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Introduction: Although stimulation-induced sensations are typically considered 
undesirable side effects in clinical DBS therapy, there are emerging scenarios, 
such as computer-brain interface applications, where these sensations may 
be  intentionally created. The selection of stimulation parameters, whether to 
avoid or induce sensations, is a challenging task due to the vast parameter space 
involved. This study aims to streamline DBS parameter selection by employing 
a machine learning model to predict the occurrence and somatic location of 
paresthesias in response to thalamic DBS.

Methods: We used a dataset comprising 3,359 paresthetic sensations collected 
from 18 thalamic DBS leads from 10 individuals in two clinical centers. For each 
stimulation, we modeled the Volume of Tissue Activation (VTA). We then used 
the stimulation parameters and the VTA information to train a machine learning 
model to predict the occurrence of sensations and their corresponding somatic 
areas.

Results: Our results show fair to substantial agreement with ground truth in 
predicting the presence and somatic location of DBS-evoked paresthesias, with 
Kappa values ranging from 0.31 to 0.72. We observed comparable performance 
in predicting the presence of paresthesias for both seen and unseen cases 
(Kappa 0.72 vs. 0.60). However, Kappa agreement for predicting specific somatic 
locations was significantly lower for unseen cases (0.53 vs. 0.31).

Conclusion: The results suggest that machine learning can potentially be used 
to optimize DBS parameter selection, leading to faster and more efficient 
postoperative management. Outcome predictions may be used to guide clinical 
DBS programming or tuning of DBS based computer-brain interfaces.
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Introduction

Deep brain stimulation (DBS) has emerged as a promising 
treatment for a variety of neuropsychiatric diseases (1). It is established 
for movement disorders such as Parkinson’s disease (2–4), essential 
tremor (5, 6), and dystonia (7, 8), and for epilepsy (9, 10). It is an 
emerging therapy in neuropathic pain (11) and selected psychiatric 
disorders like major depression and obsessive-compulsive disorder 
(12, 13). Despite its clinical efficacy, DBS is frequently accompanied by 
undesirable side effects, which can adversely affect patient satisfaction 
and treatment outcomes (14–16). Conversely, in emerging technologies 
such as computer-brain interfaces (CBI), implanted electrodes can 
be used to deliberately induce sensations like paresthesias (17, 18).

With respect to clinical applications, major challenges in the 
post-implant management of DBS therapy remain. In particular, 
optimizing stimulation parameters presents a significant bottleneck 
in DBS therapy. One of the most important factors is searching the 
vast parameter space involved in DBS programming, which is often 
done manually (15, 19). Computer algorithms offer significant 
potential to improve the efficiency and accuracy of DBS parameter 
selection, whether the intended outcome is maximizing symptom 
reduction, minimizing side effects, or eliciting specific sensations for 
CBI applications. This work addresses the feasibility of using machine 
learning to improve the efficiency of DBS parameter selection, 
potentially overcoming some of these limitations.

Understanding the factors that contribute to paresthesias and 
devising strategies to mitigate side effects are essential to optimize 
DBS therapy. It is proposed that paresthesias result from the activation 
of sensory afferents near the DBS lead (20–22). Consequently, in DBS 
for tremor, for example, paresthesia induction can signal the activation 
of critical anatomical landmarks, such as the medial lemniscus and the 
posterior-medial border of the cerebellothalamic tract (21, 22).

One commonly used method to assess the effects of DBS is to 
simulate the Volume of Tissue Activation (VTA), which estimates 
the spatial extent of neural activation in response to stimulation 
(23–25). VTA models primarily rely on stimulation pulse width and 
current amplitude and may not fully capture the intricate 
relationships among all relevant stimulation parameters, individual 
neuroanatomy, tissue heterogeneity, and their effects on perceptual 
phenomena (26–28).

Here we aimed to predict the occurrence and spatial localization 
of paresthesias in response to thalamic DBS. To achieve this, we used 
a dataset comprising more than three thousand paresthesia location 
records, empirically obtained from 18 thalamic DBS leads in 10 
individuals across two clinical centers. We modeled the VTA for each 
stimulation trial. Stimulation parameters and VTA metrics were used 
as input variables for the prediction models, which were evaluated 
using cross-validation.

Methods

Study design

This is a cross sectional study of a single cohort of 10 individuals 
(three females), from two independent deep brain stimulation centers. 
We recruited people who had chosen deep brain stimulation (DBS) 
surgery to treat either tremor or chronic neuropathic pain. 
Demographics and the anatomical target regions of the DBS leads 
(model DB2202, Boston Scientific Corporation, Marlborough, MA, 
United States) are summarized in Table 1. The implantations took 
place between July 2019 and October 2020. The experiments took 
place between 1 and 4 days after the surgery, during the period when 
externalized extension cables were connected to the DBS leads. 
We conducted the experiments in accordance with local guidelines 
and regulations and in accordance with the Declaration of Helsinki. 
The ethics committees of both centers approved the study (agreement 
number 235/19 for Freiburg; OGYEI/23818/2019 for Budapest). All 
participants provided written informed consent prior to the 
experimental procedures.

Brain imaging

Magnetic resonance imaging
Magnetic resonance imaging (MRI) was performed without a 

stereotactic frame. MR examinations comprised T1-weighted, 
T2-weighted sequences.

TABLE 1 Patient demography and implantation information.

Patient Sex Age Indication DBS lead 
locations

Center

p1 M 72 Pain R-VPL/VPM, 

R-PVG/PAG*

Freiburg

p2 M 72 Pain R-VPL/VPM, 

R-PVG/PAG*

Freiburg

p3 M 60 Essential 

Tremor

R-VIM, 

L-VIM

Freiburg

p4 M 70 Essential 

Tremor

R-VIM, 

L-VIM

Freiburg

p5 M 66 Essential 

Tremor

R-VIM, 

L-VIM

Freiburg

p6 M 74 Essential 

Tremor

R-VIM, 

L-VIM

Budapest

p7 M 71 Parkinson’s 

disease

R-VIM, 

L-VIM

Budapest

p8 F 79 Essential 

Tremor

R-VIM, 

L-VIM

Budapest

p9 F 74 Essential 

Tremor

R-VIM, 

L-VIM

Budapest

p10 F 72 Essential 

Tremor

R-VIM, 

L-VIM

Budapest

PVG/PAG: periventricular and periaqueductal gray. VPL/VPM, ventroposterolateral and 
ventroposteromedial thalamic nuclei. VIM, ventral intermediate thalamic nucleus. Leads 
indicated with * were not used in this study.

Abbreviations: CBI, Computer-brain interface; CT, Computed tomography; DBS, 

Deep brain stimulation; MRI, Magnetic resonance imaging; PAG, Periaqueductal 

gray; PVG, Periventricular gray; SCS, Spinal cord stimulation; VIM, Ventral 

intermediate thalamic nucleus; VPL, Ventroposterolateral thalamic nucleus; VPM, 

Ventroposteromedial thalamic nucleus; VTA, Volume of tissue activated.
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In Freiburg, MR imaging was performed 1–3 days before surgery, 
and - if necessary - with the person under mild sedation. MR images 
were acquired on a whole-body 3 T MR system (PRISMA, Siemens 
Healthcare, Erlangen, Germany) using a 64 channel phased array head 
coil. For T1-weighted imaging a magnetization-prepared rapid 
gradient-echo (MP-RAGE) scan was used (TR 2,300 ms, TE 2.26 ms, 
flip angle 12°, FOV 256 mm, voxel size 1mm3). The T2-weighted scan 
was a fast spin-echo sequence (TR 2,500 ms, TE 231 ms, FOV 256 mm, 
voxel size 1mm3).

In Budapest, MR imaging was performed between 1 month and 
5 days before surgery, under general anesthesia. MR images were 
acquired on a 3 T whole-body magnetic resonance imaging system 
(Philips Healthcare, Best, The Netherlands) using an 8-element phased 
array head coil. For T1-weighted imaging a magnetization-prepared 
rapid gradient-echo (MP-RAGE) scan was used (TR 8.5 ms, TE 3.8 ms, 
flip angle 8°, FOV 256 mm, reconstructed to 1mm3 voxels). The 
T2-weighted scan was a fast spin-echo sequence (TR 12.65 ms, TE 
100 ms, FOV 254 mm, reconstructed to 1.44mm3 voxels).

Computed tomography
Pre-operative and post-operative computed tomography scans 

(CT) were both performed on the day of surgery, with the exception 
of p10 whose post-operative CT was taken the day after surgery. 
Pre-operative CT was acquired to register the stereotactic frame to the 
person’s anatomy. Post-operative CT was acquired to determine the 
positions of the implanted DBS electrode arrays.

In Freiburg, CT scans were acquired with a SOMATOM 
Definition AS scanner (Siemens Healthcare, Erlangen, Germany). The 
parameters of the preoperative CT were as follows: tube voltage 
120 kV, tube current 365 mAs, collimation 19·0.6 mm, tube rotation 
time 1.0 s, pitch 0.55, matrix 512·512, section thickness 1.5 mm, 
increment 1.5 mm. The parameters of the post-operative CT were 
identical, except for a tube current of 320 mAs. The different post-
operative scanning parameters were chosen for better electrode metal 
artifact suppression.

In Budapest, CT scans were acquired with a Brilliance 8,000 16-row 
multidetector scanner (Philips Healthcare, Best, Netherlands). The 
parameters of the preoperative CT were as follows: tube voltage 120 kV, 
tube current 350 mAs, collimation 16·0.75 mm, tube rotation time 1.0 s, 
pitch 0.942, matrix 512·512, section thickness 1.5 mm, increment 
1.5 mm. The parameters of the post-operative CT were identical, except 
for the tube rotation time of 0.75 s, pitch of 0.688, section thickness of 
2 mm, and an increment of 1 mm. The different post-operative scanning 
parameters were chosen for better electrode metal artifact suppression.

Brain stimulation

We performed the experiments in dedicated laboratory rooms in 
each of the two clinics. The participant sat on a chair, behind a regular 
office desk. At a distance of about 60–80 cm from the participant, there 
was a PC monitor to provide feedback to the participant during the 
experiment. The two participants with two leads implanted on the 
same were only stimulated through their thalamic electrodes. 
We  delivered the stimuli with an external programmable 
neurostimulator. In Freiburg, we  used a Neuro Omega stimulator 
(Alpha Omega Engineering, Nof HaGalil, Israel). In Budapest we used 
a CereStim stimulator (BlackRock, Salt Lake City, UT, USA). 

We connected the neurostimulator and the DBS lead using a surgical 
operating room cable (SC-4108; Boston Scientific, Marlborough, MA, 
USA). We  used custom software written in Matlab (MathWorks, 
Natick, MA) to send instructions to the external neurostimulator 
interface using the manufacturer’s software development kit. We asked 
participants to provide feedback about stimulation-induced sensations, 
either orally or via a button box (ResponsePixx; VPixx Technologies, 
Saint-Bruno, QC, Canada), depending on their preference. The range 
of stimulation parameters was restricted to the established safety 
ranges for deep brain stimulation. Stimulation parameters included the 
following ranges: pulse frequency 20–205 Hz, pulse width 50–250 μs, 
and pulse amplitude 0.25–3.0 mA. With the CereStim stimulator, 
electrode contact number 8 was used for the return current path. With 
Neuro Omega, contact 8 was used as a passive ground. To keep the 
applied waveforms comparable between the different stimulators, 
we  generated a basic waveform that mimics monophasic passive 
discharge. This waveform was the default throughout the experiments.

Data analysis

Image processing
Image processing was performed on a “NeuroImaging Tools and 

Resources Collaboratory Cloud Computing Environment” (NITRC-
CE) (29), running on an Amazon Web Services EC2 P3 virtual machine 
equipped with NVIDIA Tesla V100 GPUs. DICOM images were 
converted to compressed NIFTI format using MRICron’s dcm2niix 
converter (30). Tools available in the FMRIB Software Library (FSL 
6.0.6.2) were used for linear and non-linear image registrations.

Modeling of volume of tissue activated
The Volume of Tissue Activated (VTA) was modeled using 

Lead-DBS 2.6 (31) software with the FastField (32) modeling method, 
running in Matlab (version 2023a). For each stimulation trial, we used 
the respective electrode configuration, stimulation currents, and 
cathodic pulse width as input parameters for the VTA calculation. The 
axon diameter parameter was fixed to 3.5 μm. DBS contact positions 
and orientation were determined from the post-operative CT images 
using the DiODe algorithm from Lead-DBS, and subsequently 
visually verified using Brainlab Elements (Brainlab AG, Munich, 
Germany). To allow pooling of cases, the DBS contact positions were 
transformed from individual space into MNI space. The 
transformation matrix was determined by non-linear registration (12 
degrees of freedom) of the person’s T1 MRI to the 0.5mm3 MNI ICBM 
2009b NLIN ASYM brain template (MNI hereafter) using ANTs (33). 
Subsequently, the VTA modeling was done in MNI space. For further 
analysis, VTAs were converted into binary masks.

Data augmentation and preparation
During the experiment, in the majority of trials stimulation was 

applied above the sensation threshold. Thus, the empirical dataset 
contained relatively few instances in which no paresthesias were 
reported. However, our aim extended beyond predicting the somatic 
area of evoked sensations; we also aimed to predict the presence or 
absence of sensations altogether. To address this, we augmented the 
empirical dataset by introducing pseudotrials that were synthesized 
from existing empirical data. Pseudotrials were generated from the 
subset of stimulation trials where no paresthesias were reported. This 
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synthesis involved systematically generating novel combinations of 
pulse width, frequency, and stimulation currents below the empirically 
observed sensation thresholds.

The empirical dataset included multiple identical stimulation and 
response instances (e.g., due to repeating stimulation with identical 
parameters). We retained only those trials with distinct combinations 
of stimulation parameters and responses. This also ensured that during 
cross-validation, the test splits exclusively comprised data patterns that 
had not been encountered at all during the training phase. 
Subsequently, a random subset (sampled without replacement) of the 
pseudotrials were added to the set of distinct empirical trials to balance 
out the dataset such that for each individual DBS lead equal proportions 
of trials with and without sensations were available. The augmented 
dataset, comprising both empirical trials and synthetically generated 
pseudotrials, was used for further processing, including 
VTA generation.

Spatial data that are related to right-sided DBS electrodes were 
flipped so that all data is virtually projected onto the left hemisphere 
(34, 35). Consequently, analyses were performed in a unilateral frame 
of reference. For reported paresthesias, contralateral denotes the 
hemibody opposite to the stimulation location.

Definition and cross-validation of prediction 
models

For the predictions, a series of binary classifiers were trained. One 
binary classifier was trained to predict whether any sensation would 
occur or not (i.e., without predicting in which specific body parts). For 
this classifier we only provided stimulation-energy related parameters 
as features (i.e., Pw, Freq, Current, Hemisphere; see Table 2). Since the 
purpose of this classifier is to predict whether or not any sensation 
occurs (without concern for the specific location in the body), 
we limited the features to energy-related parameters. These features 
are expected to correlate with whether a sensation is triggered but 
should not reveal where the sensation occurs. Preserving spatial 
information for the specific somatic predictions also avoided 
redundancy. To predict the occurrence of sensations in specific body 
parts, a separate binary classifier was trained for each somatic area 
(e.g., finger, wrist, etc.). To these somatic prediction models 
we  provided additional features about the spatial location of the 
stimulation energy (i.e., VTAspread, VTAx, VTAy, VTAz, Freq, 
Hemisphere; see Table 2).

The prediction models used the LogitBoost algorithm for 
classification and were trained and evaluated using a nested 
two-level (K by L) cross-validation approach (illustrated in 

Figure 1). In this procedure, the outer K loop iterates over the data, 
splitting it into training-and-validation and test sets. We used two 
different approaches for outer K-fold splitting, which is further 
explained in the next section “Evaluation of predictions.” The inner 
L loop further splits the K-th training set into multiple folds. 
Prediction models were trained using cross-validation on the inner 
L folds. The splits in the inner loop were based on group folding by 
lead-id, ensuring that all trials from the same lead were held out for 
validation, thus enhancing generalization. Within each L iteration, 
the training-validation subset for each somatic prediction model 
was rebalanced so that both classes (True/False) had an equal 
number of occurrences. This was achieved by identifying the least 
frequent class and randomly dropping trials from the more 
frequent class. Trials where no sensations occurred, and thus no 
somatic areas were reported, were excluded in the training of the 
somatic prediction models. Only somatic prediction models with 
a Kappa value above 0.05 after L-fold cross-validation were 
retained. These models were then evaluated using the test sets from 
the outer K fold.

Model training and evaluation analyses were carried out in R 
(version 4.4).

Evaluation of predictions
We evaluated the predictions in two scenarios, which differed in 

the way the training-and-validation and test splits were created:

 • Intra-sample evaluation: The K test sets consisted of a random 
sample of trials with parameter-response combinations distinct 
from all trials in the training and validation sets. However, these 
hold-out trials were drawn from cases (i.e., leads) that were also 
included in the L-loop training and validation cycles. This means 
the test set includes trial instances the model has not explicitly 
been trained on, but these still come from the set of cases that 
were part of the training/validation process. Intra-sample 
performance reflects the model’s ability to generalize and predict 
outcomes for new stimulation parameter combinations within 
the same individuals used for training (i.e., like patients for 
whom prior responses are on record).

 • Inter-sample (leave-cases-out) evaluation: The K test sets only 
included trials from cases (i.e., leads) that were entirely excluded 
from the L-loop iterations of the cross-validation process. This 
means the test set contains data from cases that were completely 
unseen during the L-loop training and validation. These trials 
represent truly unseen data from new cases (i.e., similar to de 

TABLE 2 Features used for the prediction models and their definitions.

Abbrevation Definition Paresthesia Somatic Control

Pw Pulse width: duration of each cathodic stimulation pulse delivered * * *

Freq Frequency: number of cathodic stimulation pulses delivered per second * * *

Current Total cathodic current delivered each stimulation pulse * * *

Hemisphere Brain hemisphere where stimulation was applied * * *

VTAx X coordinate in MNI space of the VTA centroid *

VTAy Y coordinate in MNI space of the VTA centroid *

VTAz Z coordinate in MNI space of the VTA centroid *

VTAspread Spatial spread of the VTA, mean distance of voxels to centroid *
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novo patients), providing a more challenging evaluation of the 
model’s generalization ability.

In both scenarios, resampling with replacement was used to 
ensure a uniform number of trials per case in the test set. The number 
of trials per case was set to the average trial count across cases. This 
approach ensured that each case contributed equally to the aggregated 
test performance metrics, while maintaining the original overall size 
of the test set. The model’s performance was evaluated on two aspects: 
(1) Prediction of the occurrence of paresthesia (“paresthesia 
predictions”), and (2) prediction of the somatic locations where a 
paresthesia would occur (“somatic predictions”). Since stimulation 
could elicit paresthesias in none, one, or multiple body regions 
simultaneously, predicting the somatic locations is a multi-output 
task, where multiple target variables are predicted in parallel. Thus, 
for each trial, the paresthesia prediction and the multiple somatic 
predictions were read out in parallel and combined. The somatic 
predictions in a given trial were retained only if the paresthesia 
prediction was positive. Otherwise, all somatic area predictions were 
overridden to False.

We used Kappa as the primary metric to compare model 
performance. Kappa is a robust measure of agreement that accounts 
for chance. In addition, we  used accuracy, sensitivity, specificity, 
precision, F1-score. For the somatic prediction metrics the prediction 
of each of the multiple binary target variables was taken into account 
and aggregated. Our “distance” metric summarizes the average 
difference between observed and predicted composite somatic 
response (“thumb + finger + wrist”). A distance of 0 indicates an exact 
agreement between predictions and observations, whereas a distance 
of 0.5 signifies chance-level agreement, implying predictions are no 
better than random guessing. We  report descriptive statistics as 
averages followed by the associated standard deviation, unless stated 
otherwise. The model performance metrics were aggregated across the 

K iterations. For statistical comparison of model metrics between 
scenarios, we used the non-parametric Wilcoxon rank sum test.

Control analyses
To evaluate the contribution of VTA information to somatic 

predictions, we  conducted a control analysis. In this analysis, 
we repeated the nested cross-validation and evaluation procedure 
described earlier, but excluded the spatial features. Instead, 
we provided the model with Pw, Freq, Current, Hemisphere—the same 
features used for the paresthesia occurrence prediction model.

Additionally, we assessed the performance of two types of naive 
prediction models and used their metrics as baselines for comparison 
against actual predictions. The first naive model generated predictions 
by randomly permuting the reference (ground truth) response data. 
Consequently, its performance was influenced by the underlying class 
distribution. The second naive model always predicted True for both 
paresthesia occurrence and somatic area prediction.

Results

A three-dimensional overview of all 18 DBS leads, rendered 
together with anatomical landmarks in a common space is provided 
in Figure 2. A triple-plane orthographic rendering of all the VTAs in 
the dataset is shown in Figure 3.

The empirical data from the experiment that were used as the 
basis for the training and evaluation are summarized in Table 3. 
Across the empirical dataset, the ratio between trials with 
paresthetic sensations vs. without was 87 vs. 13%. Figure 4 shows 
an overview of the somatic areas in which paresthesias were 
reported. Each lead evoked paresthesias in at least 2 different 
somatic areas, with the exception of lead 17 (participant 10) for 
which paresthesias were evoked exclusively in the fingers. On 

FIGURE 1

Schematic of the nested cross-validation procedure. The outer K loop iterates over the data, splitting it into training-and-validation and test sets. In 
each iteration, a portion of the data is held out as a test set (outer fold), while the remaining data is used for training and validation. Within each K fold, 
the inner L loop further splits the training set into multiple folds to perform cross-validation. The prediction models are trained on the training folds 
from the inner loop and evaluated on the validation folds. After completing the inner loop, resulting models are then evaluated using the test set from 
the outer K fold.
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average (±SD), a DBS lead evoked paresthesias in 8.4 ± 5.1 different 
somatic areas. Paresthesias were most frequently reported in the 
fingers, palm (of the hand), and the thumb. For training and 
evaluation of the prediction model we  retained the subset of 
empirical trials with distinct combinations of feature and response 
values. In total, 667 pseudotrials were added to balance trials with 
and without paresthesias. This resulted in a total of 1,451 unique 
trials, with a 50 − 50% balance between no-paresthesia and 
paresthesia trials. In total, the prediction dataset comprised 3,359 
reported paresthesias across 21 different body regions. The somatic 
areas from the trials in the prediction dataset, and their counts, are 
summarized in Figure 5 and in Supplementary Figure S1.

The allocation of cases across K and L splits in the inter-sample 
(leave-case-out) cross-validation scenario is shown in 
Supplementary Figure S2. There were 8 K splits, each containing 5 L 
splits. The fold creation resulted in an average split ratio of 87.5% 
(training) vs. 12.5% (testing) for the K-folds, and 80% (training) vs. 
20% (validation) within the L-folds.

The predictions and associated performance metrics of the model 
in the two different scenarios are summarized in Figure 6. Paresthesia 
prediction performance was comparable between the intra-sample 
and the inter-sample scenarios. Although the performance metrics 
suggested worse performance in the latter scenario, the difference in 
Kappa was not significant (0.72 ± 0.11 vs. 0.60 ± 0.26; p = 0.22).

For the somatic predictions, the difference between the two 
scenarios was more pronounced. Kappa was significantly lower in the 
inter-sample scenario than in the intra-sample scenario (0.53 ± 0.09 
vs. 0.31 ± 0.10; p = 0.002). There were also significant differences in 
accuracy (83 ± 3% vs. 75 ± 7%; p = 0.005) and F1 scores (0.64 ± 0.08 vs. 
0.46 ± 0.08; p = 0.002). The differences were mainly attributed to a 
significant reduction in sensitivity, from 67 ± 11% in the intra-sample 
scenario to 43 ± 12% in the inter-sample scenario (p = 0.002), whereas 
we did not find a significant change in specificity (88 ± 4% vs. 87 ± 10%; 
p = 0.64). This performance difference was further highlighted by a 

significant shift in the composite somatic response distance metric. 
The distance between predicted and reference (ground truth) response 
was 0.17 ± 0.03  in the intra-sample scenario, whereas it was 
0.25 ± 0.07 in the inter-sample scenario (p = 0.005). The difference in 
precision was not significant (63 ± 10% vs. 55 ± 15%; p = 0.16).

To assess whether the VTA information had a relevant 
contribution to the somatic predictions we  performed a control 
analysis. In this analysis, we trained and tested the predictions using 
a feature set that excluded the VTA-related features, leaving only Pw, 
Freq, Current, Hemisphere. For the intra-sample scenario, the removal 
of the VTA-related information led to a significant reduction in Kappa 
to 0.43 ± 0.06 (p = 0.016). Sensitivity dropped from 67 ± 11% to 57 ± 6% 
(p = 0.033), and the F1-score decreased from 0.64 ± 0.08 to 0.56 ± 0.05 
(p = 0.016). Accuracy dropped from 83 ± 3% to 80 ± 3%, while the 
composite response distance increased from 0.17 ± 0.03 to 0.20 ± 0.03, 
with both changes just above the significance threshold (both 
p  = 0.064). No significant decreases were observed in specificity 
(88 ± 4% vs. 87 ± 5%; p = 0.35) and precision (63 ± 10% vs. 56 ± 10%; 
p = 0.09). These results indicate that in the intra-sample scenario, the 
inclusion of spatial VTA information improved somatic predictions. 
In contrast, the control analysis showed less differences in the inter-
sample scenario. Here the reduction in Kappa to 0.30 ± 0.08 was 
insignificant (p = 0.32). However, the reductions in precision (55 ± 16% 

FIGURE 2

Graphic rendering of the 18 DBS leads with anatomical landmark 
structures, in a common space. The anatomical structures are 
sourced from the DISTAL atlas (54). VIM is colored in yellow; VPL/
VPM in blue; Medial Lemniscus in light-yellow. The background is an 
axial T1-MRI slice (z  =  0  mm) of the MNI template. The mean 
coordinates (±SD) of the deepest contact points of the VIM-targeted 
leads were x =  −12.6 (±2.1), y =  −19.8 (±1.8), z =  −3.9 (±1.8) in the left 
hemispheres, and x =  13.6 (±1.6), y =  −19.6 (±1.7), z =  −3.5 (±1.9) in 
the right hemispheres. For the VPL-targeted leads these were x =  10.1 
(±0.4), y =  −24.2 (±1.7), z =  −7.8 (±0.9).

FIGURE 3

VTAs rendered and overlaid on a MNI T1 Magnetic Resonance Image 
(MRI) in axial (z =  141), coronal (y =  232), and sagittal (x =  170) slices. 
Right-sided VTAs were mirrored so that these are projected onto the 
left hemisphere. The crosshairs indicate where the slices intersect. 
The yellow rectangles delineate the target areas of each 
magnification inset. VTA pixels are color coded by lead number and 
flattened along the axis that is not visible in that specific view. VTA 
pixels are transparent to allow overlapping areas to blend. A, anterior; 
L, left; S, superior; P, posterior.
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to 47 ± 8%; p = 0.052) and specificity (87 ± 10% to 84 ± 3%; p = 0.052) 
were both close to the significant threshold. No significant changes 
were observed in the other metrics.

Finally, we compared the prediction performance metrics to the 
naive baseline predictions, as summarized in Supplementary Figure S3. 
For both scenarios, Kappa values for the actual predictions were 
significantly higher than those of the random and constant-baseline 
models (all p < 0.001, with one exception). In the inter-sample somatic 
predictions, the associated p-value (p = 0.026) was substantially larger 
than the p-value of the other control comparisons, indicating a more 
modest level of significance. In line with this finding, the naive 
predictions revealed a bias caused by a higher proportion (77%) of 
False instances in the ground truth for the somatic predictions. This 
was reflected in the accuracy metric of the naive models: Random 
predictions yielded an accuracy of 73%, while the constant True 
output (representing the opposite class) resulted in an accuracy of 
25%. In light of these observations, the somatic prediction model 
appears to have marginal predictive power for unseen cases.

Discussion

In this study, we aimed to predict paresthesias’ occurrence and 
locations in response to thalamic DBS in individuals with two different 
clinical symptoms (tremor vs. neuropathic pain), and electrode 
locations (Vim-nucleus vs. VPL/VPM nuclei, respectively). Using a 
dataset comprising a large number of stimulation responses obtained 
empirically from 18 DBS lead implanted in 10 individuals, we explored 

TABLE 3 Counts and percentages of stimulation trials and their responses 
obtained in the experiment.

Lead id Patient id Paresthesias No 
paresthesia

1 p1 67 (97.1%) 2 (2.9%)

2 p2 147 (95.5%) 7 (4.5%)

3 p3 96 (90.6%) 10 (9.4%)

4 p3 82 (95.3%) 4 (4.7%)

5 p4 347 (89.7%) 40 (10.3%)

6 p4 226 (91.5%) 21 (8.5%)

7 p5 47 (90.4%) 5 (9.6%)

8 p5 197 (92.9%) 15 (7.1%)

9 p6 20 (95.2%) 1 (4.8%)

10 p6 17 (100.0%) 0 (0.0%)

11 p7 225 (79.5%) 58 (20.5%)

12 p7 174 (87.9%) 24 (12.1%)

13 p8 107 (69.5%) 47 (30.5%)

14 p8 84 (70.6%) 35 (29.4%)

15 p9 131 (86.8%) 20 (13.2%)

16 p9 13 (72.2%) 5 (27.8%)

17 p10 124 (85.5%) 21 (14.5%)

18 p10 95 (88.0%) 13 (12.0%)

The paresthesias column gives the number (and percentage) of trials in which paresthesias 
were reported in one or multiple somatic regions.

FIGURE 4

Body maps showing the locations of reported paresthesias for each of the 18 DBS electrode arrays. Left- and right-sided sensations are collapsed into 
a unilateral frame of reference, using a color code to indicate contra- vs. ipsilateral sensations. Percentages reflect the proportion of all reported 
sensations in each body area, calculated per DBS lead.
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how stimulation parameters and person specific features influenced 
perceptual outcomes. Our goal was to evaluate the predictive model’s 
performance to then in the future assess its real-world relevance for 
optimizing DBS therapy management and potential applications in 
computer-brain interfacing.

Our findings reveal several important insights: Firstly, the 
predictions demonstrated substantial agreement with ground truth for 
the occurrence of paresthesias, indicating the feasibility of using 
computational approaches to anticipate sensory outcomes in 
DBS. Secondly, the importance of incorporating individual-specific 
information from VTA simulations in predicting the somatic regions 
of DBS-induced paresthesias highlights the value of image guided 
DBS programming, underscoring the need to integrate such data in 
DBS programming and optimization workflow.

The distinction between intra-sample and inter-sample 
scenarios offers valuable perspective on the real-world application 
and generalizability of our results. We  achieved comparable 
prediction performance for both previously encountered and 
unseen cases for the presence of paresthesias. However, the 
performance of predicting the somatic location of paresthesias 
decreased for unseen cases. Thus, the model appears to have 
captured individual characteristics better than generalizable 
patterns across different individuals. The control analyses with 
naive models revealed that the model’s somatic predictions for 
entirely unseen cases were only slightly better than random 
guessing, indicating that, at this point, the clinical relevance of 
these predictions may be limited. Somatic predictions seem to 

require individual-specific prior data, such as stimulation 
responses collected during prior programming sessions or even 
during surgery.

We extend earlier research that demonstrated the potential of 
machine learning models to predict motor response after deep brain 
stimulation in Parkinson’s disease (36) and Essential Tremor (37). 
Furthermore, a recent study on people with isolated dystonia 
demonstrated that machine-learning based DBS programming 
resulted in greater symptom reduction compared to clinical 
programming (38). To our knowledge, no prior studies have explored 
the use of machine-learning approaches for predicting the occurrence 
and location of paresthesias during DBS. Our findings support the role 
of sensory afferent fiber activation in mediating paresthesias during 
DBS (21, 22). However, we build further upon this understanding by 
demonstrating the predictive utility of computational models 
incorporating stimulation parameters and VTA metrics. This 
represents a significant advancement in the field by providing 
clinicians with a potential tool to anticipate and mitigate sensory side 
effects associated with DBS therapy.

Our findings could have implications for future clinical practice. 
Paresthesias can serve as an invaluable real-time feedback signal 
about the functional effects of DBS. Paresthesias can be a marker of 
efficacy in spinal cord stimulation (SCS) therapy, correlating with 
pain relief (39–41). Their role in DBS is less clear, but some studies 
suggest a similar relationship (42, 43). Furthermore, the location of 
the paresthesias can offer important information to determine the 
optimal stimulation site. Specifically, face or finger paresthesias 
suggests optimal placement within the Vim nucleus for tremor 
suppression. Conversely, deviations like intra-oral or leg 
paresthesias could indicate a need for stimulation adjustment, or 
electrode repositioning (21). Our paradigm can help clinicians 
predict paresthesias caused by DBS, allowing tailoring of treatment 
per individual. This has the potential to enhance therapy outcomes, 
reduce treatment-related morbidity, and improve overall satisfaction 
with DBS therapy. Moreover, our research supports the integration 
of computational modeling approaches into clinical practice to 
augment decision-making and improve patient care in 
neurostimulation therapies (44).

Our findings extend beyond clinical DBS and are relevant to the 
field of CBI, particularly in applications requiring precise sensory 
induction (17, 18). Our prediction paradigm could be leveraged in 
CBI systems that require modulation of neural activity to evoke 
specific sensations or perceptions. For instance, by adjusting 
stimulation parameters and targeting brain regions identified through 
paresthesia mapping, researchers could design CBI devices capable of 
generating controlled tactile sensations or proprioceptive feedback. 
These signals could be used to convey information from the external 
world, such as artificial touch perceived in a prosthetic limb or a 
phantom limb (17, 45, 46). Moreover, there is a rich body of work on 
sensory substitution showing that artificial sensory input can be used 
to restore, replace, or enhance sensory function (47–51). We have 
recently demonstrated that paresthesias evoked by spinal cord 
stimulation can be  used to effectively convey a diverse range of 
information, from rhythmic cues to an artificial sense of balance (18). 
These advancements could have transformative implications for 
various CBI domains, including neuroprosthetics, virtual reality, and 
sensory augmentation technologies. By enabling enhanced sensory 

FIGURE 5

Total number of paresthesias recorded for each somatic area in the 
dataset used for training and testing the prediction models. The 
darker shaded bars represent somatic areas for which specific 
prediction models were trained and tested. For the remaining 
somatic areas (light shaded bars), no direct prediction models were 
trained. However, these areas were used as negative instances in 
other somatic area models, representing trials where the target 
sensation of the respective model did not occur (e.g., chin 
paresthesias could act as False instances for a model predicting 
paresthesias in the fingers).
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experiences and functional restoration for individuals with sensory 
impairments, our study paves the way for unlocking the full potential 
of DBS-based CBI, combining valuable insights from clinical therapy, 
paresthesia mapping, and sensory substitution.

Our study has several limitations. The study’s sample lacks a 
broad representation of individual characteristics and response 
variability. On the other hand, the sample’s heterogeneity may 
introduce confounding factors that could affect the generalizability 
of the findings. While the study showed promising results for this 
specific sample of individuals and experimental setting, it’s unclear 
how well these findings would translate to everyday clinical 
practice or different subpopulations. Factors such as variations in 
DBS electrode type and location, stimulation protocols, 
demographics, and medical condition could impact the model’s 
performance in real-world applications. Stimulation parameters 
and anatomical VTA information only partially account for the 
variation in responses to DBS (1, 52, 53). Unaccounted variables, 
such as medication or comorbidities, may have influenced the 
perception of paresthesias. However, we believe these factors are 
unlikely to introduce significant confounds given our primary 
objective: predicting stimulation effects using energy-related 
parameters and anatomical locations. Furthermore, with respect to 
a potential CBI approach our data does not cover long term 
paresthesia effects, since it was not the purpose of the paresthesia 
screening done here. Lastly, while this study provides insights into 
the predictive modeling of DBS-induced sensations, practical 
challenges related to model implementation and integration into 
clinical practice remain.

Looking ahead, several avenues for future research emerge. For 
example, further refinement and validation of predictive models 
incorporating larger cohorts, additional features, and biomarkers 
could enhance the accuracy and clinical utility of paresthesia 
prediction in DBS therapy. Also, investigations into the broader 
applicability of predictive modeling approaches across different DBS 

targets, outcomes, and populations would be valuable for advancing 
the field of neuromodulation.

Conclusion

We have demonstrated the feasibility of using machine learning 
to predict paresthesias in response to thalamic DBS. This predictive 
modeling provides clinicians with a powerful tool to optimize DBS 
programming, allowing them to either avoid or intentionally evoke 
paresthesias. Additionally, paresthesia mapping could enhance 
computer-brain interfaces, enabling precise sensory induction and 
offering transformative applications in neuroprosthetics, virtual 
reality, and sensory augmentation technologies. Our findings are 
intended to serve as a stepping stone for future, more extensive 
studies, such as those with larger cohorts. These advancements may 
pave the way for neuromodulation interventions that are better 
tailored to individual needs.
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FIGURE 6

Confusion matrices and performance metrics from the nested cross-validation of prediction models. Each cell shows the total count of true/false 
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horizontal axis. The panels depict: (A) Intra-sample paresthesia predictions, (B) Intra-sample somatic predictions, (C) Inter-sample paresthesia 
predictions, and (D) Inter-sample somatic predictions. The tables beneath each matrix show the corresponding performance metrics.
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