915)—only baseline

data were used for the present study. Two groups were included

in this study: PTSD (n = 40) and HC (n = 27). Patients in

the PTSD group were treatment-seeking individuals who had

experienced a criterion A traumatic event. The HC group consisted
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TABLE 1 Demographic and CAPS-5 data for PTSD and HC groups.

PTSD HC t or χ
2 df p

N 40 27

Age (years) 40.0 (±11.9) 35.4 (±14.0) −1.426 65 0.159

Sex (M:F) 14:26 11:16 0.227 1 0.634

Handedness

(R:L)

33:6† 24:3 0.247 1 0.619

Education

(years)

14.0 (±2.6) 16.5 (±3.2) 3.556 65 0.001∗

CAPS-5 33.4 (±9.4) 0.8 (±1.5) 17.771 65 <0.001∗

MAD −0.516 0.000 1.376 65 0.174

ABS 0.184 0.229 0.831 65 0.409

∗Significant at p < 0.05. †Data missing for one participant. MAD scores are z-score

normalized. CAPS-5, Clinician-administered PTSD scale for the DSM-5; MAD, machine

learning-based Alzheimer’s disease designation; ABS, Alzheimer’s disease brain structure.

of trauma-naïve (TNC; n = 15) and trauma-exposed (TEC; n =

12) participants; due to low sample size TEC and TNC groups were

pooled. TEC participants met CAPS-5 Criterion A (i.e., exposure

to a traumatic event), while obtaining a CAPS-5 total severity score

of ≤ 5. Demographic data are provided in Table 1.

Exclusion criteria for all participants included substance

dependence not in remission for at least 3 months, uncontrolled

bipolar or psychiatric disorder, history of panic attacks, heart

disease, respiratory distress, or neurological conditions including

traumatic brain injury (TBI), as well as any MRI contraindications

(e.g., metal implants or pregnancy). The CAPS-5 interview was

administered to all participants to assess PTSD diagnosis and

symptom severity (see Table 1). This study was approved by the

Biomedical Research Ethics Board of the University of Manitoba

and performed according to regulations. Participants provided

written informed consent prior to participating in the study and

received an honorarium for their time.

MRI acquisition

MRI scans were acquired from all participants to investigate

brain structure and function. Scans were acquired using a 3 Tesla,

12-channel Siemens MAGNETOM Verio MRI scanner (Erlangen,

Germany) at the Kleysen Institute for Advanced Medicine in

Winnipeg, Canada. Imaging acquired during each session included

an anatomical T1-weighted scan (MPRAGE sequence; TR/TE/TI

= 2,300/3.02/900ms; flip angle = 9◦; field of view (FOV)

= 256mm × 256mm with 1.00mm × 1.00mm × 1.00mm

resolution; 240 slices), a resting state functional T∗
2- weighted scan

(scan duration = 11min; results forthcoming elsewhere), and a

pseudo-continuous arterial spin labeling scan (pCASL; TR/TE =

4,000/12ms; flip angle = 90◦; FOV = 240mm × 240mm with

3.8mm × 3.8mm × 5mm resolution; 90 volumes; 20 slices; slice

thickness= 5; inter-slice gap= 1mm; labeling time= 2 s; post label

delay time= 1.2 s; bandwidth= 3 kHz/pixel). M0 images were also

acquired (TR/TE= 8,000/12ms) to calibrate the pCASL images.

Structural MRI analysis

Structural T1-weighted images were preprocessed using

the CAT12.8.2 toolbox (r2170; https://neuro-jena.github.

io/cat/index.html) using SPM12 software (version 6909,

www.fil.ion.ucl.ac.uk/spm/). First, a robust bias correction

was applied to the MRI scans to reduce intensity variations.

Then, the scans were segmented into gray matter (GM), white

matter, and cerebrospinal fluid maps and spatially normalized into

Montreal Neurological Institute (MNI) space (voxel size 1.5mm

× 1.5mm × 1.5mm) using the DARTEL algorithm. Modulation

was applied to keep the volume information accurate. For VBM

analysis, we smoothed the modulated GM images with an 8 mm3

full-width at half-maximum (FWHM) Gaussian kernel to improve

the signal-to-noise ratio.

In order to detect any morphological differences in GM

between individuals with PTSD and HC, we conducted a two-

sample t-test on the smoothed GM images using SPM12 software.

Age, sex, and total intracranial volume (TIV) were included

as covariates during the analysis. An explicit mask, comprised

of an average of all participant’s GM masks, was used to

limit search regions inside the GM of the brain. Results are

considered significant at a cluster-forming threshold of p <

0.001 (uncorrected) and a cluster-level threshold of p < 0.05,

corrected using family-wise error (FWE). Individual-level mean

GM volumes were extracted from the significant clusters for further

correlational analyses.

We estimated the previously described ABS scores (41) utilizing

the region-based morphometry feature in CAT12 to obtain

whole-brain GM volumes based on the neuromorphometrics

atlas (www.neuromorphometrics.com; 136 regions in total), along

with subregions of the hippocampus (18 regions) (46) and the

cerebellum (26 regions) (47). Additionally, cortical thickness (CT)

measurements were assessed using the Desikan-Killiany-Tourville

(DKT) atlas, which defines 34 regions of interest in each cerebral

hemisphere (48). In order to adjust for variations in brain size,

the volumes of each subject were normalized by respective TIV.

TIV was determined using the CAT12 toolbox (49). Utilizing

the aforementioned brain structure-describing information, ABS

ranks the most relevant features for classifying AD vs. HC

based on a support vector machine (SVM) (41). The details

of ABS model replication and validation are included in the

Supplementary material.

CBF analysis

For the CBF analysis, pCASL images were preprocessed using

the default parameters of the ASLtbx (https://www.cfn.upenn.edu/

zewang/ASLtbx.php) (50). First, data were realigned, then co-

registered to the structural T1-weighted image, segmented and

spatially normalized to standard MNI space (using nonlinear

normalization by applying the deformations from the structural

CAT12 analysis), and smoothed with an 8 mm3 FWHM Gaussian

kernel, as described previously (51). Mean CBF images were

produced and contrasted between the groups using SPM12. Age

and sex were included as covariates. An explicit mask using the
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average whole-brain map of all participants was used to limit search

regions within the brain. Results are considered significant at a

cluster-forming threshold of p < 0.001 (uncorrected) and a cluster-

level threshold of p < 0.05, corrected using FWE. Mean regional

CBF values were extracted from significant clusters for further

correlational analyses.

The smoothed mean CBF images were further assessed using

our previously developed MAD algorithm (available at: https://

www.kolabneuro.com/software1) (42). In the original work, out of

the five different algorithms tested, the SVM with iterative single

data algorithm (ISDA) was the best-performing machine (84%

sensitivity and 95% specificity) for distinguishing between AD and

HC—this algorithm was used in the present study (42).

Statistical evaluation

Statistical analyses were conducted using the Statistical Package

for the Social Sciences (SPSS; IBM Corp., version 27.0, Armonk

NY) software. Demographic data were assessed using independent

t-test or chi2, as appropriate (Table 1). Additionally, correlations

between neuroimaging data (significant clusters in GM and CBF

whole-brain analyses and MAD and ABS scores) and CAPS-5 total

severity scores were assessed. Results were considered significant at

p < 0.05.

Results

PTSD and HC groups did not significantly differ for age or

sex (Table 1). CAPS-5 scores and years of education significantly

differed between groups (Table 1)—the PTSD group had higher

PTSD symptom severity scores (t(65) = 17.771, p < 0.001), as

expected. Additionally, the PTSD group on average had fewer

years of education (t(65) = 3.556, p = 0.001). Sex, age, and TIV

(GM volume analyses only) were used as covariates throughout

the study.

GM volumes

Reduced volume was observed in the right middle temporal

gyrus/parahippocampal gyrus for the PTSD group, compared to

the HC group (Table 2, Figure 1). No regions showed significantly

larger volume for the PTSD group, compared to the HC group.

GM volume of the middle temporal gyrus cluster correlated with

CAPS-5 total symptom severity scores (r = −0.461; p = 0.005;

Figure 2).

ABS scores did not show any significant difference between the

PTSD and HC groups (t(65) = 0.831, p= 0.409). Further evaluation

using a proportions z-test indicated that 11.1% (3/27) of the HC

group and 7.5% (3/40) of the PTSD group were classified as AD-

like, resulting in a z-statistic of 0.508, p = 0.612 (proportional

difference = 3.61%, 95% CI = [−10.78%, 18.00%], Cohen’s d =

0.1259), indicating no statistically significant difference between

the groups.

TABLE 2 Whole-brain volume-based morphometry di�erences between

groups (PTSD > HC), using age, sex, and total intracranial volume as

covariates.

Region BA Voxels p-
value

t-
value

Peak
coordinates

X Y Z

Right middle

temporal gyrus

20,

21

1,155 0.010∗ −4.43 39 6 −33

∗Significant at p < 0.05, FWE corrected for multiple comparisons. BA, Brodmann area.

CBF

The PTSD group showed significantly lower CBF in two

clusters, primarily in the left hemisphere, compared to the HC

group (Table 3, Figure 3). The first cluster (3,933 voxels) had peak

coordinates in the caudate and striatum and extended to the insula,

parahippocampal gyrus, inferior frontal gyrus, limbic lobe and

amygdala. The second cluster (4,069 voxels) peaked within the

middle temporal gyrus and inferior parietal lobule and extends to

the pre- and postcentral gyri. There was no significantly increased

CBF for the PTSD group, compared to the HC group. The mean

CBF values of either cluster did not correlate with CAPS-5 total

severity scores.

MAD scores did not significantly differ between groups [t(65)
= 1.376, p = 0.174]. At the individual level, five of the PTSD

patients showed MAD scores (z-score) higher than 1.96 (p < 0.05),

compared to none of the HC participants (χ2 = 3.647, p = 0.076).

MAD scores correlated with GM volume in the significant middle

temporal gyrus cluster identified above (r = −0.423; p = 0.010;

Figure 2). A non-significant trending correlation was also observed

between MAD scores and CAPS-5 total severity scores (r = 0.302,

p = 0.065). Other correlational analysis results are summarized in

Supplementary Table S1.

Discussion

The goal of the present study was to find a novel non-invasive

early neurological marker of AD in PTSD. We used machine

learning algorithms (MAD and ABS) paired with neuroimaging

and clinical variables to investigate these markers. The combination

of these algorithms and PTSD symptom severity scores (CAPS-

5) allowed us to identify a significant region of decreased brain

volume in PTSD, associated with greater similarity to AD resting

brain activity. Interestingly we noticed these markers in a PTSD

participant group whose ages are younger than the typical age of

diagnosis of AD.

As expected, and consistent with diagnostic criteria, there was

a significant difference in CAPS-5 total symptom severity scores

between the PTSD group and HC group, indicating increased

PTSD symptom severity in the PTSD group (1, 52, 53). The

CAPS-5 total severity scores were used as our primary psychiatric

variable throughout the study. Additionally, education significantly

differed between groups (Table 1), which is not surprising given

that many of the participants in the PTSD group had careers as
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FIGURE 1

Whole-brain voxel-based morphometry results for the PTSD > HC contrast. The significant cluster (1,155 voxels) is identified in blue, indicating

reduced volume in this region for the PTSD group, relative to HC.

TABLE 3 Whole-brain cerebral blood flow di�erences between groups

(PTSD < HC), using age and sex as covariates.

Region BA Voxels p-
value

t-
value

Peak
coordinates

X Y Z

(1) Left

Caudate/

Striatum

13,

45,

47

3,933 0.004∗ 5.06 −8 9 10

(2) Left middle

temporal

gyrus/inferior

parietal lobule

7,

39,

40

4,069 0.003∗ 4.45 −48 −75 28

∗Significant at p < 0.05, FWE corrected for multiple comparisons. BA, Brodmann Area.

public safety personnel, typically requiring fewer years of formal

education than our HC cohort, which had higher than average years

of education.

Structural neuroimaging results identified one region of

significantly reduced GM volume for the PTSD group, compared

to the HCs (Figure 1). This middle temporal gyrus cluster included

the parahippocampal cortex and Brodmann’s areas (BA) 20 and

21 (Table 2). BA 20 is typically associated with processing visual

information and memory association while BA 21 is involved

in semantic memory processing, language processing and visual

perception (54). Taken together, reduced volume within these

regions may be associated with the experience of traumatic events

and the ability to recall these memories (3, 55), andmay be involved

in symptoms such as flashbacks and accurate memory retention

of traumatic events (1, 52). This result of decreased volume in

the middle temporal lobe, more specifically the hippocampus and

surrounding regions, is a common finding among PTSD structural

neuroimaging results (56–58).

Interestingly, GM volume within this region was significantly,

negatively correlated with CAPS-5 scores—smaller volume in this

region was associated with greater symptom severity—a finding

corroborated in the literature (24, 25). Furthermore, reduced GM

volume in the temporal lobe cluster also correlated with MAD

scores. In AD, the middle temporal lobe is the first region to

begin showing neurodegeneration (30, 59), corresponding to the

defining symptom of AD: memory deterioration (60). Although

a causal role cannot be determined by the present study, it may

be the case that individuals with reduced volume in this middle

temporal region may be more susceptible to developing AD (as

well as PTSD). Alternatively, trauma and the effects of PTSD

may cause neurodegeneration in this region that increases the

risk of dementia later in life. However, it is interesting to note

that recently, psychological trauma in an animal model induced

GM volume reduction in the hippocampus and globus pallidum

(61). Further large-scale longitudinal investigations such as the

UK Brain Bank (https://ukbbn.brainsfordementiaresearch.org) and

Biofinder (https://biofinder.se/) should be used to shed more light

on causality.

Topographically, MAD scores are determined by the overall

whole-brain metabolic pattern, which is projected to a hyperplane

used to differentiate between AD and HC (42). This hyperplane

was largely characterized by hypometabolism in temporal regions.

Therefore, it is not surprising that the regional GM reduction in

the temporal regions observed in the present study correlated with

increasing MAD scores in PTSD (Figure 2). While it remains to be

seen whether there is any causal relationship between the location

of the GM deterioration and AD progression, the lack of significant

correlation within the HC group suggests that the medial temporal

lobe may be an important region for predicting AD-risk in PTSD.

None of the ABS scores, which focus on AD-like structural

patterns, correlated with any other neuroimaging results (GM,

CBF, or MAD) or symptom severity (CAPS-5). Although the

regional GM deficiency revealed by VBM analysis (Figure 1)

spatially overlapped with features used in ABS classification, it

should be noted that it does not constitute that they reflect

the same pathology. The local GM difference between HC and

PTSD groups was highly localized and it primarily reflects

the PTSD-related changes (hence correlated with CAPS-5). On

the contrary, ABS scores did not differ between groups. The

relatively small regional atrophy in the right middle temporal

lobe in our cognitively healthy PTSD sample may have not

been sufficient to affect ABS scores, which capture the entire

brain structural changes associated with AD. Nevertheless, the

MAD score was correlated with regional GM changes. This

observation is in line with the finding that AD-specific structural
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FIGURE 2

Correlation results. Medial temporal lobe volume correlates with CAPS-5 scores (left) and standardized MAD scores (right) in the PTSD group (teal,

filled circles), but not the HC group (black, empty triangles).

FIGURE 3

Whole-brain cerebral blood flow results for the PTSD > HC contrast. Significant clusters are identified in blue, indicating reduced cerebral blood flow

in these regions for the PTSD group, relative to HC.

changes appear to occur after the functional (and/or vascular)

changes (62).

Previously, alterations in CBF have been shown in PTSD,

including increased activation in the amygdala (63) and decreased

activity in the ventromedial prefrontal cortex and the inferior

frontal gyrus (64). Our current results identified decreased CBF

within the left caudate and striatum; this large cluster additionally

encompassed the inferior frontal gyrus and insula—these findings

confirm previous CBF findings of decreased activity in these

cortical regions (64–67). Interestingly, research suggests that the

insula and inferior frontal gyrus have become target stimulation

regions for improving attentional decline in AD (68).

The second cluster, showing significantly reduced CBF in

the left middle temporal gyrus and inferior parietal lobule in

the PTSD group corresponds with the frontoparietal network

(FPN; also known as the central executive network), a resting

state network associated with attention and executive processing.

Previous neuroimaging studies showed both increased (69–71)

and decreased activity (65, 72–75) within this region in PTSD.

Discrepancy in activity within this region in the literature may be

due to several factors: first, whether resting metabolic/CBF or task-

related activity are considered, as outlined, second, some studies

have found reduced activity within the left IPL in the acute stage

following traumatic exposure, when exposed to trauma-related (76)

or fear-learning stimuli (77). In fact, left IPL activity in the acute

phase was negatively correlated with symptom severity 3 months

later (77).

The regional CBF did not correlate with MAD scores. Similar

to the above interpretation for the lack of significant correlation

between regional GM volumes and ABS scores, the reduced

regional CBF, which reflect PTSD-related changes, may have not

been sufficient to influence the MAD scores, which reflect the risks

of dementia. It should also be noted that CBF images are much

noisier than GM images, the regional change of which has shown

to be correlated with MAD scores.

Limitations of this study include that its design was cross-

sectional in nature; longitudinal study is required to confirm

if patients with these identified neurological patterns go on to
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develop dementia, and more specifically, AD.We also acknowledge

that there may be a selection bias for the HC groups as many

of these participants were recruited by word of mouth and

advertisements within the hospital and university settings, which

may contribute to the higher years of education observed in

this sample.

We usedMAD scores for assessing AD-associated brain activity

changes and ABS for assessing AD-associated brain structural

changes. MAD was correlated with GM volume reduction in the

medial temporal area which was correlated with PSTD symptom

severity measured by CAPS-5. ABS was not correlated with any

other measures. Taken together, as symptom severity increases, the

brain structure and function become more AD-like, in the PTSD

group—it is possible that these individuals who have higher MAD

scores may be more susceptible to developing AD in the future.

The data presented in our study are more poignant when the

average age of our PTSD sample (i.e., 40.0 years) is considered—

neurodegeneration in AD typically begins around 55 years of age

(78). Early identification of individuals at an increased risk for

developing dementia later in life is important for implementing

disease-modifying preventative care.

In the current study, we used machine learning for early

detection of markers associated with AD in PTSD. This study may

provide information that will allow for a better understanding of

brain structure and function in PTSD and how it may relate to the

progression and possible increased risk of AD and dementia. To

our knowledge, this is the first study that uses machine learning to

assess the defining characteristics of AD within a PTSD population

using neuroimaging.
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