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Despite an abundance of pharmacologic and surgical epilepsy treatments, 
there remain millions of patients suffering from poorly controlled seizures. 
One approach to closing this treatment gap may be  found through a deeper 
mechanistic understanding of the network alterations that underly this aberrant 
activity. Functional optical imaging in vertebrate models provides powerful 
advantages to this end, enabling the spatiotemporal acquisition of individual 
neuron activity patterns across multiple seizures. This coupled with the advent 
of genetically encoded indicators, be them for specific ions, neurotransmitters 
or voltage, grants researchers unparalleled access to the intact nervous system. 
Here, we will review how in vivo functional optical imaging in various vertebrate 
seizure models has advanced our knowledge of seizure dynamics, principally 
seizure initiation, propagation and termination.
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Introduction

Epilepsy, a serious health condition characterized by recurrent and often disabling seizures 
(1–3), is the fourth most common neurological disorder (4), with prevalence ranging from 0.5 
to 1% around the world (5, 6). Despite over a century of drug development (7), about one third 
of these cases are medically intractable (8–10). This is perhaps in part due to the approach 
often taken, agnostic to seizure microcircuitry and network physiology. Surgical interventions 
such as ablation (11, 12), open resection (13, 14), and electrical stimulation (15, 16) are 
sometimes options for pharmacoresistant epilepsy. However, none of these procedures render 
all patients seizure free. Additionally, they can result in off-target effects, and are generally 
unavailable in developing countries. Thus, a significant need exists for more targeted and 
effective therapies (17, 18). A deeper understanding of the role of individual neurons, neuronal 
ensembles, and neural networks in initiating, propagating and terminating epileptic discharges 
underlying seizures would facilitate such advances.

Currently, the bulk of our knowledge of seizure dynamics comes from macroelectrode 
population electrophysiology, with electroencephalography (EEG; Figure  1A) having 
demonstrated that seizure activity can spread from a focal brain region in a diffuse yet 
stereotyped network (19). However, this approach fails to capture the complex underlying 
microcircuit dynamics, many permutations of which can result in the same recorded signal 
(18). To characterize seizure dissemination between individual neurons, single unit recordings 
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have been performed in humans and animals using microelectrode 
arrays (MEAs). These recordings have shown that firing and 
termination of firing of neurons recruited during seizures is highly 
synchronous and stereotyped (20, 21), where ictal wavefronts 
propagate with similar directionality across seizures and interictal 
spikes propagate in antiparallel fashion (22). Additionally, 
electrophysiology combined with GABAergic pharmacology has been 
used to find evidence of inhibitory networks restraining seizure 
activity, including surround and feedforward inhibition (23, 24). 
However, these recordings have limited recording density, typically at 
a single cortical depth, due to their planar configuration of sparsely 
arranged contacts. Furthermore, it is generally impossible to know the 
subtype of neuron being recorded [for exceptions see (25, 26)]. 
Moreover, it is challenging to determine if the activity being recorded 
emanates from the same neuron between separate recording sessions.

Functional optical imaging in animal models (Figure  1B) 
circumvents many of the limitations of electrophysiology and allows 
for observation of activity of substantially more neurons. Calcium 

(27–30) or voltage sensitive dyes (31, 32) were originally used for this 
purpose, but were rarely cell-type selective, and disadvantaged by 
significant photobleaching, poor intracellular retention and toxicity 
(33). The development of genetically encoded indicators, expressed 
either through viral transduction or through genetic model 
development, has enabled cell-type specific imaging. These fluorescent 
proteins undergo a conformational change to excitable states upon the 
binding of specific ions or small molecules (34, 35). The most 
commonly used indicators are genetically encoded calcium indicators 
(GECIs) that fluoresce in the presence of calcium (35–41). They can 
serve as proxies for neuronal firing, which is marked by an increase of 
intracellular calcium. In addition to calcium, a growing arsenal of 
genetically encoded indicators are being developed (34, 42), including 
for other ions (43–48), small molecules and neurotransmitters (49–
58). Furthermore, genetically encoded voltage indicators (GEVIs) 
have been developed, exploiting voltage-sensitive domains (59–63).

For imaging, these indicators can be excited with either a single 
photon (1P) in the visible range or two (or more) coincident photons 

FIGURE 1

Intravital imaging approaches to studying seizure dynamics in vertebrates. (A) Seizure phase partitions with respect to EEG recording during a 
generalized seizure in a mouse. (B) Illustrations of common in vivo imaging set-ups (both 1P and 2P). The left depicts a head fixed mouse running on a 
treadmill and the right depicts a zebrafish embedded in agar. (C) Representative fields of view and recordings for 1P (top) and 2P (bottom) imaging in 
both mouse (left) and zebrafish (right). The mesoscopic spread across brain regions (contiguous ipsilateral and homotopic contralateral in mouse; 
caudal to rostral in zebrafish) can be appreciated by 1P-widefield imaging. The microscopic individual cell activity (including synchronous pre-ictal 
firing and local wavefront propagation) can be appreciated with 2P-laser scanning. Data reproduced with modification, under creative commons 
attribution 4.0 licenses (CC BY) [1P-mouse (116); 2P-mouse (111); 1P-zebrafish (120, 121); 2P-Zebrafish (98)].
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in the infrared range. While 1P excitation can be achieved with many 
intravital microscope setups, including epifluorescence widefield, laser 
scanning confocal and light sheet, 2P necessitates the use of a 
femtosecond mode-locked laser for light delivery (64). Consequently, 
2P imaging is limited to laser scanning, although a few light sheet uses 
exist (65). The temporal and spatial resolution of these methods varies 
greatly (17, 64, 66–68) and thus the selection of the method should 
be tailored to the question and indicator. 1P widefield imaging offers 
the largest fields of view with fastest temporal resolution (Figure 1C). 
However, for investigations looking at subcellular compartments or 
multiple cell populations of tens to hundreds of individual neurons, 
2P laser scanning is often best. For questions related to brain-wide 
mesoscale networks, light sheet and 2P laser scanning in transparent 
zebrafish larva have been the methods most often used. All the above 
methods require head fixing or immobilizing the subject under an 
objective. Should the question necessitate a wider range of behavior 
or longer imaging session, head mounted microscopes [1P (69) and 
2P (70, 71)] can be used in freely moving mice. For a more detailed 
review of epilepsy intravital imaging methodology see (66).

Since the first intravital optical imaging study using a genetically 
encoded indicator in a vertebrate seizure model nearly a decade ago 
(72) there have been over 50 additional such studies published. These 
have sought to examine the contributions of different cell types and 
neurotransmission to seizure dynamics, the reliability of initiation and 
propagation patterns, the network changes in synchrony and 
connectivity that occur at micro and macroscale, and the impact of 
this aberrant activity on normal function. This review will serve to 
summarize the major contributions these investigations have provided 
to our understanding of seizure physiology.

Overview

Seizures can be partitioned into several distinct phases, namely 
interictal, pre-ictal, ictal, and post-ictal (Figure  1A). While each 
phase’s distinct dynamics are of importance, it is the evolution of that 
activity and the transitions between phases that are often the focus of 
investigation. Therefore, we  have organized our review in a 
complementary fashion. Table  1 lists the in vivo imaging studies 
included in this review, specifically those that used genetically 
encoded indicators to investigate epileptiform activity directly. 
Experiments where imaging was not in vivo (e.g., ex vivo slice), used 
dyes, or was only performed during non-epileptiform activity are 
not discussed.

Interictal activity

Interictal spikes (IIS) are episodes of transient synchronous 
paroxysmal depolarization across ensembles of hyperexcitable 
neurons, classically observed as a spike wave discharge on EEG 
(73). Widefield imaging of the cortex has demonstrated that IIS 
begin as standing waves in local regions with limited contiguous 
spread (74), although some cortex-wide propagation and delayed 
recruitment of distal non-contiguous foci has been observed (75, 
76). While IIS are often limited to or emanating from the purported 
epileptic focus, in instances of extrafocal origin, or non-contiguous 
spread, these loci often share homotopic connection with the ictal 

focus (74, 77). These patterns have been observed in both excitatory 
and inhibitory populations (77). The local and limited nature of 
interictal activity is corroborated by whole brain imaging in 
zebrafish (78–80).

To parse the individual cell activity patterns underlying IIS, laser 
scanning microscopy was employed. Imaging the zebrafish optic 
tectum revealed hypersynchronous recruitment of microensembles 
underlying the spatially confined interictal activity observed by 
previous studies with widefield microscopy (79, 81). In the pilocarpine 
chronic seizure mouse model, it was shown that inhibitory neurons 
are disproportionally active relative to pyramidal cells during IIS in 
CA1, consistent with a perisomatic inhibitory restraint occurring. 
Additionally, while it seems there are subpopulations of neurons 
consistently active together, their recruitment is varied across spikes 
(72). However, in a chronic intrahippocampal kainic acid (KA) mouse 
model, synchronous bursts of pyramidal cells have been observed, 
which could speak to model differences in ictogenic mechanisms (82). 
When imaging the dentate gyrus (DG) also following 
intrahippocampal KA, distinct microensembles of excitatory adult 
born granule cells (abGCs) were determined to overly drive IIS, albeit 
firing in a desynchronized manner. The specific ensembles recruited 
across IIS were varied. These are distinct from the microensembles 
that participate in sharp wave ripples, which were shown to be driven 
by both mature and abGCs, firing with greater synchrony. This 
suggests that decoupling of abGCs from mature GCs and subsequent 
reorganization into these desynchronized pathologic ensembles may 
contribute to an impairment in dentate gating, enabling ictogenesis 
(83). When training computational models on calcium data from this 
model, abGCs were most often identified as superhub neurons with 
high feedforward conductance, enhancing downstream excitation in 
the resulting epileptic networks (84). Neurons outside the 
hippocampus, but still part of this network have also been found to 
be involved in seizure regulation, such as the fasciola cinereum, a 
collateral intermediary nucleus connecting the entorhinal cortex to 
the DG (85). Gap junctions may be in part mediating the spread of IIS 
activity, particularly in the astrocyte syncytium, as blocking gap 
junctions significantly decreased the occurrence, duration and spread 
of IIS (79). However, while astrocytes in CA1 exhibit transient 
increases in calcium spontaneously during the interictal period, these 
have been observed asynchronous with IIS (86).

For those spikes occurring in the cortex there is a notable 
recruitment of pyramidal cells (87, 88), limited to layer II/III, in 
addition to inhibitory cells (89). While both parvalbumin (PV) and 
somatostatin (SST) cells demonstrate activity during IIS, PV cells were 
predominantly recruited with a higher degree of inter- (with 
pyramidal cells) and intrapopulation synchrony, while SST cells 
demonstrated asynchronous and delayed recruitment (89). Combined 
GEVI and GECI imaging in pyramidal cells revealed that there is little 
supra- or subthreshold activity propagating out of the focus during IIS 
(90). Studies utilizing neurotransmitter indicators were concordant 
with these IIS dynamics, revealing an increase in glutamate observed 
at the focus, which expanded centrifugally, and an increase in gamma-
aminobutyric acid (GABA) observed extrafocally, which displayed 
slower and more persistent centripetal propagation, consistent with 
intact feedforward inhibitory surround limiting the IIS spread (51, 
91). Indeed, the IIS may reflect this restraining mechanism (92). 
Importantly, the majority of these studies were performed in focal 
neocortical models, where a chemoconvulsant was intracortically 

https://doi.org/10.3389/fneur.2024.1465232
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Stern
 et al. 

10
.3

3
8

9
/fn

eu
r.2

0
24

.14
6

52
3

2

Fro
n

tie
rs in

 N
e

u
ro

lo
g

y
0

4
fro

n
tie

rsin
.o

rg

TABLE 1 Intravital functional optical imaging seizure studies using genetically expressed indicators.

First 
author

Year Journal Method Species Model FOV Cell type Indicator 
type

Seizure phase

IIS Pre-
ictal

Ictal Post-
ictal

Deng (54) 2024 Nat Methods 1P-Widefield Mouse KA (i.p.) Ctx Extracellular Ca, 5-HT, eCB •

Jamiolkowski 

(85)

2024

Nat Med

2P-Laser Scan Mouse KA (d. hipp) FC (Hipp) FC cells Ca
•

Lau (125) 2024

Epilepsia

1P-Miniscope Mouse APP/PS1 Cortical 

Injury

CA1 

(Hipp)

Pan-neuronal Ca
• •

Li (93) 2024 J Cereb Blood Flow Met 1P-Widefield Mouse BIC Ctx Pyramidal Ca •

Nguyen (127) 2024

Nat Commun

2P-Laser Scan Mouse Electrical kindling 

(hipp), KA (d. hipp)

CA1 

(Hipp)

Pan-neuronal, 

extracellular

Ca, ACh
•

Shah (114) 2024

Cell Rep

1P-Widefield, 2P-Laser Scan Mouse 4-AP Ctx (II/III) Pan-neuronal + Nkx2.1 

(PV, SST) reporter

Ca
• •

Stern (111) 2024 Neurophotonics 2P-Laser Scan Mouse PTZ Ctx (II/III) VGAT + non-VGAT Ca • • •

Burrows (105) 2023 J Neurosci 2P-Laser Scan Zebrafish PTZ WB Pan-neuronal Ca • •

Li (88) 2023 iScience 2P-Laser Scan Mouse scn2a + PTZ Ctx (V) Pyramidal Ca •

Luo (77) 2023 Epilepsia 1P-Widefield Mouse BIC Ctx Pyramidal, PV Ca •

Masala (82) 2023

Brain

2P-Laser Scan Mouse KA (d. hipp) CA1 

(Hipp)

Pyramidal Ca
•

Shimoda (91) 2023 Brain 2p-Spiral Linescan Mouse 4-AP, Ptx Ctx (I) Extracellular GABA, Glu • •

de Vito (118) 2022 Biomed Opt Express 2P-Light Sheet, 1P-Widefield Zebrafish PTZ WB Pan-neuronal Ca • •

Dong (56) 2022

Nat Biotechnol

2P-Laser Scan Mouse Electrical kindling (v. 

hipp)

CA1 

(Hipp)

Pan-neuronal, 

extracellular

Ca, eCB
• •

Hotz (100) 2022

Glia

1P-Widefield, 2P-Laser Scan Zebrafish PTZ, 

eaat2a + photostim

WB Pan-neuronal, astroglial Ca, Glu
• •

Mulcahey (108) 2022

eNeuro

2P-Laser Scan + Transparent 

MEA

Mouse 4-AP CA1 

(Hipp)

Pyramidal Ca
•

Myren-Svelstad 

(101)

2022

Epilepsia

2P-Laser Scan Zebrafish PTZ, eaat2a, 

gabra1 + photostim

WB Pan-neuronal, astroglial Ca
• • •

Niemeyer (80) 2022

Brain

2P-Laser Scan Zebrafish PTZ WB Pan-neuronal + 

VGLUT2 reporter

Ca
• • •

Özsoy (119) 2022 Front Mol Neurosci 1P-Widefield, Photoacoustic Zebrafish eaat2a + photostim WB Pan-neuronal Ca •

Turrini (99) 2022 Biomedicines 2P-Light Sheet Zebrafish PTZ WB Pan-neuronal Ca • • •

Zhang (109) 2022 Neurosci Bull 2P-Miniscope Mouse KA (i.p.) Ctx* Pan-neuronal Ca • • •

(Continued)
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First 
author

Year Journal Method Species Model FOV Cell type Indicator 
type

Seizure phase

IIS Pre-
ictal

Ictal Post-
ictal

Bando (90) 2021 Nat Commun 2P-Laser Scan Mouse 4-AP Ctx (I-VI) Pyramidal Ca, Voltage • • •

Driscoll (107) 2021 Commun Biol 1P-Widefield + Transparent 

MEA

Mouse 4-AP Ctx Pyramidal Ca •

Farrell (126) 2021 Neuron 2P-Laser Scan Mouse Electrical kindling (v. 

hipp)

CA1 

(Hipp)

Pan-neuronal, 

extracellular

Ca, eCB •

Hadjiabadi (84) 2021 Neuron 2P-Laser Scan Zebrafish; 

Mouse

PTZ; KA (v. hipp) WB; DG 

(Hipp)

Pan-neuronal; 

GCs + abGC reporter

Ca • • •

Lim (103) 2021 J Cereb Blood Flow Met 2P-Laser Scan Mouse 4-AP Ctx (II/III) Pyramidal, GABAergic Ca • •

Liu (79) 2021 iScience 1P-Spinning disc Zebrafish stxbp1p WB Pan-neuronal Ca •

Somarowthu 

(115)

2021 Cell Calcium 2P-Laser Scan Mouse scn1a + Heat Ctx* Pan-neuronal + PV, SST, 

VIP reporters

Ca • •

Wong (110) 2021 Neuropsychopharmacology 1P-Miniscope Mouse scn8a + PTZ Ctx Pyramidal Ca •

Yang (116) 2021 Front Neurosci 1P-Widefield Mouse 4-AP Ctx Pyramidal Ca • •

Aeed (89) 2020 Ann Neurol 2P-Laser Scan Mouse 4-AP Ctx (II/III, 

V)

Pyramidal; PV; SST 

(separate)

Ca • • •

Cozzolino (78) 2020 Cells 2P-Laser Scan Zebrafish PTZ; kcnj10a WB Pan-neuronal Ca • •

Farrell (124) 2020 Sci Rep 2P-Laser Scan Mouse Electrical kindling (v. 

hipp)

CA1 

(Hipp)

Pyramidal Ca • •

Hatcher (117) 2020 J Clin Invest 1P-Widefield Mouse Glioma Ctx Pan-neuronal Ca • •

Montgomery 

(76)

2020 Cell Rep 1P-Widefield, 2P-Laser Scan Mouse Glioma Ctx Pyramidal Ca • •

Shuman (94) 2020 Nat Neurosci 1P-Miniscope Mouse Pilo (I.P.) CA1 

(Hipp)

Pan-neuronal Ca •

Sparks (83) 2020 Nat Commun 2P-Laser Scan Mouse KA (v. hipp) DG (Hipp) Pan-neuronal + abGC 

reporter

Ca •

Tran (131) 2020 JCI Insight 2P-Laser Scan Mouse Max electroshock Ctx* Astroglial, mural Ca •

Tran (102) 2020 J Neurosci 2P-Laser Scan Mouse scn1a + Heat Ctx (II/III) Pan-neuronal + PV 

reporter

Ca • • •

Brenet (96) 2019 Cells 1P-Widefield Zebrafish scn1a WB Pan-neuronal Ca •

Jayant (112) 2019 Cell Rep 2P-Laser Scan + 

Nanopipette

Mouse 4-AP Ctx (II/III) Pyramidal Ca • •

(Continued)

TABLE 1 (Continued)
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TABLE 1 (Continued)

First 
author

Year Journal Method Species Model FOV Cell type Indicator 
type

Seizure phase

IIS Pre-
ictal

Ictal Post-
ictal

Liao (97) 2019 Dis Model Mech 1P-Spinning Disc; 1P-Light 

Sheet

Zebrafish gabrg2 + photostim WB Pan-neuronal Ca •

Liu (81) 2019 eNeuro 2P-Laser Scan Zebrafish PTZ, 4-AP WB Pan-neuronal Ca • • •

Marvin (51) 2019 Nat Methods 2P-Laser Scan Mouse Pilo (ctx) Ctx (II/III) Extracellular GABA •

Verdugo (98) 2019 Nat Commun 2P-Laser Scan Zebrafish PTZ WB Pan-neuronal, astroglial, 

extracellular

Ca, Glu • •

Wenzel (95) 2019 J Neurosci 2P-Laser Scan Mouse 4-AP Ctx (II/III) Pan-neuronal + PV 

reporter

Ca • •

Heuser (86) 2018 Cereb Cortex 2P-Laser Scan Mouse KA (i.p.) CA1 

(Hipp)

Pan-neuronal, astroglial Ca • • •

Liou (23) 2018 Brain 2P-Laser Scan Mouse 4-AP Ctx (II/III) PV Ca •

Meyer (122) 2018 Nat Commun 2P-Laser Scan Mouse stargazer Ctx (II/

III-VI)

Pan-neuronal + IHC 

reporters

Ca • •

Rosch (104) 2018 PLoS Comput Biol 1P-Light Sheet Zebrafish PTZ WB Pan-neuronal Ca •

Zhang (106) 2018 Nano Lett 2P-Laser Scan + transparent 

MEA

Mouse 4-AP Ctx* Pyramidal Ca •

Petrucco (87) 2017 Sci Rep 2P-Laser Scan Mouse BIC Ctx (II/III) Pyramidal Ca •

Rossi (74) 2017 Nat Commun 1P-Widefield Mouse Pilo, Ptx Ctx Pan-neuronal, pyramidal Ca • •

Sato (44) 2017 Proc Natl Acad Sci 2P-Laser Scan Mouse 4-AP Ctx (II/III) CAG-promoter Cl, pH • •

Steinmetz (75) 2017 eNeuro 1P-Widefield Mouse various transgenics Ctx various Ca •

Turrini (120) 2017 Sci Rep 1P-Widefield Zebrafish PTZ WB Pan-neuronal Ca • •

Wenzel (113) 2017 Cell Rep 2P-Laser Scan Mouse 4-AP, Pilo Ctx (II/III, 

V)

Pan-neuronal Ca •

Winter (121) 2017 Sci Rep 1P-Light Sheet, 1P-Widefield Zebrafish PTZ, 4-AP, Pilo, 

Strychnine

WB Pan-neuronal Ca •

Berdyyeva (123) 2016 Front Neurosci 1P-Miniscope Mouse KA (i.p.); NMDA; PTZ CA1 

(Hipp)

Pyramidal Ca • •

Muldoon (72) 2015 Brain 2P-Laser Scan Mouse Pilo CA1 

(Hipp)

Pan-neuronal, 

GABAergic

Ca •

1P, one-photon; 2P, two-photon; 4-AP, 4-aminopyridine; 5-HT, 5-hydroxytryptamine (serotonin); BIC, bicuculline; Ca, calcium; Ctx, cortex; DG, dentate gyrus; eCB, endocannabinoid; FC, fasciola cinereum; GABA, gamma-aminobutyric acid; GC, granule cell (ab, 
adult born; m, mature); Glu, glutamate; Hipp, hippocampus (d, dorsal; v, ventral); IHC, immunohistochemistry; i.p., intraperitoneal; KA, kainic acid; NMDA, N-methyl-D-aspartate; Pilo, pilocarpine; Ptx, picrotoxin, PTZ, pentylenetetrazol; PV, parvalbumin; SST, 
somatostatin; VGAT, vesicular GABA transporter; VGLUT, vesicular glutamate transporter; VIP, vasoactive intestinal peptide; WB, whole brain; *Imaging depth/layer not reported; Italics indicate transgenic line.
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injected to elicit epileptiform activity. Corroborating studies across 
other models could strengthen the generalizability of these findings.

Combined widefield GECI imaging with optical imaging of 
intrinsic hemodynamic signal to examine neurovascular coupling 
showed that during IIS there is an initial ‘epileptic’ dip in hemoglobin 
oxygenation, likely the result of vasodilation, followed by a period of 
hyperoxygenation, due to increased levels of total hemoglobin 
delivery, all of which is tightly spatially correlated with excitatory cell 
activation (76, 93).

In terms of functional impact, hippocampal place cell encoding is 
impaired in two chronic seizure models, with aberrant dendritic 
hyperexcitability (82) and aberrant firing and desynchronization (94) 
hypothesized as contributing mechanisms.

Taken together, intravital imaging at microcircuit resolution has 
revealed distinct cell type activity patterns specific to different 
anatomical regions during IIS, and speaks also to intra- vs. extrafocal 
differences (92). There is considerable variability in the specific 
neurons recruited, where different ensembles can be recruited across 
sequential IISs.

Pre-ictal to ictal transition

Interictal periods, by definition, occur between seizures and thus 
they have both pre-ictal and post-ictal phases, the exact boundaries of 
which are poorly defined. Thus, to examine the pre-ictal phase, 
we look at the interictal period from the perspective of the progression 
of dynamic changes as the brain state transitions to seizure.

An advantage of imaging is the ability to delineate activity as 
intra- or extrafocal. When recording from the focus in a mouse 
4-aminopyridine (4-AP) model, recruitment of both excitatory and 
inhibitory neurons in local microensembles, akin to microseizures, 
was observed prior to ictal onset. As the brain progressed to seizure, 
ensemble activity increased across populations, with synchronization 
amongst excitatory cells (95). When examining dynamics at 
mesoscales in zebrafish whole brain, the mesencephalon/optic tectum, 
and occasionally the thalamus, emerged as a conserved region of 
hyperactivity (96–98) and seizure focus (78, 80, 81, 99–101). It was 
found that foci tended to have a higher proportion of excitatory cells 
than in the penumbra, perhaps contributing to their 
hyperexcitability (80).

When exploring cortical regions outside of the seizure onset zone 
prior to seizure invasion, feedforward inhibitory activity was observed, 
be it increased firing activity of inhibitory neurons (23, 95, 102, 103), 
or elevated GABA release during pre-ictal spikes relative to within the 
focus (91). Excitatory recruitment was still discernable, although 
possibly with some degree of suppression (95). As the tissue 
transitioned to a seizure state, there was a progressive increase in 
synchronization amongst pyramidal cells (89, 102), with a gradual 
breakdown in the inhibitory surround, witnessed as desynchronization 
in the PV cells activity (89, 102) and a decrease in released GABA 
during spiking (91). Inhibitory restraint weakening is also detected as 
progressively increasing bursts of subthreshold activity in pyramidal 
cells by GEVI imaging in the penumbra (90). As compared with 
neurons, astroglial networks displayed a more widespread elevation 
in calcium activity and synchrony pre-ictally, although their bursts of 
activity seemed to follow immediately after neuronal bursts during 
pre-ictal spikes (98).

Modeling based upon whole brain zebrafish mesoscale 1P light 
sheet imaging during PTZ induced seizures found that the tectum 
served as a networkwide hub. As the brain transitioned to seizure, 
there was a decrease in input to the tectum, enabling downstream 
network synchronization. The brain-wide recruitment was facilitated 
by increasing faster excitatory transmission and decreasing slower 
inhibitory transmission (104). Similar findings emerged from a model 
trained on 2P data with single-cell resolution collected from the same 
model. Specifically, they found that pre-ictal networks had enriched 
feedforward motif conductance, especially amongst “superhub” 
neurons, which promoted the pro-seizure tendency of the network 
(84). Another computational study using 2P data in the same model 
estimated microscale avalanche dynamics and showed that there was 
an increase in network connectivity at single-cell resolution, which 
drove the brain away from criticality, a point of maximal flexibility in 
brain state, thus limiting phase transition possibilities until the system 
converged on an inflexible ictal state (105).

Seizure propagation and ictal 
dynamics

Upon seizure invasion, suprathreshold activity is observed, first as 
a fast voltage wave and then a slower calcium wave (0.5–1 s delay) (90). 
Simultaneous calcium imaging through transparent microelectrode 
and electrocorticography arrays demonstrate spatial concordance 
between the modalities (106), where progression of ictal 
electrophysiology is tied with expansion of ictal core (107, 108).

Highly elevated and sustained calcium can be detected (109, 110) 
in both excitatory cells and inhibitory neurons (95, 102, 111), with 
pyramidal cells displaying the greatest recruitment and 
hypersynchrony (80, 89, 103). A concordant expansion of glutamate 
release into the field is also observed (91, 100), hypothesized to be in 
part released by glia (98). However, while calcium amplitude is 
classically thought to be  directly correlated with activity, a large 
increase could also indicate intracellular calcium homeostasis 
breakdown, and thus an absence of firing. A simultaneous in vivo 
imaging and patch clamp study revealed that the PV cells with an ictal 
calcium increase, actually enter a state of depolarization block upon 
seizure invasion (112), consistent with inhibitory restraint collapse.

Propagation can be witnessed as a calcium wavefront (102, 111, 
113), yet the recruitment of interneurons within this seems variable. 
In the 4-AP model the PV neuron recruitment appears spatially 
heterogenous (95) at invasion, with a delayed recruitment in SST cells 
(89). However, in a study imaging Nkx2.1 cells (PV and SST), these 
were found to be recruited in a spatiotemporally concordant manner 
to the other cells in the field (114). In a Dravet mouse model with 
thermally induced seizures, PV and vasoactive intestinal peptide-
expressing (VIP) cells appear recruited along with the population, 
while SST cells demonstrate a spatially independent early recruitment 
(115). With respect to cortical layers, layer II/III pyramidal cells tend 
to be  the first to propagate during the seizure, with a lagging 
recruitment of layer V (89, 113). The propagation has also been found 
to have reliable recruitment across sequential ictal events following 
intracortical injection of a chemoconvulsant (95, 113). The speed of 
propagation varied across events, although when the cortex had been 
first disinhibited by picrotoxin, the speed increased and variability was 
dampened, consistent with the inhibitory restraint hypothesis (113). 
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Interestingly, in a study where optogenetic photostimulation during 
calcium imaging was used to determine excitability in individual cells, 
decreased excitability proximal to the invading seizure wavefront was 
observed, in contrast to hyperexcitability observed interictally and 
baseline level excitability observed distal to invasion, suggesting that 
inhibitory neurons recruited to the seizure generate a front of local 
inhibition (114).

Propagation through brain regions appears to follow both 
proximal contiguous and distal homotopic spread with respect to the 
onset zone (74), including contralateral projections (76, 116, 117). In 
zebrafish, whole brain propagation was found to typically occur 
caudal to rostral (78, 100, 118, 119), although the opposite direction 
was occasionally observed (81), perhaps related to the different 
developmental stage and chemoconvulsant dosage used (118). While 
activity in rostral regions (telencephalon and habenula) is not initially 
correlated with the caudal regions (optic tectum, cerebellum and 
medulla), entrainment occurs along the rostrocaudal axis upon 
progression to seizure (98, 99, 120). Indeed, eventually the brain-wide 
synchrony can be observed (81, 84, 97, 104, 118), although there is 
some model dependency on the exact extent of recruitment (101, 
121). The astroglial syncytium’s calcium activity also displays brain-
wide hyperactivity (100) and synchrony within itself and with neurons 
during seizures (98). There is, though, a short delay in the astroglial 
ictal recruitment (101), corresponding to a further increase in neural 
activity, consistent with the hypothesis that neural activity is 
exacerbated by glial glutamate release (98). Impaired glutamate 
reuptake by astrocytes also led to hyperexcitability with spontaneous 
seizures and concurrent excessive glutamate signal (100). At seizure 
invasion, there is a large increase in intracellular chloride that slowly 
builds throughout the seizure, while pH slightly decreases (44).

Interestingly, imaging in the visual cortex of a mouse absence 
model revealed an opposite finding to the other seizure models, a 
decrease in neuronal activity and synchronization across cortical 
layers and neuron subtypes during ictal episodes. This asynchronous 
suppression could be  related to the impaired visual awareness 
classically associated with this seizure type (122).

In the hippocampus, ictal activity shows recruitment in both CA1 
pyramidal cells (123, 124), as well as the fasciola cinereum (85). While 
recruitment is highly synchronous for many neurons at invasion, new 
neurons are continuously recruited throughout the seizure (125). 
Spatial propagation dynamics recapitulated those of the cortex, 
demonstrating within-subject reliability for sequential events and a 
much faster expansion of electrophysiologic signatures ahead of the 
neuronal recruitment to the propagating calcium wave (108). 
Additionally, spatiotemporally concordant release of 
endocannabinoids occurs, which may play a feedback role in 
restricting seizure activity (56, 126). Acetylcholine levels have also 
been shown to increase during seizures, strongly correlating with 
intracellular calcium (127). Astrocytic calcium increased during 
seizure invasion as well, sometimes preceding the event, which may 
be in part mediated by internal store release (86).

With respect to neurovascular coupling, while the ictal focus is 
typically well supplied and only occasionally hypoxic, the penumbra 
is hyperoxygenated during seizure initiation and propagation, 
extending beyond the recruited tissue. At initiation, the blood supply 
to the focus increases, and this expansion appears as a wave ahead of 
the calcium wave in neurons into the penumbra and persists into the 
post-ictal phase (76, 116).

Seizure termination and post-ictal 
activity

Upon seizure termination or shortly into the post-ictal period, 
slow propagating waves of calcium have been recorded in the cortex 
(54, 102, 109, 111, 117) and hippocampus (56, 86, 123, 124). These 
waves have been hypothesized to be spreading depolarizations as they 
share similar spatiotemporal propagation properties (128), and 
spreading depolarizations can be temporally associated with seizures 
(129, 130). Spatiotemporally concordant serotonin and 
endocannabinoids waves have also been detected during these calcium 
waves (54, 56). These calcium waves are then followed by periods of 
post-ictal suppression of activity and synchrony (118, 124), with one 
zebrafish study showing functional connectivity to bifurcate into 
rostral and caudal groups (99). Intracellular chloride returns to 
baseline levels upon seizure termination and a gradual intracellular 
acidification occurs post-ictally (44).

A transient increase in astrocytic calcium was also observed post-
ictally (86), corresponding to post-ictal vasoconstriction (131), as well 
as post-ictal hypoactivity (101). While this glial calcium level was 
sustained for at most a few minutes, vasoconstriction was observed 
for over an hour. Vasculature smooth muscle cells also showed 
elevated calcium for the duration of the vasoconstriction (131). When 
post-ictal vasoconstriction was depressed by a COX-2 inhibitor, the 
duration of astrocytic calcium elevation was significantly diminished 
(131), while post-ictal suppression or recovery of neural activity was 
unchanged (124). On the other hand, when glia glutamate reuptake 
was impaired, post-ictal hypoactivity was diminished (101). Taken 
together, a vascular coupling to neuronal and glial activity is present 
post-ictally, although there may be a dissociation from their post-ictal 
suppressive mechanisms.

Looking forward

Intravital microscopy coupled with genetically targeted indicators 
has allowed unprecedented access to the intact nervous system. 
Leveraging these powerful tools across a variety of vertebrate seizure 
models has provided deep insight into mechanisms of epilepsy. 
Imaging has confirmed previous hypotheses derived from 
electrophysiology, such as the existence of microseizures inside an 
epileptic focus (132, 133) and the role of inhibition in restraining 
seizure activity (19, 24, 134). Imaging has also enabled new discoveries 
which have opened possibilities for novel treatment targets and 
approaches to epilepsy (17, 135), such as the neuromodulation of 
adult-born dentate granule cell superhubs (84), or leveraging seizure 
specific neurochemical changes for drug design (127), which could 
be extended as an autoregulatory gene therapy (136). Optical and 
genetic technologies are advancing quickly, opening even more 
possibilities. Already there are methods that could allow imaging of 
the whole cortex at a single cell resolution (137, 138), that enable 
imaging deeper in the brain without the need to aspirate the cortex 
(139), that capture activity in freely moving subjects to better tie 
behavior to ensemble activity (119, 140), and to decode 
electrophysiologic population dynamics from microensemble activity 
(106, 107).

Collectively, functional optical imaging modalities have immense 
scalability, to image at the micro-, meso- and macro-circuit level, 
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allowing inference to be  drawn about the interplay between the 
cellular and network evolution of seizures (17, 18, 66). While we think 
about a classic seizure as evolving, massive hypersynchronous activity, 
largely due to the use of EEG to identify and study these dynamics, 
functional optical imaging has made it abundantly clear that while 
that certainly is a defining feature, there are intricate activity patterns 
across cell types precipitating and underlying these events.
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