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Background: Multiple sclerosis (MS) is an inflammatory chronic autoimmune 
and neurodegenerative disorder of the brain and spinal cord, resulting in loss 
of motor, sensorial, and cognitive function. Among the non-pharmacological 
interventions for several brain conditions, photobiomodulation (PBM) has gained 
attention in medical society for its neuroprotective effects. We systematically 
reviewed the effects of PBM on MS.

Methods: We  conducted a systematic search on the bibliographic databases 
(PubMed and ScienceDirect) with the keywords based on MeSH terms: PBM, 
low-level laser therapy, multiple sclerosis, autoimmune encephalomyelitis, 
demyelination, and progressive multiple sclerosis. Data search was limited from 
2012 to July 2024. We followed the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) guidelines. The initial systematic search 
identified 126 articles. Of these, 68 articles were removed by duplicity and 50 by 
screening. Thus, 8 studies satisfied the inclusion criteria.

Results: The reviewed studies showed that PBM modulates brain markers 
linked to inflammation, oxidative stress, and apoptosis. Improvements in motor, 
sensorial, and cognitive functions in MS patients were also observed after PBM 
therapy. No study reported adverse effects of PBM.

Conclusion: These findings suggest the potential of PBM as a promising non-
pharmacological intervention for the management of MS, although further 
research is needed to standardize PBM protocols and assess its long-term 
effects.
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1 Introduction

Multiple sclerosis (MS) is an inflammatory, chronic autoimmune, and neurodegenerative 
disorder of the brain and spinal cord that results in loss of motor, sensorial, and cognitive 
function (1–3). According to the National Multiple Sclerosis Society, MS affects more than 2 
million people worldwide (3, 4).
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This disorder starts with an inflammatory cascade in the central 
nervous system (CNS), which is caused by inappropriately activated 
T cells which in turn induces an immune response against myelin and 
oligodendrocytes (1, 5–7).

Clinically, MS begins with discrete episodes of neurological 
dysfunction followed by partial, complete, or no remission. Over time, 
most patients develop a sustained accumulation of disability, known 
as secondary progressive MS (SPMS) (8, 9). About 10% of MS develop 
accumulation of disability from clinical onset with no reporting a 
preceding period of clinical relapses and remissions and are known as 
primary progressive MS (PPMS) (9). Despite these different 
classifications, all clinical forms of MS seem to reflect the same 
underlying disease process (10).

Photobiomodulation (PBM) is a non-invasive technique that 
uses red-to-near-infrared light to stimulate wound healing, reducing 
pain and inflammation in several diseases (11). PBM also improves 
brain functions in several conditions (12–15). For example, Disner 
et al. (14) reported that transcranial PBM at 1064 nm wavelength 
reduces depression symptoms in participants with better response 
to attention bias modification. Vargas et  al. (15) observed that 
infrared PBM at 1064 nm, 250 mW/cm2, improved the cognitive 
function and EEG rhythms of older adults with memory complaints. 
Animal studies have observed similar effects (16–18). Salehpour 
et  al. (18) reported that PBM prevented cognitive impairment 
induced by sleep-deprived. In addition, PBM enhanced the 
antioxidant status and increased mitochondrial activity in the 
hippocampus of sleep-deprived mice. Our research group noted 
that PBM increased the levels of interleukin-1α (IL-1α) and 
decreased the levels of IL-5 and the expression of p38 stress-
activated protein kinase (p38) in both the cortex and hippocampus 
of aged rats (16). These promising effects of PBM have been 
investigated from various perspectives, including in 
neuroinflammatory response (19, 20).

Based on the well-documented therapeutic effects of PBM in 
different neurological conditions (16–18, 21–24), we systematically 
review the effects of PBM in MS.

2 Methods

2.1 Search strategy and sources

We used the PubMed and ScienceDirect databases with the 
keywords based on MeSH terms: photobiomodulation, low-level laser 
therapy, multiple sclerosis, autoimmune encephalomyelitis, 
demyelination, and progressive multiple sclerosis. Data search was 
limited from 2012 to June 2024. This study followed the guideline of 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) (25). Two evaluators made the evaluations, and 
disagreements were resolved by consensus.

2.2 Selection criteria

The search strategy included experimental and clinical studies 
using PBM in MS. We included original in vitro and clinical articles 
written in English.

2.3 Data extraction and data synthesis

For data extraction, we used an individualized data form (26), in 
which articles were subdivided according to the author, subjects, light 
source, PBM parameters (center wavelength, operation mode, average 
radiant power, irradiance at aperture, beam spot size, exposure 
duration, radiant exposure, number of points irradiated, number of 
sessions, total radiant energy) and outcomes. The data are presented 
in the Results section.

3 Results

3.1 Study selection

The initial database search resulted in 126 studies. Of these, 68 
articles were removed due to duplicity, 50 were screened out, and 8 
studies were included in the systematic review. The process of selecting 
the articles is illustrated in Figure 1.

3.2 Study characteristics

Four articles reported experiments in mice (27–30), of which 2 
were on female C57BL/6 (29, 30) and 2 were on male C57BL/6 (27, 
28) (Table 1). In these studies, the age of animals varied from 6 to 
10 weeks old. In humans, 4 articles reported a randomized clinical trial 
in men and women aged 18–60 diagnosed with MS (31–34) (Table 2). 
In all studies, the subjects received PBM treatment. The studies aimed 
to analyze the effects of PBM on the damages caused by MS, 
inflammatory response and oxidative stress, mitochondrial activity, 
demyelination, microglial modulation, and apoptosis.

4 Discussion

This systematic review aimed to investigate the effects of PBM 
therapy in MS. Studies have shown that laser therapy reduces the 
clinical signs of disease and demyelination and exhibits anti-
inflammatory and antioxidant properties. In addition, PBM increases 
the expression of genes linked to cellular proliferation and 
reduces apoptosis.

4.1 PBM-induced changes in clinical signs

Studies show that the laser improves clinical signs in patients with 
MS (31–33). In the study conducted by Seada et al. (33), the laser 
treatment performed three times per week on consecutive days (24 
sessions) reduced trigeminal pain and increased mouth opening, 
masseter, and temporalis muscles. In another study, Kubsik et al. (31) 
observed that, after PBM treatment with 21 sessions, MS patients 
improved their functional status based on Expanded Disability Status 
Scale (EDSS) of Kurtzke and Barthel Index. Also, Rouhani et al. (32) 
noted an improvement in force recovery of patients treated with 4 
sessions of PBM treatment. These therapeutic effects of PBM have also 
been observed in laboratory animals (27–29). Among the models 
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FIGURE 1

Summary of article search and selection process.

TABLE 1 Evidence of PBM in animal models of MS.

Author Subjects Light source PBM parameters Outcomes

(29) Female C57BL/6 LED Center wavelength: 670 nm

Average radiant power: 2100 mW

Exposure duration: 180 s

Radiant exposure: 5 J/cm2

Number of sessions: 7

Total radiant energy: 375J

PBM reduced mean clinical scores. In 

addition, PBM decreased IFN-γ and 

TNF-α levels, and increased IL-4 and 

IL-10 levels.

(30) Female C57BL/6 LED Center wavelength: 670 nm

Average radiant power: 2100 mW

Exposure duration: 180 s

Radiant exposure: 5J/cm2

Number of sessions: 7

Total radiant energy: 375J

PBM attenuated antigen-specific nitric 

oxide. Also, PBM exhibited up-regulation 

of the Bcl-2 anti-apoptosis gene, and 

increased Bcl-2: Bax ratio.

(28) Male C57BL/6 mice 

(6–10 weeks of age)

LED Center wavelength: 660 and 904 nm

Operation mode: continuous and pulsed

Average radiant power: 30 mW and 70 W, pulsed regime 

(time of pulse 60 ns)

Beam spot size: 0.06 and 0.10 cm2

Exposure duration: 20 s for each position

Radiant exposure: 10 and 3J/cm2

Number of points irradiated: 6

Number of sessions: 30

Total radiant energy: 0.6J

PBM inhibited clinical signs, 

neuroinflammation, and oxidative damage 

induced by encephalitogenic T 

lymphocytes and microglia in the brain.

(27) Male C57BL/6 mice 

(7 weeks of age)

LED Center wavelength: 808 nm

Operation mode: continuous

Average radiant power: 50 mW

Irradiance at aperture: 1.78 W/cm2

Beam spot size: 0.028cm2

Exposure duration: 20s

Radiant exposure: 36J/cm2

Number of points irradiated: 1

Number of sessions: 6

Total radiant energy: 1J

PBM increased motor performance, 

attenuated demyelination, increased the 

number of oligodendrocyte precursor 

cells, modulated microglial and astrocyte 

activation, and milder toxicity by 

cuprizone.

Photobiomodulation (PBM); interferon gamma (IFN-γ); Tumor necrosis factor-alpha (TNF-α); Interleukin-4 (IL-4); Interleukin-10 (IL-10); B cell lymphoma-2 (Bcl-2); BCL-2-associated X 
(BAX).
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TABLE 2 Evidence of PBM in MS patients.

Author Subjects Light source PBM parameters Outcomes

(33) MS patients LASER Center wavelength: 830 nm

Average radiant power: 15 mW

Irradiance at aperture: 0.17 W/cm2

Exposure duration: 2400 s

Number of points irradiated: 4

Number of sessions: 24

PBM reduces pain and improves 

range of motion

(31) Individuals with a diagnosis 

of MS (EDSS)

LASER Center wavelength: 650 nm

Average radiant power: 50 mW

Beam spot size: 1 cm2

Exposure duration: 30 s

Number of points irradiated: 20

Number of sessions: 21

Total radiant energy: 3J

PBM improves the functional status 

of patients.

(34) Individuals with a diagnosis 

of MS (EDSS)

LED Center wavelength: 808 nm

Operation mode: continuous

Average radiant power: 100 mW

Irradiance at aperture: 0.80 W/cm2

Beam spot size: 0.13 cm2

Exposure duration: 360 s

Radiant exposure: 287J/cm2

Number of sessions: 24

Total radiant energy: 36.5J

PBM increased the expression of 

IL-10.

(32) MS patients LASER/LED Center wavelength: 640 nm, 875 nm, and 905 nm

Operation mode: pulsed laser

Irradiance at aperture: 0.033 W/cm2

Exposure duration: 300 s, 600 s, and 900 s

Number of sessions: 4

Total radiant energy: 40J, 80J, and 120J

PBM improved force recovery and 

muscle strength.

Photobiomodulation (PBM); Interleukin-10 (IL-10).

studied in the literature are: experimental autoimmune 
encephalomyelitis (EAE) and cuprizone intoxication (35–38). In these 
models, the onset and progression of the disease are determined by a 
clinical score based on the progressive appearance of paralysis, the 
origin of locomotor deficits, and the gradual disability of the pathology 
(35, 36). In the study conducted by Gonçalves, thirty sessions of PBM 
(660 nm and 904 nm) were able to reduce clinical score and delay the 
disease onset in EAE mice. Also, a body weight gain was observed in 
the animals from the laser group. In the study by Duarte (27), 
cuprizone-induced MS model animals that received six sessions of 
laser treatment (808 nm) applied on three consecutive days for 2 weeks 
showed an improvement in motor performance. These data suggest 
that PBM improves the clinical signs of MS.

4.2 Anti-inflammatory effects of PBM

The diagnosis of MS is established in conjunction with the clinical 
presentation and inflammatory lesions (39). In this sense, studies 
performed on patients (34) and animal models of MS (27, 28, 30) 
show that PBM modulates the levels of inflammatory markers. For 
example, after 24 sessions of PBM twice a week, the expression of 
IL-10 increased significantly in MS patients (34). It is known that the 
expression of pro-inflammatory cytokines is inhibited by the secretion 

of IL10 (40). These data are interesting, given that patients with MS 
exhibit reduced levels of IL-10 in mononuclear cells (41). In animal 
models of MS, it is also possible to observe the anti-inflammatory 
properties of PBM (27–29). For example, after PBM, a decrease was 
observed in the levels of pro-inflammatory cytokines, such as 
interferon and tumor necrosis factor-alpha (TNF-α), and an increase 
in IL-4 and IL-10 (anti-inflammatory cytokines) (29). Goncalves et al. 
(28) noted that EAE mice showed profound infiltration of 
inflammatory cells into the CNS, particularly in the white matter 
region, and a pronounced increase in IL-17, interferon gamma 
(IFN-γ), and IL-1b levels. However, PBM reduced the infiltration of 
inflammatory cells into the CNS of EAE mice. In addition, PBM 
inhibited the upregulation of IL-17, IFN-γ, and IL-1b. These findings 
are essential since the secretion of pro-inflammatory cytokines such 
as IFN-γ and TNF-α initiates and propagates a pro-inflammatory 
response, generating demyelination of CNS axons by multiple 
mechanisms, including cytokine-mediated demyelination (42). In this 
sense, Duarte et al. (27) observed that PBM attenuated the degree of 
demyelination in the corpus callosum of cuprizone-induced MS 
model animals, accompanied by a better clinical outcome. In addition, 
the authors investigated microglial and astrocyte activation. They 
noted a reduced severity of astrogliosis (GFAP) and microglia (IBA-1) 
immunoreactivity in the corpus callosum of the cuprizone-induced 
MS model submitted to PBM treatment. Glial cell activation and 
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inflammatory response are critical hallmarks of MS in humans and 
animal models (43). About high levels of GFAP, it is known that these 
high levels in CSF are associated with the progression of MS (44–46) 
and with clinical disability (44, 46).

4.3 Antioxidant and antiapoptotic effects of 
PBM in MS

Studies show that levels of oxidative stress markers are increased 
in MS model animals (47–49). However, it is suggested that reduction 
of oxidative stress prevents the progression of MS, mainly by 
protecting against apoptosis (50–52). In this sense, in the studies 
conducted by Muili et al. (30) and Goncalves et al. (28), it was shown 
that animal models of MS submitted to treatment with PBM exhibit a 
decrease in oxidative stress markers, such as: nitric oxide (NO), 
inducible nitric oxide (iNOS) and nitrite. In addition, animal models 
of MS that received PBM treatment exhibited up-regulation of the 
Bcl-2 anti-apoptosis gene, an increased Bcl-2: Bax ratio, and reduced 
apoptosis in the spinal cord (30).

4.4 Limitations

Our systematic review presents limitations, mainly because it only 
analyzed 4 studies with MS patients. The research highlighted in this 
review shows the therapeutic potential of PBM on MS. However, the lack 
of details about the PBM parameters used in each work make it difficult 
to replicate these approaches. Standardization of the PBM protocols 
would facilitate comparison between the findings of the studies.

5 Conclusion

The findings of this systematic review suggest that PBM can be a 
promising non-pharmacological intervention for MS, as it has been 
shown to modulate markers linked to inflammation, oxidative stress, 
and apoptosis. Clinically, PBM has been associated with 
improvements in motor, sensorial, and cognitive functions in MS 
patients, indicating its potential as an adjunct therapy to standard MS 
treatments. No study presented adverse effects of PBM. However, 
future studies should aim to standardize PBM protocols, assess long-
term effects, explore underlying mechanisms, investigate synergistic 
effects with other treatments, and identify patient subgroups that are 
most likely to benefit from PBM.
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